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1. INTRODUCTION

The use of clinical and laboratory data to detect conditions and predict

patient outcomes is a mainstay of medical practice. Classification and pre-

diction are equally important in other fields of course (e.g., meteorology,

economics, computer science) and have been subjects of statistical research

for a long time. The field is currently receiving more attention in medicine,

in part because of biotechnologic advancements that promise accurate non-

invasive modes of testing. Technologies include gene expression arrays, pro-

tein mass spectrometry and new imaging modalities. These can be used for

purposes such as detecting subclinical disease, evaluating the prognosis of

patients with disease and predicting their responses to different choices of

therapy. Statistical methods have been developed for assessing the accuracy

of classifiers in medicine (Zhou, Obuchowski, and McClish 2002; Pepe 2003),

although this is an area of statistics that is evolving rapidly.

In practice there may be multiple sources of information available to

assist in prediction. For example, clinical signs and symptoms of disease

may be supplemented by results of laboratory tests. As another example, it

is expected that multiple biomarkers will be needed for detecting subclinical

cancer with adequate sensitivity and specificity (Pepe et al. 2001). The

starting point for the research we describe in this paper is the need to combine

multiple predictors together, somehow, in order to predict a binary outcome.

Case-control study designs are frequently employed. These select study

subjects on the basis of the binary outcome, D, and then collect data on

the P predictor variables, Y = {Y1, . . . , YP} for them. Such retrospective de-
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signs usually require far smaller sample sizes than prospective studies, at least

when the outcome is rare (or very prevalent). In medicine, case-control stud-

ies are often employed for classifier development while much larger prospec-

tive studies are undertaken only at the final phases of evaluating the classifier

(Pepe 2003, Chapter 8; Pepe et al. 2001). Therefore, we focus on statisti-

cal methods for combining predictors that can accommodate case-control

designs.

To gauge the performance of a classifier we employ the traditional mea-

sures of classification accuracy that are used in medicine, namely the true-

and false-positive rates (TPR and FPR). Also known as sensitivity and 1-

specificity, respectively, TPR and FPR are defined as

TPR = P[classifier positive | outcome positive]

FPR = P[classifier positive | outcome negative].

The importance of reporting both dimensions is widely recognized since

the consequences of false-negative and false-positive errors are often very

different and hard to quantify. One dimensional summary measures such

as the overall misclassification rate or odds ratio are rarely used in practice

and can in fact provide misleading results (Pepe et al. 2004). The positive

and negative predictive value is another popular two-dimensional measure

of accuracy. However, since it cannot be assessed directly from case-control

studies, we do not consider it further here.

When multiple predictors are available or some are non-binary, it turns

out that it is enough to consider classification rules based on a scalar val-

ued function of the predictors L(Y ). Not only is this a largely intuitively

appealing class, but we note in Section 2 that it includes the optimal rules,
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namely those that are defined by the risk score function, P [D = 1|Y ], or a

monotone function of it. The receiver operating characteristic (ROC) curve

generalizes the notions of (TPR, FPR) from binary classifiers to scalar val-

ued classifiers. It is a plot of TPR(c) versus FPR(c) for the rule using c as a

threshold for defining a positive classification, L(Y ) > c, c ∈ (−∞,∞). The

ROC curve has become the standard description of classification accuracy

for scalar valued classifiers, like biomarkers (Baker 2003). Amongst its ap-

pealing properties is the fact that it provides an appropriate common scale

for comparing predictors (or scalar valued combinations of them) even if the

predictors themselves are not measured in the same measurement units. See

Pepe (2003 chapters 4, 5 and 6) for a review of ROC methodology.

