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SUMMARY 

Models of the incubation period of anthrax are important to public health planners because they 

can be used to predict the delay before outbreaks are detected, the size of an outbreak and the 

duration of time that persons should remain on antibiotics to prevent disease.  The difficulty is 

that there is little direct data about the incubation period in humans. The objective of this paper is 

to develop and apply models for the incubation period of anthrax. Mechanistic models that 

account for the biology of spore clearance and germination are developed based on a competing 

risks formulation. The models predict that the incubation period distribution depends critically 

on the rate that spores are cleared from the lung and to a lesser extent on the dose of inhaled 

spores. The models are used in a statistical analysis of data from an anthrax outbreak that 

occurred in Sverdlovsk, Russia.  The analysis suggests that spores are cleared from the lung at a 

rate between 8% per day, and 14% per day, which is in good agreement with experimental 

studies of animals.  The analysis suggests that at low doses, the overall median incubation period 

time is about 10 days, which includes a median lag of about 2 days between spore germination 

and onset of symptoms.  Male gender and younger ages were associated with longer incubation 

periods as was lower dose of inhaled spores. 
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1. INTRODUCTION 

Anthrax is of public health concern because of its potential use as a biological weapon [1].  

Inhalational anthrax, which is the severest form of the disease, occurs when persons breathe 

anthrax spores into the lungs [2].  Considerable morbidity and mortality could result from either 

the accidental or intentional release of anthrax spores because spores can exist in aerosol form 

and be disseminated widely.  Knowledge of the incubation period of inhalational anthrax is 

important for predicting the size of an outbreak, the delay until recognition of the outbreak, and 

the duration of time that antibiotics should be taken to prevent symptomatic disease [3-6].  

However, there is a paucity of data about the incubation period because of the rarity of the 

disease.  Indeed, only 18 cases of inhalational anthrax occurred in the United States in the last 

century.  A total of 11 cases occurred in the 2001 U.S outbreak.  The only other large 

documented outbreak in recent times occurred in Sverdlovsk, Russia in 1979 [7].  A goal of this 

paper is to demonstrate that mechanistic models, in combination with the available data, can help 

to define the entire shape of the incubation period distribution. 

     Anthrax is caused by the bacteria Bacillus anthracis.  After spores enter the lung, they may be 

carried by macrophages to the mediastinal lymph nodes where they may germinate.  Once the 

spores germinate, they multiply and produce toxins that cause symptomatic disease which if not 

treated rapidly is likely fatal [2, 7].  The objective of this paper is to develop statistical and 

mathematical models for the incubation period.  A probabilistic model for the incubation period 

that accounts for spore dynamics is developed in section 2.  The models are applied to the 

statistical analysis of data from a Russian anthrax outbreak in section 3.  The implications of the 

results are discussed in section 4. 
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2. MODELS FOR THE INCUBATION PERIOD 

2.1 Competing risks model  

     In this section we develop a probabilistic model for the incubation period of anthrax infection 

[5].  The incubation period of disease is the time from exposure to the infectious agent to the 

onset of disease.  We define the cumulative attack probability function of disease, F(t), to be the 

cumulative probability that a person develops disease in less than t days following exposure.  

However, not all persons exposed to the infectious agent will develop disease.  If only a 

proportion p of exposed persons develops disease, then F(t) is a nondecreasing function that 

approaches the value p as t increases.  We introduce another function F*(t) which we call the 

incubation period distribution and is defined to be the probability that the incubation period is 

less than t days among the proportion p of persons who would eventually develop disease.  Thus, 

F(t) and F*(t) are related through the equation, 

F(t) = p F*(t) 

The incubation period distribution F*(t) is the normalized version of F(t), and F*(t) approaches 1 

as t increases. 

