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Monotone Constrained Tensor-product
B-spline with application to screening studies

Yue Wang and Jeremy Taylor

Abstract

When different markers are responsive to different aspects of a disease, combi-
nation of multiple markers could provide a better screening test for early detec-
tion. It is also resonable to assume that the risk of disease changes smoothly as
the biomarker values change and the change in risk is monotone with respect to
each biomarker. In this paper, we propose a boundary constrained tensor-product
B-spline method to estimate the risk of disease by maximizing a penalized likeli-
hood. To choose the optimal amount of smoothing, two scores are proposed which
are extensions of the GCV score (O’Sullivan et al. (1986)) and the GACV score
(Ziang and Wahba (1996)) to incorporate linear constraints. Simulation studies
are carried out to investigate the performance of the proposed estimator and the
selection scores. In addidtion, sensitivities and specificities based ona pproximate
leave-one-out estimates are proposed to generate more realisitc ROC curves. Data
from a pancreatic cancer study is used for illustration.
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SUMMARY. When different markers are responsive to different aspects of a
disease, combination of multiple markers could provide a better screening
test for early detection. It is also reasonable to assume that the risk of
disease changes smoothly as the biomarker values change and the change in
risk is monotone with respect to each biomarker. In this paper, we propose a
boundary constrained tensor-product B-spline method to estimate the risk of
disease by maximizing a penalized likelihood. To choose the optimal amount
of smoothing, two scores are proposed which are extensions of the GCV score
(O’Sullivan et al. (1986)) and the GACV score (Xiang and Wahba (1996)) to
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scores. In addition, sensitivities and specificities based on approximate leave-
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from a pancreatic cancer study is used for illustration.

1. Introduction

With the development of biotechnology, more biomarkers have been identified
as associated with different types of cancer. For example, an elevated PSA
level is associated with prostate cancer and elevated C'A125 is associated with
ovarian cancer. C'A19-9 originally found to be expressed in colorectal cancer
patients, has also been identified in patients with pancreatic, stomach, and
bile duct cancer. These biomarkers are of potential great use for screening
diseased subjects. However, each biomarker on its own may not be sensitive
or specific enough for a particular type of disease. When different markers
measure different biological aspects of a disease, combination of multiple
markers is likely to provide a screening test with better performance.

In the medical screening settings, it is also reasonable to assume that
the risk of disease is monotone with respect to each biomarker. In other
words, subjects with higher (or lower) biomarker values are likely to have
higher risk of disease. In this paper, we are interested in combining different
markers together for screening while at the same time imposing restrictions
that reflect the monotone relationship between the risk of disease and each
biomarker.

Let Y denote the group status variable with Y = 1 if diseased and Y = 0 if
non-diseased. X = (Xi, Xy, ..., X,,) denotes the p-by-1 vector for p biomark-
ers and {2 € RP denotes the design space for X. For a screening test, a
subspace of €2 will be defined as the “positive region” according to some cri-
teria. A subject is screened “positive” if the values of his markers fall into the
positive region and screened “negative” otherwise. Performance of a screen-
ing test is usually assessed by its sensitivity and specificity where sensitivity
is the probability that a diseased subject is called positive by the test and

specificity is the probability that a non-diseased subject is called negative
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by the test. A test with higher sensitivity and specificity is considered bet-
ter. By varying the criteria for the positive region, a set of pairs (specificity,
sensitivity) can be generated and plotted as sensitivity versus (1-specificity)
to give the receiver operating characteristic (ROC) curve. The ROC curve
or summary measures derived from the curve are often used to assess the
diagnostic ability of the markers.

Su and Liu (1993) provided the solution of the best linear combination
of markers, under a multivariate normal assumption. The estimate is best
in the sense that the area under the ROC curve is maximized among all
linear combinations. In this paper, we are interested in methods to combine
different biomarkers without distribution assumptions about the markers or
pre-specification of the boundary shape for the positive region. Baker (2000)
proposed a class of non-parametric algorithms that combine multiple markers
by generalizing the idea of cut-points to positive regions in multiple dimen-
sions. His methods utilize the ordered categorical markers to construct a
positive region that optimizes part of the ROC curve. Monotonicity con-
straints are imposed on the positive region such that higher values of each
biomarker imply a greater probability of disease. For biomarkers that are
continuous, the algorithms in Baker (2000) requires that the values of each
markers to be divided into sub-categories to generate the ordered categorical
variables. In this paper, we are interested in methods that generate a positive
region using the biomarkers as continuous variables.