In summary, this paper addresses the question of how to combine multiple

predictors into a score, i.e., a scalar valued function, when the goal is to use

that score for classification. The method used for evaluating classification ac-

curacy of the score is the ROC curve. In Section 2 we discuss approaches to

deriving the combination score and propose in particular the empirical area

under the ROC curve as an objective function of data on which to base the

derivation. In Section 3 we show, using data from a protein mass spectrome-

try experiment, that this approach can yield better classification scores than

that based on a likelihood objective function. Simulation studies described

in Section 4 indicate that when the logistic regression model holds, the AUC

approach is almost fully efficient. We conclude therefore that the AUC is

generally not worse than and sometimes a lot better than the likelihood for

deriving a combination score of multiple predictors. We close in Section 5

with conclusions to date and ideas for further work.
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2. DERIVING A COMBINATION SCORE

2.1. Linear Scores

We will consider linear scores of the form

Lβ(Y ) = Y1 + β2Y2 + . . . + βPYP . (1)

Since the component predictors may be functions of the raw predictor

data, including transformations and interactions, the linear predictor class

is in fact quite large. It includes smoothing and regression splines, kernel

methods, generalized additive models, discriminant scores, support vector

machines, and so forth (Hastie, Tibshirani, and Freidman 2001). However,

it does exclude one important set of classifiers, namely classic decision trees.

Observe that the linear score does not include an intercept and that the

coefficient associated with Y1 is 1. This is not a restriction since with α1 > 0

(and we can redefine Y1 as −Y1 to ensure α1 > 0), rules based on the linear

predictor Lα(Y ) = α0 + α1Lβ(Y ) exceeding a threshold are equivalent to

rules based on Lβ(Y ) exceeding a threshold. The ROC curves for Lβ(Y ) and

Lα(Y ) are the same, so it is enough to consider Lβ(Y ).

Under what circumstances is Lβ(Y ) the “right” combination score for

classification to D = 1 or 0 based on Y ? If the risk score is some monotone

increasing function of Lβ(Y ),

P [D = 1|Y ] = g(Y1 + β2Y2 + . . . βPYP ) = g(Lβ(y)) , (2)

it follows from the Neyman-Pearson lemma (Neyman and Pearson 1933) that

rules based on Lβ(Y ) > c are optimal. They are optimal in the sense that
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no other classification rule based on Y can have even a single accuracy point

(FPR, TPR) that lies above the ROC curve for Lβ(Y ). Thus for a fixed FPR,

the TPR of the rule Lβ(Y ) > c is higher than the TPR of any other rule with

the same FPR. Similarly for fixed TPR, the rule Lβ(Y ) > c has lowest FPR

among all rules based on Y with the same TPR. This is an incredibly power-

ful result that has long been known in the signal detection theory literature

(Green and Swets, 1966) but has only recently been highlighted in the statis-

tical literature (McIntosh and Pepe 2002). See also Eguchi and Copas (2002)

and Baker (2000) who noted this optimality property for the likelihood ratio

function, which is itself a monotone function of the risk score. As a corollary

to the optimality of the ROC curve for Lβ(Y ) across its entire domain, it can

be shown that rules of form Lβ(Y ) > c minimize the overall misclassification

rate and minimize the expected cost of false-negative and false-positive er-

rors combined (Pepe 2003, page 269). Bayesians have long promoted the risk

score function because of these latter two properties. However, optimality of

the risk score or of monotone transformations of it, is more general and does

not require a Bayesian decision theoretic formulation (McIntosh and Pepe,

2002).

In this paper we suppose that the predictors (Y1, Y2, . . . YP ) are given

and the statistical problem is to estimate β = (β2, . . . , βP) from data. We

seek estimators that are consistent under the risk score model (2), since

under that model Lβ(Y ) is the optimal combination. In addition, we favor

procedures that yield linear scores with good classification performance even

when the risk score model does not hold. Finally, we seek procedures that

allow sampling to depend on the binary outcome D so that case-control
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studies are accommodated.