     One of two events could happen to an anthrax spore that is inhaled into the lung.  The spore 

could be cleared from the lung by either being expelled through the bronchus, swallowed or 

destroyed by macrophages.  Alternatively, the spore could germinate at which point it quickly 

reproduces and releases toxins that cause symptomatic disease.  A competing risks model can 

describe the dynamics of spore clearance and germination.  Let the clearance rate θ represent the 

hazard rate or risk per unit time that a spore is cleared from the lung.  Let the germination rate λ 

represent the hazard or risk per unit time that a spore germinates.  We assume that these hazards 
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are constant over time, and that spore clearance and germination are independent events.  Then, 

the probability that a spore germinates before it is cleared is 

0

-λt -θt
λe e dt = λ/(λ + θ)

∞

∫ . 

Consider an individual who breathes a number D spores into the lung.  If we assume that each 

spore acts independently, and the probability λ/(λ+θ) is small, then the number of the D spores 

that germinate, X, can be approximated by a Poisson distribution with mean {D λ /(λ + θ)}.  

Then, the probability that at least one spore germinates is the attack rate (AR) and is   

P(X > 0) = 1- P(X = 0) which from the Poisson distribution is 

              AR = 1-exp(-Dλ/(λ+θ)).    (1) 

The exponential form for the attack rate which is given by equation 1 is consistent with the 

empirical studies in animals [9].   

 The dose of spores that causes disease in P percent of the population, that is with 

probability p=P/100, is called the toxic dose TD(P) and sometimes is also called the infectious 

dose ID(P).  We can solve for the TD(P) by setting the attack rate equal to p and solving for D.  

We find that 

          ( ) ln(1 )
( )

p
TD P

λ θ
λ

− + −
= .        (2) 

2.2 Model for the incubation period distribution  

In this section we use the model developed in section 2.1 to derive expressions for F(t) and F*(t) 

[5].  The probability that a single spore germinates within t days is  

( )( )1
t

0

-λu -θu tλe e du e
λ λ θ

λ θ
− +∫ = −+ . 
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Using the above expression and the Poisson distribution in a derivation analogous to that used to 

derived the attack rate in section 2.1, we find that the probability that at least one of the D spores 

germinates within t days is  

                                                         

( )( )( ) 1 exp 1D tF t eλ λ θ
λ θ

 − − += − − + 
.          (3) 

It is seen from equation 3 that three parameters describe the cumulative attack probability 

function F(t):  the germination rate λ, the clearance rate θ, and the dose of inhaled spores.  The 

function F(t) increases as either the dose increases, the germination rate increases or the 

clearance rate decreases. As t approaches infinity, equation 3 approaches the attack rate given by 

equation 1.   

     Animal studies can provide some information about the biological parameters θ and λ.  One 

experimental study with rhesus macaque monkeys presented data on the declining percentages of 

spores that remained over time in the lung [10].  We performed a reanalysis of that data in order 

to obtain information about the value of the clearance rate θ.  Figure 1, which is based on the 

rhesus macaque monkey study, shows the decreasing percentage of retained spores in the lung on 

a log scale as a function of time since inhalation. We fit an exponential decay model R = exp(-θt) 

where R is the fraction of retained spores by regressing log R on t.  We did not include an 

intercept term because R must equal 1.0 when t = 0.  We estimated that the clearance rate was       

θ = .07 per day, that is, spores were cleared at a rate of 7% per day. 

     Some estimates of the germination rate λ can also be gleaned from experimental studies with 

animals.  These studies have estimated that the dose associated with an attack rate of 50% was 

between 4,000 spores to over 100,000 spores [9, 11].  If we use these values in equation 1 with 
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the attack rate set equal to .50, θ  = .07 and solve for λ, we find that λ is on the order of between 

5 x 10-7 and 1 x 10-5.  Thus, λ is small relative to θ, and we can make the approximation that  

λ+θ ≈ θ in equation 3. 

