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Summary

Genomic data are often characterized by a moderate to large number of categorical variables observed
for relatively few subjects. Some of the variables may be missing or noninformative. An example of
such data is Loss of Heterozygosity (LOH), a dichotomous variable, observed on a moderate number of
genetic markers. We first consider a latent class model where, conditional on unobserved membership in
one of k classes, the variables are independent with probabilities determined by a regression model of low
dimension q. Using a family of penalties including the ridge and lasso, we extend this model to address
higher dimensional problems. Finally, we present an orthogonal map that transforms marker-space to a
space of “features” for which the constrained model has better predictive power. We demonstrate these
methods on LOH data collected at 19 markers from 93 brain tumor patients. For this data set, the
existing unpenalized latent class methodology does not produce estimates. Additionally, we show that
posterior classes obtained from this method are associated with survival for these patients.

1 Introduction

A common outcome in genetic sudies is loss of heterozygosity (LOH), which refers to the

loss of one allele of a chromosomal region in a tumor cell. For one subject at a single

genetic marker, LOH, a binary variable, is ascertained by sequencing the marker for

both normal and tumor cells obtained from the subject. If the normal cells demonstrate

heterozygosity but the tumor cells do not, then loss (LOH = 1) is deemed at the marker

location. If both normal and tumor cells demonstrate heterozygosity, then there is no
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loss, and LOH = 0. However, if the normal cells demonstrate homozygosity, then LOH

is deemed noninformative, or missing from a statistical perspective.

LOH is of interest in cancer studies because it may suggest the loss, through mutation

or other cell injury, of a tumor suppression gene. For instance, allelic losses on chromo-

some 1p have been found frequently in anaplastic oligodendrogliomas, a common variant

of brain tumor. Furthermore, the characterization of LOH on chromosomes 1p and 19q

is of prognostic interest, since it has been shown to be highly associated with response to

chemotherapy and long survival in patients with certain malignant brain tumors (Cairn-

cross et al., 1998; Ino et al., 2001). Previous analyses of LOH in oligodendroglioma used

three CA-repeat polymorphism markers to assess LOH of the whole chromosome arm.

An entire chromosome arm was assumed to be lost if LOH was observed at all informa-

tive markers among those three. Thus, LOH on a given chromosome arm was coded as

a binary variable.

Recently, a “medium throughput” quantitative method for assessing LOH at nineteen

approximately equally-spaced markers on chromosomes 1p and 19q was applied to a sam-

ple of 93 brain tumors. This method was used previously in colorectal tumors (Cawkwell

et al., 1993), but formal statistical analysis was not applied. The brain tumors in the

current study come from two different sources: one sample consists of subjects from both

the London Regional Cancer Centre in London, Ontario and the Massachusetts General

Hospital in Boston (termed “MGH”cases) and the second sample consists of subjects

from the Henry Ford Hospital in Detroit (termed “HFH” cases). Although nominally of

the same diagnosis, the MGH group was evidently more homogeneous in diagnoses and

exhibited more LOH than the HFH group. Also, the MGH group was followed about

twice as long as the HFH group (median follow-up of 150 months versus 78 months).

One question of interest is whether there is heterogeneity of LOH across markers
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covering chromosome 1p, or whether the entire chromosomal arm is typically lost. If there

is heterogeneity, it is of interest to identify a few common LOH profiles that define clusters

of patients. Ultimately, it is of interest to investigate the association of these profiles

with survival. Though not the subject of the present paper, tumors with heterogenous

patterns of LOH are potentially informative regarding the location of tumor suppressor

genes (Dong et al., 2004).

A typical approach to analyzing genomic data is to conduct a univariate analysis on

each genetic marker and adjust inference using techniques that control the familywise

error rate or false discovery rate (Westfall and Young, 1993; Benjamini and Hochberg,

1995). However, such approaches are not well-adapted to the setting where variables

are highly correlated and each analysis may involve a large fraction of missing variables.

Moreover, it is unclear how such methodologies can be adapted to obtain clusters, or

profiles, that describe the correlation among variables.

One approach to the ascertainment of LOH-based clusters is latent class analysis.

Latent class models are widely recognized as categorical variable analogs to factor anal-

ysis (Bartholomew, 1987; Bandeen-Roche et al., 1997). These models postulate the joint

distribution of a large number of observed discrete variables as a mixture of only a few

distributions, defined by the value of a latent categorical variable. The models clus-

ter the subjects into the unobserved classes according to similarity in pattern of the

observed variables, typically under the assumption that the variables are independent

given membership in a particular class. One limitation of the latent class approach is

the number of conditional probabilities that can be considered without overfitting the

data. In particular, if each variable is assigned its own success probability conditional

on class membership (an unrestricted model), then the number of unknown parameters

scales linearly with the number of variables. Certainly, if the number of variables is small
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relative to the sample size, then it is feasible to assign each variable its own set of condi-

tional probabilities. However, in high-dimensional settings common to genetic studies, it

is often the case that unrestricted latent class models contain too many parameters. In

the LOH example, there are 19 LOH variables for each of 37 MGH subjects and 56 HFH

subjects. A large percentage of these variables is missing due to homozygosity of normal

cells: on average, 5.1 of 19 markers, or 27%. Straightforward application of the method-

ology proposed by Bandeen-Roche et al. (1997), involving at least 59 parameters for a

3-class model, led to a divergent algorithms or Hessians that were not positive definite

for every initial value we used.

One could potentially overcome the unwieldy dimension of an unrestricted latent class

model by placing constraints on a subset of parameters in the model. However, exist-

ing constrained latent class models that have been considered in the literature are too

restrictive. Several authors have considered parsimonious extensions of the basic latent

class model, obtained by constraining model parameters. Early approaches fixed some

of the conditional probabilities of a success, given class membership, to given values or

constrained them to be equal (Lazarsfeld and Henry, 1968). Along the same lines, Agresti

and Lang (1993) and Lindsay et al. (1991) considered models in which the associations

between the latent class and the observed variables are the same for all variables. Meul-

ders et al. (2002) considered constrained latent class models in which the conditional

probabilities are a nonlinear function of a smaller set of basic parameters. Other recent

work has focused on new computational strategies for efficient estimation in constrained

latent class models (Mooijaart and van der Heijden, 1992; Hoijtink, 1998).

In this article we propose a methodology for fitting latent class models to high-

dimensional data. To this end we employ a penalized latent class model that constrains

the parameters in order to regularize estimation, but does not make the unrealistic as-
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sumption that class-specific parameters are constant either within or between classes.

We develop the methodology as follows. In Section 2 we review latent class models and

pose them in a regression context. In Section 3 we extend the model to accommodate

constrained estimation using a penalized likelihood, and in Section 4 we propose an alter-

native parameterization of conditional probabilities to concentrate support on a smaller

number of parameters. In Sections 5 and 6 we discuss fitting and penalty selection, re-

spectively. In Section 7 we report the results of a simulation study. In Section 8 we

present an analysis of the LOH data described above using our proposed methodology.

We conclude with some closing remarks in Section 9.

2 Latent Class Model

Assume we observe a sample of n subjects i ∈ {1, ..., n}, and from each subject i we

have collected mi ≤ m dichotomous variables Yij, j ∈ Ji ⊂ {1, ...,m}. Since we are

interested in pooling subjects from distinct populations, we further assume that each

subject belongs to an observed group. That is, for each subject i we observe a group

membership indicator Gi, which takes values g = 1, ..., nG. In our example, we have two

groups of tumors: the MGH tumors and the HFH tumors. However, there also exists

an unobserved latent class membership indicator Ki, which takes values on k = 1, ..., κ,

conditional on observed group membership:

P(Ki = k|Gi = g) = ηkg. (1)

The number of classes κ is unknown, although in practice it is treated as fixed, as we

discuss in detail in Section 6. In (1), each ηkg is unknown and one of our objectives is

to estimate the collection of these probabilities. Only nG(κ − 1) parameters are non-

redundant, since for each g, 1 =
∑κ

k=1 ηkg. Assuming ηκg is obtained as ηκg = 1 −
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∑κ−1
k=1 ηkg, we denote the collection of parameters as η = (η11, ..., η(κ−1)nG)′.