Pepe and Mclntosh (2002) pointed out that the likelihood ratio function
C(z) = p(zly = 1)/p(z|ly = 0) is the optimal score for screening because
regions defined by this score maximize the sensitivity at each level of speci-
ficity. When the conditional distributions of biomarkers in the two groups
are known, we have an explicit expression for the optimal discriminant func-

tion determined by p(z|y = 1)/p(z|y = 0). For example, if the biomarkers
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follow multivariate normal distribution, the discriminant function is linear in
x if the covariance matrices for z in the disease and non-disease groups are
proportional to each other and quadratic in x if the covariance matrices are
non-proportional. However, if we don’t want to make any distribution as-
sumptions about p(z|y), one approach is to derive the discriminant function
based on non-parametric estimates of the two conditional densities (Aitchi-
son and Aitken (1976), Hall (1981), Wright and Stander (1997)). Another
approach is to use the fact that the likelihood ratio (p(z|y = 1)/p(z|y = 0)) is
equivalent to (Pr(y =1 | z)/Pr(y =0 z)) up to a constant. Thus, to obtain
p(z|ly = 1)/p(z|y = 0) is equivalent to estimating exp(f(z))/(1 + exp(f(z)))
where f(z) = log(Pr(y = 1 | )/Pr(y = 0 | z)). Thus to estimate the
positive region without distribution assumptions or pre-specification of the
boundary shape, instead of estimating the conditional densities separately,
we only need to estimate f(x), which can be done through smoothing meth-
ods.

Using B-splines is a popular smoothing method in regression (Green and
Silverman (1994),de Boor (2001)). A B-spline consists of polynomial pieces
joined at certain knots in a way that allows the shape of the spline to be
flexible. The function f(z) is a parametric model which lies in the family of
smooth functions defined by the span of a set of B-spline basis. This is a very
flexible family and thus provides a good approximation to most smooth func-
tions. The degree of smoothness in f(z) is determined by the number and
the placement of knots. In this paper, we will use a B-spline based method
that also imposes restrictions to ensure a monotone relationship between the
risk of disease and each biomarkers. In other words, the probability of dis-
ease increases (or decreases) as the value of each biomarker increases, with
the other biomarkers set at fixed values. Several different methods have been

proposed in the literature to generate a smooth monotone regression func-
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tion. One approach is to obtain the estimate through a two stage procedure
(Mukerjee (1988), Mammen (1991)). In univariate cases, the estimate for
is constructed by first smoothing the data using non-parametric regression,
followed by isotonisation of this smooth estimate using the pool adjacent vi-
olator algorithm. For multivariate z, Mukarjee and Stern (1994) presents a
fsr estimator with a simple ad hoc isotonisation procedure for the I step.

Ramsay (1988) proposed to use monotone basis functions to construct
a regression spline for a scalar variable. With non-negative coefficients, the
regression surface is guaranteed to be monotone. The basis functions they
proposed are the integrated B-spline basis. He and Shi (1998) proposed a
monotone B-spline smoothing through L, optimization in which case mono-
tonicity can be characterized by linear constraints. Kelly and Rice (1990)
proposed monotone smoothing based on cubic B-spline for scalar z. By ex-
ploiting the property that a B-spline is nondecreasing if the coefficients are
nondecreasing, they enforce monotonicity by placing linear inequality con-
straints on the coefficients. To obtain the estimate, a hybrid approach that
includes a roughness penalty, similar to the P-spline approach (Eilers and
Marx (1996)), is implemented. Villalobos and Wahba (1987) modified a
smoothing spline with the addition of linear inequality constraints to impose
monotonicity.

We propose a boundary constrained tensor-product B-spline. It is mo-
tivated by generalizing the methods of Kelly and Rice (1990) into high-
dimensional scenarios. In addition, through a re-parameterization, we show
that a set of simple boundary constraints can ensure monotonicity. It also
differs from much of the previous work in that the response variable y is
binary rather than continuous.