 Equation 3 is illustrated in Figure 2, which shows how the cumulative attack probability 

function depends on the clearance rate and dose of inhaled spores.  We fixed the germination rate 

at λ = 5 x 10-6 and illustrated F(t) for various doses of spores and clearance rates.  The figure 

illustrates that F(t) increases as the dose of spores increases (with the clearance rate held fixed) 

or as the clearance rate decreases (with the dose held fixed).  The figure also illustrates that 

different combinations of the clearance rate and the dose will produce the same final attack rate 

(AR). In particular, with the approximation that λ+θ ≈ θ, we see from equation 1 that the attack 

rate is determined essentially by the factor (D λ / θ). 

      Equation 3 becomes especially simple if we evaluate F(t) when the dose D is set equal to the 

TD(P).  With D=TD(P), equation 3 becomes  

     ( ) ( )( )1 exp( )
( , ) 1 1

t
F t p p

λ θ− − +
= − −              (4) 

Recalling that λ+θ ≈ θ, we obtain from equation 4 the following remarkably simple expressions:  

 

       ( )( )1 exp( )
( , ) 1 1

t
p pF t

θ− −
≈ − −              (5a) 

 

    
( )( )1 exp( )1 1

* ( , )
tp

F t p p

θ− −− −
≈        (5b) 

where we have indexed F(t, p) both by t and p=P/100 to emphasize that the cumulative attack 

probability function depends critically on the dose of inhaled spores.  Although equations 5a and 
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5b do not explicitly involve the parameter λ, they indirectly involve λ because the dose TD(P) 

depends on λ.      

 Table 1 illustrates how the median incubation period (i.e., median of F*(t, p)) depends both 

on the dose and the clearance rate.  The median incubation period decreases if either θ or p 

increases.  At first it may appear counterintuitive that the incubation period decreases as θ 

increases in light of the fact that the cumulative attack probability function decreases as θ 

increases.  The reason that the median incubation period decreases if the clearance rate θ 

increases is because amongst persons who get the disease, spores will need to germinate more 

quickly if they are to win the race and germinate before the spores are cleared from the lung.  

Figure 3 is a contour plot that shows values of p and θ that yield the same median incubation 

period.  The curves in Figure 3 are relatively flat or constant over values of TD(P) which 

indicates that the main determinant of the median incubation period is the clearance rate and that 

the dose has a considerably smaller effect on the incubation period.  While dose is not a major 

determinant of the incubation period distribution F*(t, p), it is a major determinant of the 

cumulative attack probability function F(t, p).  

 It is interesting to explore the limiting behavior of F*(t, p) at low doses.  The limit of F*(t, p) 

as p goes to 0 from L’Hospital’s rule is 
0

lim *( , ) 1 t
p

F t p e θ−
→

= − .   Thus, at very low doses, the 

incubation period distribution is an exponential distribution with hazard rate equal to the 

clearance rate. This implies that the mean incubation time can never get longer than the mean 

time to clearance of a single spore no matter how low the dose. This analysis suggests that in 

small anthrax outbreaks where the dose is relatively low, the median incubation period would be 

approximately ln2/θ which is 9.9 days if one uses the value θ =.07 per day estimated from the 

primate studies. 
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 The derivation of equations 3 and 5 assumed that symptoms occurred immediately after 

germination of a single spore.  While it is generally believed that the onset of symptoms occurs 

very rapidly following spore germination, models could be developed that account for a non- 

negligible period between germination and symptoms.  Bacterial growth is characterized by a lag 

phase during which time the newly germinated cell adapts to its new environment (12).  After the 

lag phase, an exponential phase begins when the population size of the bacteria grows 

exponentially and bacterial toxins are produced that cause symptoms.  A simple model for the 

duration between germination and symptoms is an exponential distribution with hazard rate γ 

that we assume is independent of the germination time.  Then, the incubation period distribution 

is obtained from the convolution of equation 5b with an exponential distribution and is 

  ( ) ( )( )* 1

0

1 exp( )( , )  1 1
t

st sF t p p p e dsγθ γ− − − − −= − −
 ∫


               (6)                      