In our example, there are n = 93 brain tumor subjects with up to 19 LOH values

each. Each subject had missing LOH variables due to homozygosity. Since homozygosity

is presumably independent of tumorigenesis, we view such missing values as missing

completely at random (MCAR). Class k refers to an unobserved LOH “profile” that

exists in a subset of patients. We have two groups: the “MGH” group from the London

Regional Cancer Centre and Massachusetts General Hospital and the “HFH” group from

Henry Ford Hospital. It has been assumed that there are two classes of patients based

on assessment of LOH at three distal markers: those with loss of the entire chromosome

1p and those without loss of chromosome 1p (Cairncross et al., 1998). One question of

interest based on assessment of LOH at several markers along the entire chromosome arm

is whether there is heterogeneity across the chromosome and there are actually three or

four classes.

Conditional on class membership, the mi variables for subject i are assumed indepen-

dent and are characterized as

P(Yij = 1|Ki = k,Gi = g) = P(Yij = 1|Ki = k) = pjk, (2)

where pjk is one of m× k conditional LOH probability parameters, one for each marker

j and class k. Equation (2) expresses the typical latent class model. However, in the

penalized estimation setting, it will be convenient to generalize it by expressing pjk as a

function of covariates:

P(Yij = 1|Ki = k,Xij = xij) = h(x′ijβk), (3)

where xij is a q-dimensional vector of known covariates and h(·) is a known function,

for example the inverse logit function. The βk are unknown parameters, and we denote

their collection as β = (β′1, ..., β
′
κ)
′. Equation (2) is the special case of (3) obtained by
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setting the m× 1 vector xij equal to one of m distinct canonical unit vectors and letting

βkj = logit(pjk). In Section 4 we will make use of the more general formulation. Thus for

each subject we observe Di = {Gi, (xij, Yij)j=1,...,mi} and we are interested in estimating

θ = (η′, β′)′. We assume that Yij are independent conditional on class membership.

As in other latent class settings, we use maximum likelihood to obtain estimates. To

stabilize numerical optimization, it may be convenient to parameterize ηκg in such a way

that it is constrained to lie within the unit interval: for example ηkg = exp(η∗kg)/
∑κ

k=1 exp(η∗kg),

where η∗κg = 0. For simplicity of exposition, we accommodate this technicality by writing

as η̇kg the derivative of the constrained parameter ηkg, but otherwise ignore the details

of the unconstrained parameterization.

We write the log-likelihood function as L(η, β) =
∑n

i=1 Li(η, β), where

Li(η, β) = log

[
κ∑
k=1

ηkGi
∏
j∈Ji

{h(x′ijβk)}Yij{1− h(x′ijβk)}1−Yij

]
.

The corresponding score functions are

∂Li
∂ηkg

= exp{−Li(η, β)}1(Gi = g)η̇kg
∏
j∈Ji

{h(x′ijβk)}Yij{1− h(x′ijβk)}1−Yij

and

∂Li
∂βk

=
κ∑
k=1

πik(η, β)
∑
j∈Ji

{
Yij

ḣ(x′ijβk)

h(x′ijβk)
− (1− Yij)

ḣ(x′ijβk)

1− h(x′ijβk)

}
xij,

where 1(·) is the binary indicator function, ḣ(·) is the derivative of h(·), and

πik(η, β) =
ηkGi

∏
j∈Ji{h(x′ijβk)}Yij{1− h(x′ijβk)}1−Yij∑κ

k=1 ηkGi
∏

j∈Ji{h(x′ijβk)}Yij{1− h(x′ijβk)}1−Yij
(4)

is the posterior probability of membership in class k. Note that the dependence on group

is expressed only through the probability ηkGi of class membership conditional on Gi.

However, group-specific conditional probabilities can be incorporated by including group

indicators in the covariates xij. Note also that under MCAR assumption, missing vari-

ables are easily accommodated, since the variables are independent conditional on class
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membership. Once we have obtained estimates η̂ and β̂, estimated posterior probabilities

of class membership are obtained from (4) as π̂ik = πik(η̂, β̂).

Certain model comparisons can adequately be achieved by using the likelihood ratio

test. Specifically, the likelihood ratio statistic, constructed in the usual manner, can be

used to test constraints among the estimated parameters θ when the null space lies in

the interior of the space of unrestricted parameters. Alternatively, one might consider

an approximate cross-validation procedure, such as the one we will describe in Section

6. The latter approach has wider applicability than the likelihood ratio test, since it can

be used when there is no natural nesting to candidate models, and can also be used to

compare models with differing values of κ.

3 Penalized Latent Class Model

The methodology described in the previous section is sufficient when q is much smaller

than n. Although we observe
∑n

i=1 mi variables, themi variables corresponding to subject

i are independent only conditionally on the unobserved class indicator Ki, so in fact there

are only n independent units of observation. Thus, the methodology breaks down when

q is larger than n, or even when it is a substantial fraction of n. However, such situations

are often of interest, as in the LOH application described above.

We address this dimensionality problem by considering a constrained version of the

methodology described above. Consider the following penalized likelihood:

LC(η, β; Λ) = L(η, β)− C(β,Λ), (5)

where C(β,Λ) is a nonnegative penalty function dependent upon a q × q matrix Λ.

Examples of reasonable penalty functions are the ridge and lasso penalties (Hastie et al.,

2001). The ridge penalty is defined generally as C(β,Λ) = β′Λβ and is equivalent in form
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to C2(β,Λ) =
∑κ

k=1

∑q
j=1 λkj|βkj|2 when Λ is diagonal. The alternative lasso penalty

takes the form C1(β,Λ) =
∑κ

k=1

∑q
j=1 λkj|βkj|. More generally, when Λ is diagonal it is

possible to consider a family of Lp penalties of the form Cp(β,Λ) =
∑κ

k=1

∑q
j=1 λkj|βkj|p,

where p ≥ 1. The ridge penalty is useful in situations where x′ijβ varies “smoothly”,

while the lasso penalty is more useful in “sparse” situations where most elements of β

are small in magnitude (Tibshirani, 1996).

In the constrained setting, the score function for β has an additional term,

∂LC
∂β

=
∂L

∂β
− ∂C

∂β
.

For the ridge penalty, ∂C/∂β = 2Λβ. For the lasso penalty, ∂C/∂β is a piecewise constant

function, with singularities where |βkj| = 0; this presents computational challenges, as

we describe below.

A priori, it is impossible to know what the value of the constraint parameter Λ should

be to achieve optimal results. However, in anlaogy with Hastie and Tibshirani (1990),

the use of prediction error obtained from an approximate cross-validation procedure can

inform the choice of Λ. Alternatively, as we discuss in Section 6, computationally efficient

criteria such as the Akaike Information Criterion (AIC, Akaike, 1974) or the Bayesian

Information Criterion (BIC, Schwartz, 1978) may be used.

4 Orthogonal Transformations

It is desirable to leave an “intercept” unconstrained for every class k, thus allowing the

classes to distinguish themselves at least in mean response. This is difficult to do using

the simple parameterization represented by the special case of (3) wherein the vectors xij

are unit indicators. In addition, it is often of interest to embed a model that contrasts

important features of the data within a larger model that captures finer details. However,
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the contrasts may involve a large number of the dimensions of the covariate vector xij. If

the support of βk is distributed among most or all q dimensions of these dimensions, then

a large diagonal penalty matrix Λ may impose severe bias on the estimates β̂k, since it

could lead to shrinkage of every coefficient. However, if the conditional probabilities (3)

could be reparameterized so that the support of βk is concentrated on a small number

of dimensions, the bias imposed upon β̂k would be less severe, especially if the number

of nonzero parameters are small enough to leave unpenalized. To this end, we apply

orthogonal transformations to the linear model appearing in (3).