In section 2, we review B-splines and describe the monotone tensor-

product B-spline and the penalized likelihood estimation method. In section
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3, generalized cross-validation scores are used to select the smoothing param-
eter. In section 4, simulation studies are presented. In section 5, we propose
a cross-validated version of an ROC curve for a more honest representation
of the properties of the estimated discriminant function. Finally, data from

a pancreatic cancer study are used for illustration.

2. Monotone Tensor-product B-spline
2.1 B-spline

For one dimensional X, to construct a B-spline of degree ¢, we place k+1
interior knots which divide the range, [in, Zmaz], into k intervals. An addi-
tional ¢ knots are placed at each end of the interval. Let t = (¢1,- - , tk104+1)

denote the knot sequence. Then,

k+q
Z a] 5545 t , for z € [$mm> mma;c] (1)

where Bj,¢(z) is the jth B-spline base that can be computed from the re-
current relation (de Boor (2001)):

o 1 iftj§x<tj+1
Bioslz) = { 0 otherwise
T —t;
Bjgt(r) = wigtBjg-14(2) + (1 — Wjs1,08) Bir1,g-14(2), wjge(T) = —_
Lj+g—1 —
B; .+(z) consists of ¢+1 polynomial pieces, each of degree g. The polynomial

pieces join at ¢ inner knots where the derivative up to degree g—2 are contin-
uous. Bj,¢(z) is positive on the domain (¢;,%;1411) and is zero everywhere
else. At a given value of z, ¢ + 1 of the basis functions B, ,+(z) are nonzero.

2.2  Boundary constrained B-spline

The first derivative of f(x) on [Zmin, Tmaz] 18

k+q k+q g
Zaz iat) (@) =D (q— 1)ﬁ3j,q—1,t($)-
j=2 jt+q—1

Since B-spline basis functions are non-negative for all ¢ > 1, f (z) is non-

negative if the coefficients are nondecreasing. The method Kelly and Rice
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(1990) developed to generate a monotone smoothing surface is based on this

property. They proposed to fit a regression model such that

k+q
Zaz iat(2) wWith ag < ap <+ agqy (2)

Now suppose we use a different parameterization and let o; = Z;Zl B;,

then (2) becomes

k+q  k+q
= 8O Bigs(x)), where 8; >0,j=2,--- ,k+q. (3)
= =3
While the linear inequality constrained model (2) and the boundary con-
strained model (3) are equivalent, computationally, (3) is much easier to
handle.

Notice that (3) is close to the formulation suggested by Ramsay (1988),
who proposed to use monotone basis functions so that non-negative coeffi-
cients will ensure monotonicity. By integrating the B-spline basis, they con-
structed their monotone basis which have the same form as ( f;rf B, ,+(2))
in (3). However, we allow (; to be unconstrained so that the regression
surface is not forced to be greater or equal to zero.

2.3 Boundary constrained Tensor-product B-spline

For a high dimensional situation, we use the tensor-product of one-dimensional
B-splines. For example, for X € 2, let B;,+ be the ith B-spline of degree
g with knot sequence t = (t1,%2, ..., tmi4q+1) and B,,¢ be the jth B-spline
of degree p with knot sequence s = (s1, 52, ..., Smat+p+1). Then, f(z1,z) is

defined to be

ml m2

f(z1,72) E :E :aza 1,06 (71) Bjp s (72)-

i=1 j=1

where the m1 - m2 coefficients o;; are parameters to be estimated.

After re-parameterization where oy; = 5, Z{Zl Bhi, f(x1,x2) becomes

ml m2
fl'laxQ E E ﬁhl E B,q, Il E B],p, IQ
h=1 =1 i=h

7

Hosted by The Berkeley Electronic Press



The derivatives of f with respect to each marker are
2 ml
% Bit

0f (21, 22) — Z Z7Bi,q—1,t($1)3j,p,s(x2)’

Oy j=1 i=2 1=1 (tivg1 — i)

and
a o ml m2 1
f 1’ 2 ZZZ Biaqat(xl)Bjap_las(x2)'
i=1 j=2 h=1 SH—P 1_83)