In the special case when the dose is low, the limiting distribution of equation (6) is that of the 

sum of two independent exponential distributions with parameters θ and γ.  In this situation, the 

incubation period distribution F*(t) and density f*(t) are respectively [13]  

  * ( ) 1
t te eF t

λ θθ γ
γ θ

− − −
= +  − 

                                                (7a) 

                                                
( )

* ( )
t te e

f t
θ γγθ

γ θ

− −−
=

−
                             (7b)                              

     An important point concerning the equations 7a and 7b are that they are symmetric in θ and γ.  

As such the likelihood function could not provide information for distinguishing between the two 

parameters.  However, it is believed that the time from germination to symptoms is considerably 

shorter than the time from exposure to anthrax spores to germination [14, 15].  In our application 
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of this model to the Sverdlovsk data (section 3), we estimate θ for fixed values of γ, and use a 

range of values for γ in a sensitivity analysis.  The duration between germination and symptoms 

could be accounted for by models more complicated than the exponential distribution that 

account for both the bacterial lag and exponential phases of growth of the bacteria.  However, 

because of the limited data available to estimate model parameters, we have chosen to model this 

duration by the simpler exponential model. 

 

3. ANALYSIS OF THE SVERDLOVSK OUTBREAK 

In 1979 an outbreak of inhalational anthrax occurred in the city of Sverdlovsk, Russia [7].  In 

this section we analyze the Sverdlovsk data using the models derived in section 2. Anthrax 

spores were accidentally released from an open vent of a military microbiology facility in 

Sverdlovsk on April 2, 1979.  It is assumed that all exposures to the anthrax spores from that 

outbreak occurred on April 2, 1979 because anthrax spores typically do not remain suspended in 

air for more than a day and there is no person-to-person transmission.  The data from the 

Sverdlovsk outbreak includes the incubation times of 70 anthrax cases [7, 16].  A public health 

intervention program of antibiotics and vaccine to prevent disease among exposed persons was 

initiated several weeks after the release of the spores.  This intervention introduced a statistical 

complication because persons with long potential incubation periods may have received 

antibiotics before disease onset and thus their disease may have been prevented.  As such, some 

persons with potentially long incubation periods may have been selectively excluded producing 

right truncated data.  A previous statistical analysis addressed this question and found that the 

effects of the right truncation in the Sverdlovsk data is relatively small and accordingly in this 

analysis we will ignore these effects [16].  
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     We fit the model based on equation 5b to the 70 incubation periods by maximizing the 

likelihood function.  The log likelihood function was log L= ∑ log f*(ti ; p, θ) where f*(t;p, θ) is 

the incubation period density which from equation 5b is  

( )1 exp( )1*( ; , ) 1 ln(1 )ttf t p e p p pθθθ θ − −− −= − − −  

We maximized the likelihood by performing a grid search over values of θ and p. The maximum 

likelihood estimates were θ =.082, and p= .001.  We found a 95% confidence interval for θ by 

inverting a likelihood ratio test and finding all values of θ that would not be rejected in a 

hypothesis test. The 95% confidence interval for θ was (.053, .112).  We found  joint 95% and 

80% confidence regions for P= p x 100 and θ by inverting a likelihood ratio test and it is shown 

in Figure 4.  The figure makes clear that a wide range of TD(P) dose levels are consistent with 

the observed data.  As such, although there is considerable information in this data about θ, there 

is relatively little statistical information about the dose level in case-only data such as the 

Sverdlovsk data.  Indeed, the likelihood surface was relatively flat in p.   However, other studies 

suggested the dose in Sverdlovsk was low.  An epidemiological study of the Russian outbreak 

had suggested that less than 2% of the exposed population in Sverdlovsk were affected [7, 16].   