Consider a q × q matrix U such that U ′U = I, and an alternative parameterization

P(Yij|Ki = 1, Xij = xij) = h(x′ijβk) = h(x′ijU
′Uβk) = h(x′ijU

′β∗k),

where β∗k = Uβk. If U induces a dimension reduction in the sense that the coordinates of

β∗k are small for all but a few dimensions, then the method described in Section 3 will tend

to estimate βk with less bias and prediction error. A useful application of this fact involves

choosing contrasts between features of interest in the data set. This allows the support of

βk to be distributed among a small number of coordinates that correspond to features of

direct interest to the investigator. Assuming these contrasts can be made orthogonal to

one another, a full set of orthogonal contrasts can be obtained by augmenting the feature

constrasts with detail vectors obtained through Gram-Schmidt orthogonalization.

To make ideas concrete, consider the example described in the Introduction. Of nine-

teen genetic markers, fifteen lie on chromosome 1p and four lie on chromosome 19q. The

first five markers represent the distal tip of 1p, where the three markers traditionally used

for analysis reside, while the next ten represent locations distributed along the remaining

portion of the chromosome arm. Thus, contrasts involving these chromosomal locations

are of interest.

In the brain tumor application, the mean probability of LOH can be extracted from
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the unit-length vector u1 = 19−1/2J19, where Jd ∈ Rd denotes a vector of ones. A

contrast comparing probabilities between the two chromosomes is obtained as u2 =

ω2(4J ′15,−15J ′4)′, which is orthogonal to u1 and can be scaled to have unit length with

an appropriate choice of ω2. A contrast comparing probabilities between the distal tip

and central locations of chromosome 1 is obtained as u3 = ω3(10J ′5,−5J ′10, O
′
4)′, where

Od ∈ Rd is a vector of zeros; and u4 = ω4(O′5, 5J
′
5,−5J ′5, O

′
4)′ contrasts probabilities

between markers 5-10 and 11-15. Assuming each ωj is chosen appropriately, the set

{u1, u2, u3, u4} comprise an orthonormal set of contrast vectors in R19. It is straightfor-

ward to augment these four vectors with fifteen others that are easily interpretable as con-

trasts of finer details among the 19 markers and which, together with the four vectors just

described, comprise an orthonormal set of vectors. Thus the matrix U = (u1, u2, ..., u4)′

is an orthonormal feature matrix that concentrates distinctions between different do-

mains of the chromosome in a handful of coordinates. If the investigators are primarily

interested in looking for constrasts among these features, constrained analysis using the

parameterization x′ijU
′β∗k will tend to provide more satisfactory results in terms of bias

and prediction error, as we demonstrate in Section 7. In larger problems, it may not

be practical to work out the detail contrasts by hand; in such cases, the Gram-Schmidt

orthogonalization algorithm is useful.

We remark that this feature-based parameterization facilitates the imposition of ap-

propriate constraints on the model. For example, let Λ1 be the diagonal matrix with

ones corresponding to feature contrasts u2, u3, and u4 in each class, and zeros every-

where else, and let Λ2 be the diagonal matrix with ones corresponding to the detail

contrasts u5 through u19 and zeros everywhere else. If α1 > α2, then the penalty matrix

Λ = α1Λ1 + α2Λ2 constrains the detail contrasts more than the feature contrasts.

The proposed transformation is similar in spirit to the discrete wavelet transform pro-
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posed by Morris et al. (2003). Wavelets, originating from image processing theory, are an

anologue to Fast Fourier Transforms adapted to data characterized by numerous spikes.

Morris et al. (2003) imposed penalties on different levels of the wavelet decomposition,

much in the same way that in our context (α1, α2) imposes different penalties on features

and details.

5 Parameter Estimation and Inference

When C(β,Λ) is differentiable, (5) can be maximized either directly using a quasi-Newton

method or using a variant of the Expectation-Maximization (EM) algorithm (Dempster

et al., 1977) described by Bandeen-Roche et al. (1997) for latent class problems. In

the latter algorithm, estimates of the posterior probabilities (4) are obtained in the

expectation step and are used in the maximization step to obtain a provisional solution

β̂ and η̂. For p = 2 (ridge penalties), the conditional probability parameter β̂ can

quickly be obtained using iteratively-reweighted least squares (IRLS). For p = 1 (lasso

penalties), the penalized likelihood is not differentiable. Consequently, following the

recommendation of Tibshirani (1996), we use quadratic programming to successively

minimize approximations to the penalized likelihood. We will refer to this algorithm

as iteratively-reweighted quadratic programming (IRQP). The EM, IRLS, and IRQP

algorithms are sketched in the Appendix.

As described in both Goodman (1974) and Bandeen-Roche et al. (1997), the model

proposed in Section 2 is not globally identifiable. Bandeen-Roche et al. (1997) proposed

conditions under which a similar model is locally identifiable, i.e. identifiable in a neigh-

borhood of a parameter value. A practical consequence is that the computed maximum

of (5) can be sensitive to the initial values supplied to the optimization algorithm. Many

commercial software packages use multiple, randomly-generated initial values to increase
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the probability of finding a global maximum. We also recommend starting from several

different initial values, although the computational demands described in Section 6 limit

the number of initial values that can be considered for every candidate Λ. Instead, we

focus on choosing a handful of initial values carefully, and sketch reasonable approaches

in the Appendix.

Conditional on the penalty Λ and the number of classes κ, it is possible to compute

standard errors for the parameters η and β. By Taylor expansion, an estimate of the

variance of the estimator (η′, β′)′ obtained by fixing Λ is simply H−1
C nV H−1

C , where

HC is the Hessian matrix of LC and V is an estimate of the asymptotic variance of

the score component (∂Li/∂η, ∂Li/∂β). For the ridge penalty, HC = H + 2Λ. In low

dimensions, nV is well-approximated by H, the Hessian matrix of L evaluated at θ̂. In

higher dimensions or smaller sample sizes, it may be preferable to estimate nV empirically

from the data. As in the estimating equations literature, we refer to standard errors

obtained by latter type of estimate as “robust”. These standard errors can be used to

construct Wald tests in the usual manner.

6 Selection of the Penalty

Estimates of cross-validated prediction error and their computationally efficient approx-

imations are often used for model selection (Hastie et al., 2001, Ch. 7). A compu-

tationally efficient approximation is available for comparing distinct models when the

constraint function has the form of the Lp family described in Section 3 and p > 1.

Consider the n-fold cross-validated log-likelihood loss R = −2
∑n

i=1 Li(η̂−i, β̂−i), where

θ̂−i = (η̂′−i, β̂
′
−i)
′ has been obtained, using the same model, by deleting the ith observation.

This is the AIC adapted to the present setting. It is straightforward to demonstrate that

13
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R is approximated by

R̂ = 2tr(H−1
C nV )− 2L(η, β), (6)

where, as in section 5, HC is the Hessian matrix of LC and V is an estimate of the

asymptotic variance of the score component.

In low dimensions, nV is well-approximated by H. This leads to a classical AIC, in

which tr(H−1
C H) represents an effective degrees-of-freedom quantity, identical in form to

that given by Ruppert et al. (2003, Chaper 8.3) for additive models, and is equal to the

number of parameters when the likelihood is unconstrained. However, the approximation

may break down in high dimensions, so it may be preferable to estimate nV empirically

from the data. We remark that using the empirical estimate of nV in finite samples, un-

constrained likelihoods can yield degrees-of-freedom not necessarily equal to the number

of parameters.