2.2. Objective Functions

Suppose that we have data for nD observations truly classified as D = 1

and for nD̄ with true class D = 0. We write the data as {YD1, . . . YDnD
}

and {YD̄1, . . . , YD̄nD̄
} and note that sampling may or may not depend on

D. Logistic regression is popular for designs where sampling depends on

D because regression parameters other than the intercept can be estimated

consistently from the simple prospective log likelihood

logL =

nD∑
i=1

log P (Di = 1|YDi) +

nD̄∑
j=1

log P (Di = 0|YD̄j)

even when sampling is retrospective (Prentice and Pyke, 1979). That is, if

we assume the risk score model

logitP [D = 1|Y ] = α0 + α1Y1 + . . . + αPYP (3)

the parameters (α1, . . . αp) can be estimated by maximizing

logLL(x) =

nD∑
i=1

αYDi −
nD+nD̄∑

k=1

log(1 + eαYk)

where αY = α0 + α1Y1 + . . . + αPYP .

The logistic model is a special case of the general linear model (2) with

g(x) = logit−1(α0 + α1x). If we assume that the logistic model holds and

calculate the maximum likelihood estimates (α̂L
1 , . . . α̂L

P ), this yields maxi-

mum likelihood estimates of (β2, . . . βP ), namely β̂L
p = α̂L

p /α̂L
1 . In summary,

the logistic likelihood can be used as an objective function to derive a lin-

ear predictor Lβ̂L(Y ) = Y1 + β̂L
2 Y2 + . . . + β̂L

PYP although consistency is not

guaranteed unless the logistic model (3) holds.
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Another approach is motivated as follows, assuming only the general-

ized linear model (2). Optimality of Lβ(Y ) implies that the ROC curve

for any other function of Y cannot be higher at any point than the ROC

curve for Lβ · (Y ). Since Lβ(Y ) has the best ROC curve among all func-

tions of Y , it certainly has the best ROC curve among all linear predic-

tors of the form Lb(Y ) = Y1 + b2Y2 + . . . + bPYP . The idea is to select

choices of coefficients (b2, . . . , bP ) that yield the best empirical ROC curve

for {Lb(YDi), i = 1, . . . nD ; Lb(YD̄j), j = 1, . . . nD̄}. These are then inter-

preted as estimates of (β2, . . . , βP ).

The area under the ROC curve (AUC) is the most popular ROC summary

index. Interestingly, it can be interpreted as the probability that, for a

random case-control pair, the score for the case exceeds that of the control,

P (Lb(YDi) > Lb(YD̄j)).The optimal ROC curve has maximum AUC, so we

can use it as the basis for an objective function of the data to estimate β. It is

easy to show that the AUC of the empirical ROC curve is the Mann-Whitney

U statistic

̂AUC(b) =

∑nD

i=1

∑nD̄
j=1 I

[
Lb(YDi) > Lb(YD̄j)

]
nDnD̄

.

We write the corresponding AUC based estimator of β as

β̂AUC = argmax(̂AUC(b)).

Interestingly, this can be recognized as a special case of the maximum rank

correlation estimator of β described by Han (1987). The estimator is known

to be consistent and asymptotically normal under the generalized linear

model (2). See Sherman (1993) for these results.

8
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2.3. Relative merits theoretically

One major attribute of the AUC approach is that it does not require that

the link function, g, be specified. It works regardless of the form of the

true link function g. On the other hand, the logistic approach depends on

the assumption that g is logistic and presumably might fail when g is not

logistic.

The logistic model is popular over other forms for g, in part because it

accommodates either prospective or retrospective (case-control) designs. In-

terestingly, we see that the AUC approach shares this property. Because the

AUC conditions on the binary response variables {Di = 1, i = 1, . . . nD; Dj =

0, j = 1, . . . nD̄}, it allows sampling to depend on D. Thus, it accommodates

case-control designs too. Moreover, unlike logistic regression, it does so with-

out restricting the form of the link function to be logistic.

Finally, and most importantly, consider the two approaches when the

generalized linear model for the risk score (2), does not hold. The AUC

approach still yields a sensible entity, namely the linear combination, Lb(Y ),

that maximizes the area under the ROC curve (Pepe and Thompson 2000).

Even though the resulting linear predictor may not have the optimal ROC

curve associated with the risk score, in large samples it optimizes the AUC

among all linear combinations of the predictors. In contrast, there are no

obvious optimality properties for the linear predictor derived from the logistic

likelihood when (2) fails in general.