 We also fit a model that accounted for the delay between germination and symptoms.  We 

assumed the delay followed an exponential distribution, leading to the incubation density given 

by equation 7b.   We tried several values for γ corresponding to a median delay between 

germination and symptoms of 1, 2 and 3 days.  We maximized the likelihood by performing a 

grid search over values of θ  for fixed values of γ.  The MLE of θ corresponding to median delay 

of 1, 2, and 3 days were respectively θ̂  = .094 (95% CI (.074 - .118)), θ̂  = .109  

(95% CI (.085 - .138)), and θ̂  = .128 (95% CI (.098 - .166)).  The model with median delay of 2 

days appeared to give the best fit to the data based on a graphical assessment.  Figure 5 displays 
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a histogram of the 70 incubation times from Sverdlovsk along with the estimated incubation 

density based on equation 7b with a median delay of 2 days between germination and symptoms. 

     A number of covariates were available on the Sverdlovsk cases including gender, and age  

(≤ 40 years versus > 40 years).  In addition a surrogate measure of dose of spores was available 

that was based on the location that persons lived or worked relative to the location where spores 

were released (7).  This dose variable was based on an atmospheric dispersion model that 

accounted for wind speed and wind directions on April 2, 1979. This model yielded contours of 

equal dosages of spores on a map of Sverdlovsk (7).  Persons were classified into one of four 

dose contours (low, medium, high, and very high) based on their location at the time of the 

release of the spores (7). 

     Table 2 shows summary statistics for each of the covariates including the median incubation 

period.  We fit a normal regression model to the log of the incubation periods of the 70 cases that 

included the covariates age, gender and dose contour.   The predicted medians for various 

combinations of covariates based on the regression model are shown in Table 3.   We found a 

significant dose effect using the dose contours derived from the atmospheric dispersion 

considerations in the regression analysis (p = .01).  The predicted median incubation periods 

were 1.8, 1.7, and 1.4 times longer in the low, medium and high dose contours compared to the 

very high contour.   Interestingly, a simple measure of distance from the source was not 

significantly associated with incubation periods.  An explanation for that finding is that even if 

persons were close to the source, the inhaled dose could still be low if wind directions were 

blowing in the opposite direction.  After controlling for dose, we found that males had median 

incubation periods roughly 1.6 times that of females (p-value =.01), and persons under the age of 

40 had median incubation periods roughly 1.6 times that of older persons (p-value =.02).  One 
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interpretation of these results is that the clearance rate parameter θ depends on both gender and 

age.  However, an alternative explanation is that the dose contour variable was not a satisfactory 

surrogate for dose of inhaled spores, and accordingly dose was not adequately controlled for in 

the analysis.  The dose contour variable was based only on geographic and meteorological 

considerations but other factors affect the inhaled dose including a person’s respiratory rate and 

capacity as well as whether they were indoors or outdoors at the time of the release of spores.  

Accordingly, the interpretation of how covariates affect the dynamics of spore clearance and 

germination should be interpreted cautiously from this analysis.  

 

4. DISCUSSION 

The objective of this paper was to develop statistical and mathematical models for the incubation 

period of anthrax that address the biology of the infection.  There is relatively little empirical 

data in humans about the incubation period of inhalational anthrax because the disease is rare.  

Accordingly, we must rely on mechanistic models together with whatever empirical data is 

available.  The models developed in section 2 account for the dynamics of spore clearance and 

spore germination.   Using the estimate of the clearance rate derived from studies in animals, we 

were able to predict the incubation period of disease observed in humans in a low dose outbreak 

such as in Sverdlovsk. The median incubation period based on the competing risks probabilistic 

model with θ=.07 per day was 9.9 days which was in excellent agreement with the actual 

observation of 10.0 days in the Sverdlovsk outbreak (Table 2).  The concordance between the 

predictions based on the probabilistic model and the human outbreak in Sverdlovsk corroborates 

both the model and the value of θ.   
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      When we fit the models directly to the Sverdlovsk outbreak we estimated the clearance rate 

of .084 per day which again was in excellent concordance with the independent estimate 

obtained from the primate studies.  When we fit the model that included a delay between 

germination and symptoms, we found that a median delay between germination and symptoms of 

2 days yielded a good fit to the Sverdlovsk data 

 The entire shape of the incubation distribution is of interest, not just the median or mean.  