When n is relatively small, the AIC can be a somewhat poor approximation to R.

In particular, it can lead to overfitting (Hurvich and Tsai, 1995). Therefore, it may be

preferable to use an alternative such as BIC = d log(n)− 2L(η, β), where d is a degrees-

of-freedom quantity that we compute as tr(H−1
C nV ). In Section 7 we offer recommenda-

tions on the best choice among AIC, BIC, and three other types of information criterion

(IC): the bias-corrected AIC, AIC(c) = 2d + 2d(d + 1)/max(0, n − d − 1) − 2L(η, β)

(Sugiura, 1978); HQIC = 2d log[log(n)] − 2L(η, β) (Hannan and Quinn, 1979); and

CAIC = d log(n+ 1)− 2L(η, β) (Bozdogan, 1987). Generalized Cross Validation (GCV),

which uses a mean-squared-error (MSE) loss function, is another typical choice employed

for penalization problems. However, difficulties in constructing a computationally simple

approximation to the MSE in this context motivate the use of the log-likelihood loss

function and related, easily computed quantities.

It is usually sufficient to consider a small number r of known diagonal matrices
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Λ1, ...,Λr, set Λ =
∑

s=1 αsΛs, and search for an optimal α′ = (α1, ..., αr). Note that

setting α = 0 corresponds to the absence of constraint, with the constraint becoming

more severe as the elements of α grow large. In most applications, the smallest reason-

able model involves a nonzero predictor. Consequently, an intercept term in βk should

usually be left unconstrained. Thus, reasonable choices for Λs are usually restricted to

diagonal matrices with entries equal to zero for the coordinates corresponding to each of

the κ intercepts, and positive for some of the other coordinates.

The penalized likelihood is not differentiable for the L1 penalty, so approximation (6)

fails. However Tibshirani (1997) and Wahba (1980) describe a useful approximation,

obtained by setting HC = H + W , where W is zero everywhere except for the diagonal

elements corresponding to nonzero coefficients βkj, which are set to |βkj|−1. An alternative

is to use the limit of HC as p ↓ 1. In this approximation, W is replaced by the diagonal

matrix having nonzero elements equal to ε−1 only for the parameters corresponding to

|βkj| < ε. The latter, which we found gives more sensible degrees-of-freedom, essentially

counts the number of non-negligible parameters. The Tibshirani-Wahba approximation

tends to produce smaller degrees-of-freedom.

To optimize an IC over various penalty choices, we recommend a grid-search over a

coarse grid of candidate penalties. Using the candidate producing the lowest criterion as

an initial value, a more refined search can be conducted using, for example, a simplex

algorithm. We have found the Nelder-Mead simplex method (Nelder and Mead, 1965) to

be adequate for this purpose. A quasi-Newton algorithm is more difficult to implement,

since the second derivatives of (6) and related expressions are analytically intractible,

and in the case of the lasso penalty do not even exist. In light of cautionary statements

against placing too much trust in automatic tuning parameter selection (e.g. Ruppert

et al., 2003, Ch. 5.4 and Ch. 8.4), there is little value in refining the precision of α
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beyond two decimal places, and the sensibility of the final solution should be validated

visually.

Finally, we remark that in practice the number of classes κ is often not known in

advance. We recommend an approach similar to profile-likelihood, where the chosen IC

is minimized for each feasible value of κ and κ is chosen as the value that produces the

minimum criterion overall. Note that although κ could be considered a model parameter,

it is difficult to pose its estimation in a likelihood-based setting since the dimension of

θ, nG(κ − 1) + κq, depends on κ. Our recommendation for choosing κ is similar to

existing methods where a goodness-of-fit test is used to compare different κ values (e.g.

Bandeen-Roche et al., 1997).

7 Simulations

To study the behavior of our proposed methodology, we conducted several simulations.

We considered two separate cases, each illustrated in Figure 1. Each case involved nine-

teen markers and three underlying classes. In the first case (Case I), one class was

uniformly high, and for the remaining two classes the probability of an event varied

“smoothly” over the first fifteen markers, then abruptly jumped to a constant value for

the remaining four markers; for one class the probabilities were near zero for the middle

markers. In the second case (Case II), each class had low event probability everywhere

except in one region unique to the class. The first case represents a situation where classes

are characterized primarily by overall response level, and the variation in response prob-

abilities across markers is relatively “smooth”. The second case represents a situation

where classes are characterized primarily by marker-specific responses, and the response

probabilities contain big “jumps”. In both cases, η′ = (0.40, 0.35, 0.25) and h(·) was the

inverse of the logit function. For each case, we considered 250 simulated data sets, and
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for each simulated data set, we set n = 50 subjects. There were no missing values in our

simulation study.

7.1 Description of Analyses

For each simulated data set in Case I, we conducted a total of fifty-four analyses: for each

of κ ∈ {2, 3, 4}, we conducted six analyses using a naive marker-based parameterization,

with an intercept representing the first marker and indicators for the remaining eighteen

markers, with ridge penalties λ ∈ {0.01, 0.1, 1, 10, 100, 1000}, applied to all non-intercept

β coefficients; eighteen corresponding analyses using the feature parameterization de-

scribed in Section 4, with the same κ values and penalties; and eighteen corresponding

analyses with the feature parameterization, where the feature contrasts u2, u3, and u4

were penalized using λ while the detail contrasts were penalized using 2λ. We refer

to each set of eighteen analyses respectively as the Markers, Features I, and Features

II analyses. Note that for the latter two sets, Λ = α1Λ1 + α2Λ2, as defined in Sec-

tion 4. Thus, in the notation of Sections 4 and 6, the Markers parameterization used

a single penalty parameter α1 = λ, the Features I parameterization used a bivariate

penalty (α1, α2) = (λ, λ), and the Features II parameterization used a bivariate penalty

(α1, α2) = (λ, 2λ). For each analysis we computed five types of IC: AIC, BIC, AIC(c),

HQIC, and CAIC, as defined in Section 6. For each IC and for each value of κ and

parameterization (Markers, Features I, and Features II), we recorded the penalty pro-

ducing the lowest criterion value. Analysis of the Case II simulations was identical to

Case I except that λ ∈ {0.001, 0.01, 0.1, 1, 10, 100}, since the Case II data sets tended

to require smaller penalties. Thus for each of the two cases, there were 3 κ values × 3

parameterizations × 6 λ values = 54 analyses.

17

Hosted by The Berkeley Electronic Press



7.2 Results for All κ Values

For each data set and IC, we tabulated which value of κ produced the lowest value of the

IC. Table 1 summarizes the results. In general, AIC(c), BIC, and CAIC were minimized

most often by the correct κ = 3, while AIC and HQIC were more often minimized by

the incorrect κ = 4. Thus, in our simulations, using AIC as a criterion for selection of κ

would often lead to overfitting. For each IC and parameterization, Table 1 also presents

the number of data sets for which the smallest tuning parameter λ minimized the IC,

thus giving an impression of the frequency of data sets for which little penalization was

required. For a substantial fraction of the data sets, AIC and HQIC were minimized

at the lowest value of λ. All five of the IC types tended to be minimized at smaller

values of λ for the Marker parameterization than for the Features I and Features II

parameterizations.

7.3 Results for κ = 3

Fixing κ = 3, for each IC we selected the value of λ that minimized the IC and compared

the corresponding fit to the true parameter values. For the Features I analyses applied

to both cases, Figure 1 depicts the mean of the estimated probabilities (from the model

obtained from the value of λ that minimized AIC) over each marker, conditional on class,

compared with the true values that generated the data. The picture is similar for all three

parameterizations. Thus, on average, constrained estimation seems to perform well with

respect to estimating conditional probabilities, regardless of the parameterization used.