The one theoretical advantage of the logistic approach over the AUC

approach is its asymptotic efficiency when (2) holds and g is logistic. In
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Section 4 we assess the relative efficiency of the methods in this setting. First

we investigate if the flexibility of the AUC approach offered by the properties

of not requiring specification of a link function and having validity when (2)

fails, translate into practically meaningful benefits.

3. APPLICATIONS

3.1. Protein biomarkers for prostate cancer

Yasui et al. (2002) describe protein mass spectrometry data generated from

the serum of 167 men with prostate cancer and 81 men without cancer.

This is one of the cancer biomarker discovery projects being conducted in

collaboration with the Early Detection Research Network (Srivastava 1999).

After extensive preprocessing of the raw data (see Yasui et al. 2002 for

details), the data for analysis comprises of the protein intensity levels at each

of 957 mass/charge locations on the protein profile spectrum. Thus there are

957 biomarkers available for predicting prostate cancer status in this case-

control study. Most of the biomarkers in this dataset are not predictive of

cancer status. Only 144/957(15%) empirical AUCs exceeded 75%. Yasui et

al. used stepwise logistic regression to derive a linear combination score that

could be used to classify subjects as having prostate cancer or not based on

serum protein mass spectrometry.

The issues involved in predictor selection, particularly from high-dimensional

data, are beyond the scope of the current paper. We used the data to simply

illustrate that different choices of objective function, logistic likelihood versus

AUC, can lead to linear predictors with substantially different classification
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performance. For simplicity and ease of illustration, combinations of only 2

biomarkers were considered.

3.2. AUC versus MLL Combinations

For the most part linear combinations that maximized the logistic likelihood

had similar performance in terms of their ROCs to those that maximized

the empirical AUC. However there were a variety of combinations where

the AUC based linear combination performed substantially better. Figure 1

shows some examples. The lines on the scatterplots show the directions of

the linear scores, Y1 + βL
2 Y2 = constant and Y1 + βAUC

2 Y2 = constant. Recall

that decision rules based on the linear scores classify a subject as a case if

their linear score exceeds a constant, i.e., lies above the line Y1 + β2Y2 =

constant. Different choices of constant yield different lines parallel to those

shown. Each line has an associated (FPR, TPR) point on the ROC curve

shown in the right hand panels of Figure 1. Note that these scatterplots and

ROC curves do not incorporate sampling variability. The joint distribution

displayed in the left panel essentially provides a statistical simulation model

and the slopes (βL
2 , βAUC

2 ) can be regarded as large sample values of the

estimates β̂L
2 and β̂AUC

2 . Similarly, the ROC curves are calculated using the

joint marker distribution displayed which for now is assumed to be the true

distribution, not a sample from some underlying truth. Sampling variability

is addressed later in Section 4.

In each of the four examples shown, the ROC curve for Y1 + βL
2 Y2 is only

slightly better than that for the better of the two component markers while

the ROC curve for Y1 + βAUC
2 Y2 is clearly superior. Table 1 shows the areas
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under these ROC curves.

By definition the ROC curve for Y1 + βAUC
2 Y2 is superior to that of each

of the component markers. However, there is no such guarantee for the

logistic likelihood based combination. Figure 2 and Table 1 lower panel

display some marker combinations where Y1 + βL
2 Y2 has poorer classification

performance than that of a single component marker. This raises serious

concerns about the use of the logistic likelihood in general to derive a linear

score for classification in settings where the logistic model fails. Although

the likelihood is increased by using it to combine markers (Table 1), the

operating characteristics of the combination for classification may deteriorate

substantially relative to using a single marker.