The left tail of the curve is critical for predicting how long it would be before symptomatic cases 

surface which is important for determining the delay before an outbreak is recognized.  The right 

tail of the incubation period distribution is important for predicting the ultimate size of an 

outbreak and how long persons should remain on antibiotics.  Because of the rarity of anthrax, 

currently available empirical data alone without mechanistic models cannot accurately resolve 

the shape of the incubation distribution.  The mechanistic models developed in this paper are 

useful for piecing together the limited data from animals and humans to develop a coherent 

model for the incubation period of anthrax. 
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Figures  

Figure 1:  Fraction of spores remaining in lungs of Rhesus Macaque monkeys by time since 

inhalation based on data in Henderson (10). 

Figure 2: Cumulative attack probability function F(t, p) by time since exposure assuming  

λ= 5 x 10-6 for different values of the clearance rate θ and dose of spores D 

Figure 3: Contours of the clearance rate θ and TD(P) that give constant values of the median 

incubation period. 

Figure 4: Joint 95%  and 80% confidence regions for P and θ based on analysis of the 

Sverdlovsk data using model given by equation 5. 

Figure 5:  Histogram of incubation periods from Sverdlovsk outbreak and estimated incubation 

period density based on equation (7b) with a median delay between germination and symptoms 

of 2 days (γ = .346/day), and estimated clearance rate  = .109/day. θ̂

 15
Hosted by The Berkeley Electronic Press



 

REFERENCES 

1.   Inglesby, T.V., Henderson, D.A., Bartlett, J.G., Ascher, M., Eitzen, E., Friedlander, A., 
 Haver, J., McDade, J., Osterholm, M., O'Toole, T., Parker, G., Pevi, T., Russell, P. and 
 Tonat, K. (for the Working Group on Civilian Biodefense).  Anthrax as a biological 
 weapon:  medical and public health management.  Journal of the American Medical 
 Association 1999; 281:1735--1745. 
 
2.  Brachman, P.S.  Inhalation anthrax.  Annals of the New York Academy 1980; 
 353:83--93 
 
3. Brookmeyer, R. and Blades, N.  Prevention of inhalational anthrax in the U.S. outbreak.  

Science 2002; 295:1861. 
 
4. Brookmeyer, R and Blades, N.  Statistical models and bioterrorism:  application to the U.S. 

anthrax outbreak  Journal of the American Statistical Association (in press 2003). 
 
5. Brookmeyer R, Johnson E, Bollinger R. Modeling the Optimum Duration of Antibiotic 
 Prophylaxis in an Anthrax Outbreak.  Proceedings of the National Academy of Sciences 
 2003; 100(17):10129-10132. 
 
6. Wein LM, Craft DL, Kaplan EH.  Emergency response to an anthrax attack.  Proceedings of 

the National Academy of Sciences 2003; 100:4346-4351.  
 
7. Meselson, M., Guillemin, J., Hugh-Jones, M., Langmuir, A., Popova, I., Shelokov, A. and 

Yampolskaya, O.  The Sverdlovsk anthrax outbreak of 1979.  Science 1994; 266:1202--1208. 

8. Ross, J.M.  The pathogenesis of anthrax following the administration of spores by the 
respiratory route.  J. Pathol. Bacteriol. 1957; 73, 485-494. 

9. Haas, C.N.  On the risk of mortality to primates exposed to anthrax spores.  Risk 
 Analysis 2002;  22:89-193. 

10. Henderson, D.W, Peacock, S. and Belton, F.C.  Observations on the prophylaxis of 
 experimental pulmonary anthrax in the monkey.  Journal of Hygiene 1956; 54:28-35.  