In order to compare estimated parameters with the true parameters used to generate

the data, it was necessary to overcome the familiar “labeling problem” common in latent

class analysis (Stephens, 2000). Because there is no natural ordering to the classes, other

than that induced by the estimated parameter η, estimated classes had to be matched to
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the generating classes in a sensible fashion. To achieve this matching, we minimized the

conditional error, CE =
∑

k

∑
j{h(x′jβ̂ρ(k)j) − h(x′jβkj)}2, with respect to permutations

ρ(·) of {1, ..., κ}. This operation, which is similar to a decision-theoretic procedure de-

scribed by Stephens (2000), insured that a solution was not unfairly penalized for simply

mislabelling the classes.

After relabelling the classes, we applied two criteria to evaluate the performance of

our methods. These criteria are defined as follows:

MSE = {
∑

k(η̂k − ηk)2 +
∑

k

∑
j(p̂kj − pkj)2} = mean squared error, and

LL = −
∑

k

∑
j ηk{pkj log(p̂kj) + (1− pkj) log(1− p̂kj)} = likelihood loss,

where pkj = x′jβk and p̂kj = x′kjβ̂k. Note that LL, related by a constant to the Kullback-

Leibler information assuming that class membership is actually observed, is an analogue

to the deviance statistic, and is minimized when pkj = p̂kj for all j and k.

Table 2 presents a summary of evaluation criteria for the analyses performed with κ =

3. For each parameterization and evaluation criterion, Table 2(a) shows the number of

data sets for which the criterion was minimized by the parameterization. For both cases,

for a substantial majority of the data sets, the Features II parameterization minimized

both criteria. For each parameterization and evaluation criterion, Table 2(b) gives the

number of data sets for which the smallest tuning parameter λ minimized the evaluation

criterion. For Case I using the Markers parameterization, MSE was minimized at the

lowest value of λ for a majority of the data sets. For the other parameterizations and for

Case II, MSE was rarely minimized at the lowest value of λ. In all situations, LL was

rarely minimized at the lowest value of λ.

For each parameterization and IC, Table 2(c) shows the mean MSE and LL where,

for each parameterization, λ was selected as the minimizer of the IC. Thus, Table 2(c)

summarizes the effect of using IC to select the tuning parameter λ. In general, the
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Features II parameterization tended to produce smaller values of the evaluation criteria

than did the Features I parameterization, which tended to produce smaller values than

the Markers parameterization. For each case, IC, and evaluation criterion, the paired

t-test comparing the Features II solution to the Markers solution produced a P value

less than 0.001, strongly suggesting the superiority of the Features II parameterization.

No IC unequivocally produced the smallest values of the evaluation criteria, although

AIC(c) tended to produce notably higher values than the other four ICs, especially for

the Features II parameterization.

Thus, the Features I and Features II parameterizations seem superior to the Marker

parameterization. Note that the two different types of feature-based parameterizations

investigated in this simulation study, α = (λ, λ) and α = (λ, 2λ), were meant to represent

distinct feature-based penalization strategies within the computational constraints im-

posed by analyzing a large number of data sets. In practice, we recommend searching for

the multivariate penalty α that minimizes IC. We demonstrate this in the next section.

We remark that, with the exception of MSE in Case I using the Markers parame-

terization, the smallest penalty we considered (λ = 0.01 for Case I and λ = 0.001 for

Case II) failed to minimize the evaluation criteria in over 85% of the simulated data sets.

In many cases, the smallest penalty λ = 0.01 minimized the criterion for a negligible

fraction of the simulated data sets. Because the unconstrained model corresponds to the

special case λ = 0, this demonstrates a need for penalized estimation in settings where

the sample size is small in comparison with the dimension of the covariate space. The

exceptional case was a by-product of the difficulty of using the naive representation (2)

in the constrained estimation setting, since the unpenalized coefficient was a “reference”

marker that need not be representative of the remaining markers. As Table 2(c) shows,

the Markers parameterization produced higher MSE and LL values, demonstrating the
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poorer properties of the naive parameterization.

AIC and HQIC were often minimized by κ = 4 rather than the correct κ = 3. AIC(c),

BIC, and CAIC more consistently minimized at κ = 3. Thus, AIC(c), BIC, and CAIC

were more reliable criteria for selecting the number κ of classes. However, AIC(c) proved

less reliable as a criterion for selecting λ. Consequently, we recommend the use of BIC

or CAIC as a general criterion for model selection.

8 Application

We applied the methodology described above to the LOH data obtained from MGH and

HFH. Using both ridge and lasso penalties, we found the optimal penalties by minimizing

BIC for seven different models: κ = 1, which is simply penalized logistic regression; κ ∈

{2, 3, 4} assuming class prevalence η is uniform over the MGH and HFH populations; and

κ ∈ {2, 3, 4} assuming class prevalence η differs between the MGH and HFH populations.

In all cases we used the feature-based parameterization of LOH marker, h(t) = logit−1(t).

and a bivariate penalty parameter (α1, α2), with α1 constraining feature contrasts u1, u2,

and u3, as described in Section 4 and α2 constraining the detail constrasts u4 through

u19. We were unable to fit the model for κ = 4 when η was assumed to depend on the

MGH/HFH grouping. We used four starting values for every value of (α1, α2) used in

the coarse grid search described in Section 6.

Table 3 displays the results. Note that the “naive” BIC computed with nV approxi-

mated by H was typically, but not always, higher than the robust BIC computed with an

empirical estimate of nV . Note also that the optimal penalties for κ = 1 were essentially

infinite, indicating that an intercept-only model was better than any other. This was

consistent with the results of a likelihood ratio test comparing the unpenalized logistic

regression estimates for the full model (q = 19) and the intercept-only model (q = 1); the

21

Hosted by The Berkeley Electronic Press



test statistic was 22.46 on 18 d.f., with a P-value of 0.21. The BIC values for κ = 2, 3

and 4 were much smaller than for κ = 1. The smallest BIC was produced by κ = 3 with

uniform class prevalence for the MGH and HFH populations. The next smallest BIC

value was produced by κ = 3 with distinct class prevalences for the MGH and HFH sub-

populations. From the ridge penalty fit of the latter model, using Σ̂ = nH−1
C V̂ H−1

C as an

estimate of Cov(θ̂) and V̂ as the empirical variance of the score functions, we constructed

a Wald test for the equivalence of the prevalences of the two classes. Specifically, the null

hypothesis was that ηk,MGH = ηk,HFH for k = 1, 2. The resulting chi-square value was

7.04 on 2 d.f., yielding a P-value of 0.03. Thus, although it seems clear that κ = 3 pro-

duced the best fit, there was some equivocation in whether the class prevalences differred

between MGH and HFH. For the latter model, the MGH Class 1, 2, and 3 prevalences

were 0.12, 0.33, and 0.55, respectively, while the corresponding HFH prevalences were

0.25, 0.48, and 0.27. Because the Wald tests suggested heterogeneity in class prevalence

with respect to the groups, we chose the latter model, in which the heterogeneity is made

explicit, as the best-fitting model.

Figure 2 displays the fitted marker probabilities h(U ′β̂k) from this model, along with

robust confidence limits, calculated using the square roots of the diagonal entries of

U ′Σ̂U . Class prevalences are given in the footer of the figure. The figure shows one

latent class with uniformly high probability of LOH, and two classes with typically low

LOH probabilities. The two low-LOH classes are distinguished by probabilities for 19q

and markers closer to the centromere of chromosome 1. Class 1 had probabilities that

were practically zero for all but the distal tip of 1p. The corresponding illustration for the

model having different prevalences for the MGH and HFH groups is virtually identical

with Figure 2. Note that for the latter model, the MGH group tended to have a higher

prevalence of Class 3 subjects (0.55) compared with the HFH group (0.27); thus the
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MGH population had considerably higher prevalence of subjects with high LOH. The

MGH prevalence is similar to the prevalence 0.56 Dong et al. (2004) reported for tumors

with LOH at all informative markers.