4. FINITE SAMPLE SIMULATIONS

4.1. Logistic Model

Under the logistic model, logitP [D = 1|Y ] = α0 + α1(Y1 + β2Y2), Lβ(Y ) =

Y1 +β2Y2 is the optimal combination in the sense that any other combination

of Y1 and Y2 cannot have an (FPR, TPR) point that lies above the ROC curve

for Y1 +β2Y2. Since β̂L
2 and β̂AUC

2 are both consistent estimates of β2, in large

samples the logistic likelihood and AUC approaches both yield the optimal

linear combination (clearly the logistic model does not hold in any of the

scenarios shown in Figures 1 and 2). In small samples, however, the estimates

will differ (Figure 3). Given that β̂L
2 is the statistically efficient estimator of

β2 under the logistic model, one would expect that it would on average yield

the better linear combination function based on a finite sample of data from

12
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the logistic model. To investigate this we simulated samples of nD = 50 cases

and nD̄ = 50 controls with bivariate normal marker distributions (Y1, Y2),

having covariance matrix the identity and mean vectors (µD1 = 1, µD2 = 1)

in cases and (µD̄1 = 0, µD̄2 = 0) in controls. This configuration induces the

logistic model: logit{P (D = 1|Y1, Y2)} = −1+Y1 +Y2. Thus β2 = 1.0 in this

setting.

The top row of Table 2 and Figure 3 show the results of 500 simulations.

As expected both β̂L
2 and β̂AUC

2 have little bias and β̂L
2 is more efficient than

β̂AUC
2 (var(β̂L < var(β̂AUC)). To gauge the performances of the estimated

linear combination functions, Y1 + β̂L
2 Y2 and Y1 + β̂AUC

2 Y2, we calculated the

corresponding AUCs using the true underlying logistic model. Results dis-

played in Table 2 and Figure 3 indicate that the classification accuracies of

the linear scores are very similar, the average AUC being 0.838 for both the

logistic approach and the AUC-based method. Thus, despite the fact that

β̂L
2 is a more efficient estimator of β2, it does not appear to yield substan-

tially better classification performance than β̂AUC
2 under the logistic model.

Qualitatively similar conclusions are found for alternative choices of means

in the bivariate normal marker model (Table 2).

4.2. Protein Marker Models

We simulated data from the configurations depicted in the scatterplots of Fig-

ure 1 using the sample sizes enrolled in the protein mass spectrometry study.

In essence, this is bootstrap resampling. Table 3 summarizes distributions of

β̂L
2 and β̂AUC

2 along with the AUCs of the associated linear combinations of

markers. Note that the underlying true marker distribution shown in Figure
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1 is used to calculate the AUC, not the bootstrapped data, which would only

estimate the AUCs.

The sampling distribution of the estimates around their asymptotic values

are shown in Figure 4 for scenario 1. Clearly in small samples the AUC-based

approach yields linear combinations with superior classification performance.

Moreover, the AUC of Y1 + β̂AUC
2 Y2 is very close to the best possible value,

AUC(βAUC
2 ) even with sample sizes of nD = 167 and nD̄ = 81. Ninety percent

of the AUC(β̂AUC
2 ) values are above 75%. This suggests that the sample sizes

are adequate to develop a classifier that combines v426 and v427 linearly.

Such considerations could be used as the basis for sample size calculations in

the design of studies to combine markers.

5. DISCUSSION

The main contribution of the current paper is to demonstrate that the choice

of objective function to be optimized is crucial to deriving a linear combina-

tion of markers for classification. If classification performance is measured

with the area under the ROC curve then one should use it to generate the

linear function. We showed with real data that maximizing the logistic like-

lihood (also called the entropy (Hastie, Tibshirani and Friedman 2001)) can

yield unacceptably poor classification performance. We note however that

likelihood based regression methods are frequently employed in practice to

combine markers for classification (Hastie, Tibshirani and Freidman 2001).

These are appropriate and statistically efficient if the regression model is

correct, but our results indicate that they can behave dismally otherwise.

Hastie, Tibshirani and Friedman (2001) note that regression models are dif-
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ficult to verify in higher dimensions. Therefore the use of likelihood based

methods in higher dimensions may be particularly problematic.