11.Watson, A. and Keir, D. Information on which to base assessments of risk from 
 environmental contaminated with anthrax spores.  Epidemiology and Infection 1994; 
 113:479-490  

12.  Baranyi, J.  Comparison of stochastic and deterministic concepts of bacterial lag. Journal of 
 Theoretical Biology 1998;192:403-409 
 
13. Brookmeyer, R. and Day, N.E.  Two stage models for the analysis of cancer screening data.  

Biometrics 1981; 43:657-669. 

 16
http://biostats.bepress.com/jhubiostat/paper22



 
 
14. Cieslak, T. and Eitzen, E.  Clinical and epidemiologic principles of anthrax. 
 Emerging Infectious Diseases 2000; 5:552. 
 
15. www.who.int/emc-documents/zoonoses/docs/whoemczdi986.html, World Health 

Organization Guidelines for the Surveillance and Control of Anthrax in Humans and 
Animals, web site accessed November 12, 2003. 

 
16. Brookmeyer, R., Blades, N., Hugh-Jones, M., and Henderson, D. The statistical analysis of 

truncated data:  application to the Sverdlovsk anthrax outbreak. Biostatistics 2001; 2:233-
247. 

 
 

 17
Hosted by The Berkeley Electronic Press

http://www.who.int/emc-documents/zoonoses/docs/whoemczdi986.html


 
 
 
 
 
 

Table I. Median incubation periods (in days) by clearance rate θ and dose of inhaled spores. The 
TD(P) is the dose of spores to ultimately cause disease in P% of the population. 

 
 θ 
 .05 .07 .11 .15
TD(1) 13.8 9.9 6.3 4.6
TD(10) 13.3 9.5 6.1 4.5
TD(25) 12.5 8.9 5.7 4.1
TD(50) 10.7 7.7 4.9 3.6
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Table II.  Summary statistics of incubation periods (in days) among cases in the Sverdlovsk 

outbreak. 
 
  N1 Median Min Max 
All subjects 
 

 70 
Mean      (SD) 
12.19     (8.67) 10.0 2 40 

Gender Male 
Female 

51 
19 

13.71
  8.11

  (9.42) 
  (4.20)

10.0 
 7.0 

4 
2 

40 
15 

Dose contour Low 
Medium 
High 
Very high 

 8 
18 
15 
10 

14.75
12.72
11.73
  9.50

  (9.79) 
  (8.80) 
  (8.20) 
  (6.69)

12.0 
10.0 
10.0 
 7.5 

6 
2 
2 
3 

35 
37 
27 
23 

Distance > 2km 
1-2km 
< 1km 

27 
 7 
15 

13.22
11.43
10.27

  (9.74) 
  (4.47) 
  (7.20)

10.0 
12.0 
 8.0 

2 
7 
3 

37 
20 
26 

Age ≤ 40 
> 40 

18 
52 

16.89
10.56

(11.85) 
  (6.67)

11.5 
 9.5 

4 
2 

40 
32 

  
1Sample size 
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Table III.  Predicted median incubation periods based on normal regression model of the log 

incubation periods of Sverdlovsk outbreak 
 
 Median incubation period in days (SE) 
 ≤ 40 years > 40 years 
  Male  Female  Male  Female 
Dose contour N Median    (SE) N Median   (SE) N Median    (SE) N Median   (SE) 
Low 2 20.03     (5.03) 0 11.91     (3.73) 4 12.53      (2.78) 2 7.45      (1.88) 
Medium 4 18.09     (3.57) 1 10.76     (2.69) 7 11.31      (1.97) 6 6.73      (1.23) 
High 3 15.31     (3.27) 0   9.10     (2.58) 8   9.57      (1.62) 4 5.69      (1.17) 
Very high 4 10.93     (2.38) 0   6.50     (1.96) 5   6.84      (1.40) 1 4.06      (1.03) 
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