A natural question that arises is whether the classes obtained from our methodology

have utility in predicting survival. To answer this question, we conducted an exploration

of survival, conditional on class, by fitting a weighted Cox proportional hazards model.

In this analysis, we included three rows for each subject, one for each class, and weighted

each row with the corresponding posterior probability that the subject was a member

of the class. Additionally, we stratified by MGH/HFH population. Table 4 presents

the results. Compared with the low LOH Class 1, the high LOH Class 3 had a much

better prognosis, with hazard ratio equal to 0.17, 95% confidence limits (0.06, 0.47). In

terms of survival, Class 2 was more similar to Class 1; its hazard ratio was insignificant

compared with Class 1 but significantly higher than 1.0 when compared with Class 3.

These results confirm the survival benefit of uniformly high LOH for oligodendroglioma

patents (Cairncross et al., 1998).

9 Closing Remarks

In this article we have proposed a latent class model where, conditional on unobserved

membership in one of κ classes, the variables are independent with probabilities deter-

mined by a regression model of high dimension q. We address the dimensionality problem

by using a family of penalties including the ridge and lasso. Finally, we present an orthog-

onal map that parameterizes the conditional probabilities as contrasts involving different

levels of detail.

Our methodology generalizes the parameter constraints proposed by Lazarsfeld and

Henry (1968), Agresti and Lang (1993), and Lindsay et al. (1991) in the sense that the
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prior methods essentially impose either a zero or an infinite penalty on the conditional

probabilities transformed as h(U ′β) for some appropriate matrix U . Figure 3 depicts

the results of a 3-class model fit to the LOH data with a lasso penalty, thus shrinking a

majority of the coefficients completely to zero. As is evident from the figure, the resulting

fit produced identical probabilities for markers in the same chromosome region, according

to the transformation described in Section 4.

For simplicity, we have assumed that the class prevalences η depend at most on a single

categorical variable Gi. Aside from computational complexity and the limits imposed by

finite sample sizes, there is nothing that prevents the construction of a full regression

model on η in the manner proposed by Bandeen-Roche et al. (1997). For example,

if Gi were a vector of covariates rather than a categorical indicator, the prevalences

might be parameterized as P(Ki = k|Gi = g) = h̃(g′γ). In another application, not

reported here, we encountered difficulties in fitting models with a larger number of levels

of Gi; consequently, it may be difficult to fit complicated regression models for a small

or moderately sized data set. In principle, one could also constrain the regression model

h̃(g′γ), although this complicates the search for the optimal penalty.

One question that arises is whether the “true” number of classes κ can be recovered

using latent class methodology. Mixture distributions are typically applied in two situ-

ations: approximating non-normal distributions and modeling population heterogeneity.

In the latter case, classes are thought to correspond to meaningful subpopulations. If the

data are non-normal and stem from a heterogeneous population, then additional classes

serve only to better approximate the observed distribution. In a sense, for real world

samples, κ is in fact equal to n, since no two subjects have exactly the same probabilities

of Yij = 1. A more practical question is how large κ should be to sufficiently capture the

correlation observed in the data set. As reported in Section 8, the best-fitting logistic
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regression model (κ = 1) appeared to contain only an intercept. However, the BICs for

both the ridge and lasso fits were quite large for κ = 1. In other words, a single-class

model was completely inadequate for this data set, since it failed to account for the strik-

ing correlation between LOH variables within subjects. Although κ = 2 produced much

lower BICs, the lowest BICs were obtained from κ = 3. It is not unlikely that with a

much larger data set, BIC would be optimized by a larger value of κ. However, with

n = 93 subjects there was insufficient power to refine the correlation structure beyond

κ = 3.

Another question that arises is whether a penalty is necessary at all. Conceiveably, we

might have applied the unconstrained latent class methodology proposed by Bandeen-

Roche et al. (1997). However, depending upon the initial value supplied to the algorithm,

unpenalized versions of the 3-class models presented in Section 8 either would diverge or

would produce Hessian matrices that were not positive definite. Thus, in our applica-

tion it appears that a penalty was required to obtain sensible results. The simulations

presented in Section 7, notably Table 2(b), support the utility of penalized latent class

models.

We proposed the use of summary information criteria to select the values of α and κ,

and from simulations determined that BIC or CAIC was generally more reliable than AIC

or AIC(c). A reviewer remarked that a nonparametric bootstrap would be a more reliable

alternative (e.g. von Davier, 1997). While this is undoubtedly true, the computational

demands of our method make the use of resampling difficult.

We were unable to fit a model with κ = 4 and η dependent on group membership, even

though we used multiple starting values. The problem seemed to be that the response

probability was essentially zero for one class. Since this corresponded to an infinite

value of an unpenalized intercept, the algorithm diverged. In the penalized likelihood

25

Hosted by The Berkeley Electronic Press



setting, this phenomenon is somewhat unique to latent class analysis; in typical penalized

regression settings, a fit can usually be found with large enough penalty. One solution

might be to penalize the intercepts at yet another level of penalization, leading to a

trivariate α parameter. However, given that the BIC value for the simpler κ = 4 model

was higher than the corresponding model with κ = 3, we decided that the additional

complexity was not worth the effort.

Our methodology could be extended in several different directions. As mentioned

above, it is straightforward in principle to impose a regression model on the prevalence

parameters η, possibly with an additional penalty. A much more challenging problem is

to extend the method to account for polytomous variables Yij or mixed discrete and con-

tinuous variables. The models could also be extended to allow for conditional dependence

within classes, along the lines of Qu et al. (1996).

Although we used a specific LOH application to motivate and demonstrate our pro-

posed methodology, penalized latent class analysis can be applied in other genomic set-

tings. For example, we are currently applying our methodology to problems involving

gene methylation and protein expression. A detailed description of these analyses will

appear in separate manuscripts. In the gene methylation example, which focuses on

environmental influencs of gene methylation, the covariate-dependent prevalence models

popularized by Bandeen-Roche et al. (1997) play a central role. Overall, we anticipate

that our methodology will be an attractive approach for applied genomic and proteomic

problems where expression profiles are of primary interest.
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A Appendix

In this Appendix we sketch the EM, IRLS and IRQP algorithms described in Section 5,

as well as an algorithm for obtaining starting values.

Our EM algorithm is a straightforward generalization of Bandeen-Roche et al. (1997):

EM-1. Compute the posteriors π̃ik (4) for each subject i.

EM-2. Within each class k, use IRLS or IRQP to obtain β̃k weighting each

subject by π̃ik.

EM-3. Set η̃kg equal to
∑

i π̃ik1(Gi = g)/
∑

i 1(Gi = g).

EM-4. Iterate steps EM-1 through EM-3 until a convergence criteria is met.

As a criterion for the ridge problem, we used the absolute value of the penalized score

functions, that is the derivatives of (5) evaluated at the current iterate. For the lasso

problem, we used the absolute value of the change in likelihood between iterations, since

the score functions are discontinuous and in finite samples it may not be possible to

obtain a score exactly equal to zero.

We use the standard IRLS algorithm adapted for penalized estimation. Assuming

h(·) = logit−1(·) and weights π̃ik, the algorithm is as follows.

IRLS-1 Set µij = h(x′ijβ̃k) and µ̇ij = µij(1− µij).

IRLS-2 Compute eij = Yij − µij

IRLS-3 Set W equal to 2Λ +
∑

i

∑
j π̃ikµ̇ijxijx

′
ij

IRLS-4 Set z =
∑

i

∑
j π̃ikeijxij − Λβ̃k.

IRLS-5 Set δ = W−1z and reset β̃k equal to β̃k + δ.