We have focused on the AUC objective function here which is estimated

non-parametrically with the Mann-Whitney U-statistic. It accommodates

case-control data, yields the optimal linear combination asymptotically un-

der the generalized linear model (2) and most importantly is well motivated

by considerations of classification accuracy even when the generalized lin-

ear model does not hold. We have previously proposed use of the AUC to

combine markers (Pepe and Thompson 2000) but did not note its optimality

properties under the generalized linear model or demonstrate its superiority

to likelihood methods when the model fails. In addition, we also note here

that the estimate obtained by maximizing the empirical AUC can be viewed

as a special case of the maximum rank correlation estimator for which gen-

eral asymptotic distribution theory has been developed. Eguchi and Copas

(2002) also discuss the use of the AUC for deriving linear scores, although

their approach to calculating the AUC is complex and they only demon-

strate its superiority to logistic regression with one hypothetical pathologic

example.

Objective functions other than the AUC might also be considered for

developing a linear classification score. We have suggested the partial AUC

(Pepe and Thompson 2000) that restricts attention to a region of the marker

space associated with practically relevant (FPR, TPR) points (see also McIn-

tosh and Pepe 2002). The misclassification rate (MCR) associated with the

Bayes’ rule is another natural objective function to consider (Hastie, Tibshi-

rani and Friedman 2001, p27). However, it depends on the ratio of cases to
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controls in the sample, which in a case-control study will differ from the ratio

in the populations. Minimizing the study MCR may produce a linear score

that does not minimize the population MCR. Weighting the misclassification

probabilities according to the population prevalence of cases should perhaps

be considered.

Although we have made a case for optimizing the AUC to combine mark-

ers, much work remains to be done before the approach can be routinely

applied in practice. Computational algorithms need to accommodate the

fact that the empirical AUC is not a continuous function. We dealt with

only two markers in our applications and used a simple search routine for

optimization. More sophisticated approaches would be required when the

number of markers exceeds 2. Consideration of multiple markers also high-

lights the need for marker selection algorithms. We have suggested a simple

stepwise algorithm (Pepe and Thompson 2000), but a more rigorous devel-

opment is warranted.

We have discussed maximizing the AUC to derive a linear score for the

purposes of classification. The AUC can also be motivated simply as a tech-

nique for fitting a regression model. It is a technique that is robust to the

choice of link function g because it does not require that the link even be

specified. Although this would appear to be an advantage over logistic re-

gression, Li and Duan (1989) and our own simulation studies (not shown)

indicate that logistic regression is itself quite robust. That is, under certain

conditions stated in Li and Duan (1989), logistic regression performs well

even when the link function is not logistic. However, in practice there is no

guarantee that the conditions will be met, so maximizing the AUC may still

16
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be preferred for fitting the generalized linear model P (D = 1|Y ) = g(Lβ(Y )).
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FIGURE LEGENDS

Figure 1. Scenarios where maximizing the AUC yields a substantially bet-

ter linear classification score than maximizing the logistic likelihood. Scat-

terplots show data for cases (•) and controls (�). Lines and ROC curves for

the scores derived from the likelihood (dashed) and AUC (solid) objective

functions are shown. See Table 1 for related results.

Figure 2. Scenarios where maximizing the logistic likelihood yields a lin-

ear combination with AUC worse than that of a single marker. See Table 1

for related results. The direction of the logistic likelihood fitted linear com-

bination is shown (dashed) along with data points for cases (•) and controls

(�). ROC curves are also displayed.

Figure 3. Scatterplots of β̂L
2 versus β̂AUC

2 and AUC(β̂L
2 ) versus AUC(β̂AUC

2 )

for simulated data from the logistic model with independent normally dis-

tributed predictors (top row of Table 2).

Figure 4. Distributions of β̂L
2 and β̂AUC

2 and of AUC(β̂L
2 ) and AUC(β̂AUC

2 )

for data generated by bootstrap resampling of markers v426 and v427 in the

protein mass spectrometry dataset. Kernal density estimates of the distri-

butions are truncated at the minimum and maximum values.
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