IRLS-6 Iterate Steps IRLS-1 through IRLS-5 until δ is small.
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The derivation of this algorithm is a straightforward adaptation of the usual Taylor’s

expansion used to justify IRLS for generalized linear models. The adaptation for link

functions h(·) other than the antilogit function is also straightforward.

The IRQP algorithm replaces step IRLS-5 in IRLS with a quadratic programming

minimization step. We use the dual method of Goldfarb and Idnani (1983), found in the

quadprog library for R. Again assuming h(·) = logit−1(·), the algorithm is as follows:

IRQP-0 Set σ̃ equal to the vector sign(β̃k), where the sign function is applied

element-wise.

IRQP-1 Set µij = h(x′ijβ̃k) and µ̇ij = µij(1− µij).

IRQP-2 Compute eij = Yij − µij

IRQP-3 Set σ equal to the vector of values σl, where

σl = sign(β̃kl)1(βkl/ne0)− σ̃l1(βkl = 0).

Note that σ = sign(β̃k) except for indices l for which βkl = 0; in the

latter case, σl reverses the sign of σ̃l.

IRQP-4 Set σ̃ = σ.

IRQP-5 Set W equal to
∑

i

∑
j π̃ikµ̇ijxijx

′
ij

IRQP-6 Set z =
∑

i

∑
j π̃ikeijxij − Λσ.

IRQP-7 Set z0 = −σ′β̃k
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IRQP-8 Set δ equal to the quadratic programming minimum of δ∗Wδ∗ − z′δ∗

subject to the constraint diag(σ)δ∗ ≥ z0.

IRQP-9 Reset β̃k equal to β̃k + δ.

IRQP-10 Iterate IRQP-1 through IRQP-9 until δ is small or stationary.

Note that, analogous to the IRLS procedure, IRQP-8 obtains a correction to β̃k by

minimizing the second order approximation to the penalized likelihood. The constraint

in IRQP-8 prevents β̃kl from switching signs in IRQP-9, shrinking small coefficients to

zero. However, in the IRQP-3 step of the next iteration, σ reverses the sign associated

with any shrunk coefficient, allowing the coefficient to reverse sign also. Because IRQP is

more computationally intensive than IRLS, the algorithm should start with a reasonably

accurate estimate (for example, the solution using a ridge penalty).

As mentioned in Section 5, latent class models are quite sensitive to starting values,

so many authors have recommended maximizing the likelihood from multiple starting

values and selecting the solution that has the maximum likelihood over all solutions. In

our experience, starting values should attempt to represent multiple “types” of solutions.

For example, a solution may tend to classify subjects by the overall level of response

across all markers, or it may tend to classify subjects by high response in particular

markers. The two cases simulated in Section 7 represent these two situations.

Starting values for the first case can be obtained using the following algorithm:
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Start-I-1 Compute the mean Y i· over each subject i and use the results to

categorize subjects into κ classes of approximately equal size.

Start-I-2 Set η̃kg equal to the proportion of each class k in group g.

Start-I-3 Set β̃k1 (the coefficient corresponding to the intercept) equal to

h−1(Y i·) and β̃kl = 0 for l > 1.

If q is small enough relative to the sample size, then an alternative to Step Start-I-

3 is to set β̃k equal to its unpenalized IRLS estimate using the initial weights; or if an

appropriate transformation as described in Section 4 has been applied, another alternative

to Step Start-I-3 is to compute the logistic regression for a smaller-dimensional subset of

the covariates representing a coarse parameterization of the covariate-space.

Starting values for the second case can be obtained by first applying a nonparametric

classifier to the markers (rather than the subjects); then computing Y i· within each

cluster of markers to obtain class-specific weights for each subject; and finally, using the

weights, obtain coarse regression estimates by a weighted logistic regression. A slightly

more detailed algorithm is as follows:
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Start-II-1 Compute a distance matrix for the markers, for example by subtract-

ing a pairwise correlation matrix from 1.

Start-II-2 Classify the markers using a nonparametric classifier.

Start-II-3 Within each class k obtained from Start-II-2, compute subject-specific

weights Y
(k)

i· for each subject.

Start-II-4 For each class k, use the weights obtained in Step Start-II-3 to fit

a weighted logistic regression to all covariates, or else a subset of

the covariates representing a coarse parameterization of the covariate-

space (and setting the remaining covariates to zero).

It is possible to use a “fuzzy” classifier in Step Start-II-2 and a corresponding weighted

mean in Start-II-3. For the simulations in Section 7 and the application in Section 8 we

used the clustering algorithm adapted from Kaufman and Rousseeuw (1990, Ch. 4) and

available in the R software package (R Development Core Team, 2004). However, for

the Case I simulations and also for the application, the results typically did not produce

starting values that were meaningfully different from the first algorithm. For the Case

II simulations, the starting values from the second algorithm tended to produce better

results.

In general, we recommend also applying random perturbations to the starting values

obtained from the two algorithms described above.
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Table 1: Summary of Simulation Results by Information Criterion

(a) Distribution of best κ value as selected by five information criterion values

Case I Case II
κ AIC AIC(c) BIC HQIC CAIC AIC AIC(c) BIC HQIC CAIC
2 2 15 7 11 7 0 0 0 0 0
3 52 170 173 146 171 17 250 165 69 166
4 196 65 70 93 72 233 0 85 181 84

Total 250 250 250 250 250 250 250 250 250 250

(b) Number of data sets for which smallest value of tuning parameter λ was selected

Case I Case II
Parameterization AIC AIC(c) BIC HQIC CAIC AIC AIC(c) BIC HQIC CAIC

Markers∗ 213 0 26 145 24 44 0 9 25 9
Features I 149 0 4 53 4 43 0 0 8 0

Features II 99 0 0 21 0 43 0 0 6 0

Summary of latent class analyses of 250 simulated data sets. Two separate cases were considered, each
illustrated in Figure 1. Each case involved 19 markers and 3 underlying classes. For each data set there
were n = 50 subjects. For each simulated data set a total of 54 analyses were conducted: for each
κ ∈ {2, 3, 4}, 6 analyses using the naive marker-based parameterization with different ridge penalties λ;
18 additional analyses using the feature parameterization described in Section 4, with the same penalties
and κ values; and 18 analyses with the feature parameterization, where the feature contrasts u1, u2, and
u3 were penalized using the value λ and the remaining detail contrasts were penalized using the value
2λ. Each of the three parameterizations is referred to respectively as Markers, Features I, and Features
II. For Case I, λ = 0.01, 0.1, 1, 10, 100, and 1000. For Case II, λ = 0.001, 0.01, 0.1, 1, 10, and 100.
Table 1(a) gives the distribution of the κ value selected by each of the following five information criteria:

AIC = 2d− 2L(η, β) (Akaike, 1974),

AIC(c) = 2d+ (2d(d+ 1))/max(0, n− d− 1)− 2L(η, β) (Sugiura, 1978),

BIC = d log(n)− 2L(η, β) (Schwartz, 1978),

HQIC = 2d log[log(n)]− 2L(η, β) (Hannan and Quinn, 1979),

CAIC = d log(n+ 1)− 2L(η, β) (Bozdogan, 1987),

where d = nH−1
C V̂ is the “robust” effecitive d.f. defined in Section 6. Table 1(b) gives the number of

data sets for which the smallest value of the tuning parameter λ was selected (λ = 0.01 for Case I and
λ = 0.001 for Case II), thus giving an impression of the number of data sets for which little penalization
was required.
*Using the Marker parameterization, 1 Case I data set and 2 Case II data sets could not be fit.
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Table 2: Summary of Evaluation Criteria for Simulations

(a) Number of data sets for which parameterization produced minimum criterion value

Criterion Markers Features I Features II
Case I MSE 3 10 237

LL 1 7 242
Case II MSE 0 2 248

LL 0 0 250

(b) Number of data sets for which smallest λ produced minimum criterion value

Criterion Markers Features I Features II
Case I MSE 159 7 5

LL 15 0 1
Case II MSE 26 0 0

LL 3 0 0
(c) Mean (SE) of criterion value for parameter estimates corresponding to the λ yielding the smallest IC

Case I Case II
AIC AIC(c) BIC HQIC CAIC AIC AIC(c) BIC HQIC CAIC

Markers∗ 0.73 1.09 1.06 0.81 1.06 0.61 1.70 0.64 0.62 0.64
M (0.02) (0.02) (0.02) (0.02) (0.02) (0.09) (0.12) (0.08) (0.09) (0.08)
S Features I 0.73 1.01 0.87 0.67 0.87 0.33 1.07 0.32 0.32 0.32
E (0.02) (0.01) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Features II 0.67 0.80 0.67 0.58 0.68 0.29 1.02 0.28 0.28 0.28
(0.01) (0.02) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Markers∗ 9.29 9.44 9.44 9.32 9.44 7.51 7.67 7.11 7.34 7.11
(0.04) (0.04) (0.04) (0.04) (0.04) (0.11) (0.08) (0.11) (0.11) (0.11)

L Features I 9.26 9.34 9.22 9.12 9.23 7.02 7.20 6.65 6.71 6.65
L (0.02) (0.01) (0.02) (0.02) (0.02) (0.04) (0.01) (0.01) (0.03) (0.01)

Features II 9.09 9.15 9.03 8.96 9.04 6.85 7.17 6.56 6.61 6.56
(0.02) (0.02) (0.02) (0.01) (0.02) (0.04) (0.01) (0.01) (0.02) (0.01)

Summary of evaluation criteria applied to constrained latent class analyses of 250 simulated data sets.
Two separate cases were considered, each illustrated in Figure 1. Each case involved 19 markers and
3 underlying classes. For each data set there were n = 50 subjects. For κ = 3, 18 analyses were
conducted: 6 analyses using the naive marker-based parameterization with different ridge penalties λ; 6
additional analyses using the feature parameterization described in Section 4, with the same penalties;
and 6 analyses with the feature parameterization, where the feature contrasts were penalized using
the value λ and the remaining detail contrasts were penalized using the value 2λ. Each of the three
parameterizations is referred to respectively as Markers, Features I, and Features II. For Case I, λ =
0.01, 0.1, 1, 10, 100, and 1000. For Case II, λ = 0.001, 0.01, 0.1, 1, 10, and 100. Table 2(a) gives the
number of simulated data sets for which the parameterization represented by the column produced the
smallest value of the following two evaluation criteria:

MSE = root mean square error, {
∑
k(η̂k − ηk)2 +

∑
k

∑
j(p̂kj − pkj)2}

LL = likelihood loss, −
∑
k

∑
j ηk{pkj log(p̂kj) + (1− pkj) log(1− p̂kj)},

where pkj = x′jβk and p̂kj = x′kj β̂k. Note that LL is an analogue to likelihood loss, and is minimized when
pkj = p̂kj for all j and k. Table 2(b) gives the number of simulated data sets for which λ = 0.01 produced
the smallest value of the criterion. For each of the 3 parameterizations and 5 ICs, estimates from the
penalty producing the lowest IC were retained. Table 2(c) shows the mean evaluation criterion averaged
over all simulated data sets within each parameterization and IC; standard errors are in parentheses.
*Using the Marker parameterization, 1 Case I data set and 2 Case II data sets could not be fit.
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Table 3: Summary of Penalty Search for LOH Application

Penalties Robust Naive
κ α1 α2 D.F. BIC D.F. BIC
1 ∞ ∞ 1.0 1757.1 1.0 1757.1

η 2 2.5× 100 8.6× 100 11.9 1209.7 11.4 1207.5
Ridge independent 3 2.3× 10−9 5.3× 100 18.4 1205.2 21.4 1218.8
Penalty of group 4 2.6× 10−1 9.9× 104 13.3 1217.6 13.8 1219.9

η 2 2.5× 100 8.7× 100 12.8 1207.1 12.4 1205.0
dependent 3 2.0× 10−9 5.4× 100 20.5 1207.0 23.4 1220.4
on group 4 ∞ ∞ – – – –

1 ∞ ∞ 1.0 1757.1 1.0 1757.1
η 2 2.2× 10−1 2.4× 102 9.1 1215.9 8.0 1211.1

Lasso independent 3 2.0× 10−1 8.1× 101 10.7 1206.2 11.0 1207.6
Penalty of group 4 7.4× 10−1 1.4× 101 11.5 1208.3 12.0 1210.7

η 2 2.0× 10−1 2.5× 102 10.0 1213.4 9.0 1208.7
dependent 3 1.9× 10−1 4.8× 103 12.8 1208.2 13.0 1209.0
on group 4 ∞ ∞ – – – –

Penalized latent class models applied to the brain tumor data described in the Introduction. Ridge and
lasso penalties were used with κ = 1, 2, 3, and 4 classes. For κ = 2 and 3, models with homogeneous
class prevalence η and with η dependent on MGH/HFH grouping were fit. For the κ = 4 model with
homogeneous η, only the intercept model could produce a positive definite penalized Hessian HC , and for
the group-dependent η even the intercept-only model had a penalized Hessian HC that was not positive
definite.

Table 4: Survival Analysis for LOH Classes

Class Coefficient Hazard Ratio
Referent Comparison Est SE Est 95% Conf. Limit

1 2 -0.67 0.42 0.51 (0.23, 1.2)
1 3 -1.77 0.52 0.17 (0.06, 0.47)
2 3 -1.11 0.45 0.33 (0.14, 0.80)

Results from a weighted, stratified Cox proportional hazards model applied to the LOH data described
in Sections 1 and 8. Three rows were included for each subject, one for each class, and weighted with
the corresponding posterior probability that the subject was a member of the class. Class profiles are
depicted in Figure 2. Additionally, subjects were stratified by MGH/HFH group indicator. In the Cox
model, class membership comprised the covariates. In the table, “Referent” refers to the reference class
and “Comparison” refers to the coefficients and hazard ratios comparing the indicated class against the
reference class.
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Figure 1: Simulation Results

(a) Case I
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(b) Case II
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Symbols represented true probabilities. Lines represent the mean over 250 simulated data sets of es-
timates obtained from analyses using the Feature I parameterization and the penalty producing the
smallest AIC.

40

http://biostats.bepress.com/harvardbiostat/paper22



Figure 2: Conditional marker probabilities for LOH among Oligodendroglioma patients – best fit with
ridge penalty
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Marker

LOH probabilities for each of 19 markers as computed from the combined MGH and HFH data set.
Probabilities are based on a ridge penalty. Vertical bars indicate 95% confidence limits based on robust
standard errors, conditional on the penalty parameters and the choice κ = 3.

Legend, with class prevalences by group and corresponding 95% confidence intervals in paren-
theses:

—– Class 1, η1,MGH = 0.12 (0.05, 0.23) η1,HFH = 0.25 (0.14, 0.39)
- - - Class 2, η2,MGH = 0.33 (0.22, 0.43) η2,HFH = 0.48 (0.40, 0.48)
..... Class 3, η3,MGH = 0.55 (0.34, 0.73) η3,HFH = 0.27 (0.13, 0.46)
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Figure 3: Conditional marker probabilities for LOH among Oligodendroglioma patients – best fit with
lasso penalty
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LOH probabilities for each of 19 markers as computed from the combined MGH and HFH data set.
Probabilities are based on a lasso penalty. Vertical bars indicate 95% confidence limits based on robust
standard errors, conditional on the penalty parameters and the choice κ = 3.

Legend: —– Class 1; - - - Class 2; ..... Class 3
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