Hence, f(x1, ) is non-decreasing in both z; and z if all of the {ﬁhl};tn:l’fj;il

are non-negative except for ;.
2.4 Estimation

The B-spline estimate is obtained by maximizing the likelihood of the
data. The smoothness of the estimate is controlled by the number and posi-
tioning of the knots. As the number of knots increases, the estimate becomes
less smooth. Different methods have been proposed to choose the placement
of knots (Friedman and Silverman (1989), Kooperberg and Stone (1992)).
Eilers and Marx (1996) proposed a P-spline approach where a relatively large
number of knots are placed to ensure flexibility in the shape of the estimates
while at the same time preventing over-fitting by the addition of a rough-
ness penalty J(f). In this way the smoothness is controlled by a smoothing
parameter instead of by the number of the knots and their position.

For X € R?, the roughness penalty we use is

0*f o Of
//Tx5 axl 2(8x16$2) +(6 2) }d-/Eld.fL'Q,

where [T' x S] represents the region [tgi1, tmy+1] X [Sk+1, Smy+1]- Then, given

the choice of knots and smoothing parameter, for X € 2, we will fit the

regression model

ml m2

331,332 ZZﬁhlZB,qt 331 ZB,]), 152

h=1 [=1
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where Bhl are the solution to

ming, —% Z Li(ys, f(xi)) + %)\J(f)
i=1

subject to B >0, YVh=1,---mq, I =1,---,my, except h=1=1,

where 1i(y;, f (i) = yif (z:) — log(1 + exp(f (x:))).
2.4.1 Roughness Penalty

The function f(z) has a closed form expression. Therefore, J(f) can be
worked out algebraically. Use subscript j to indicate the pair (ji,j2) where
j1 = 1,---.mq, jo = 1,--- ,mg, and 7 = 1,--- ,mymy. For the tensor-
product B-spline (without re-parameterization)

ml m2

f('/'vl’ ‘/EQ) = Z Z aj1j2leaq7t('/El)BjQJJaS('/I;Z)’

J1=1j2=1
Green and Silverman (1994) show that J(f) has a quadratic form with re-
spect to the coefficients. Let Bj, 4¢(2) = dj,, Bj,ps(®) = €j,, and a =
(1, s Cymy)? With aj = i)y, j = 1,-++ ,my - mg. Then, f(z1,25) =

Z Qj(Sjl Ejz . Let

Dy, = /T 50 ()6 (1)t for Gy, ky =1, ,my,

G;Bcz = /ﬁgz)(u)eg(u)du, for jy, kg =1,--- ,ma,
s

and K be a mymy X mymy matrix defined by

2
2 (5) ~(2-3)
Kjk = Z ( s )Djllejzkz :

s=0
Then, the penalty for f over [T x S] has a quadratic form J(f) = oT Ka.

In our approach, f(z1,z2) has a different parameterization

ml m2

f(xl’ '/E2) = Z Z ajleleaqyt (xl)B.727p7S(x2)
Jj1=1j2=1

ml m2 j1  j2

= Z Z (Z Z Bhl)le,q,t(l'l)Bj2,p,s(332)-

j1:1j2:1 h=1 =1

9
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Again using subscript j to indicate the pair (ji, j2). Let 8= (81, -, Bmyma) -
with 8; = Bj,,- Then, the penalty on f becomes J(f) = ST AT K AB where

A is a mymgy X mimsy matrix with 0 or 1 elements such that A8 = «a.
2.4.2 Estimation

Let Z be a n X m;my constant matrix with the 7jth element

ml m2
Zij = () Bigs(@1)))_ Bips(ria)),i =1, ,n,j = 1,-+ ,mymy.
=5 I=j2

Then f(z1, %) = Zj B;Z;; and the log-likelihood for the data with binary

outcomes becomes

n

> lyif (@) —log(1 + exp(f (z:))] = Y26 = C" Ly,

i=1
where I,,; is a n x 1 vector of 1's. C = (Cy,---,C,)" with C; = log(1 +
eop(f(2:))).

Hence, given a smoothing parameter A\, the monotone tensor-product B-

spline estimate fA =7 B is obtained by
. Lor T L\ orur
ming — -Y Z,B+C In1+ 5)\,3 A KAﬁ (4)
n

subject to  3; >0, j=2,--- ,mimas.
An algorithm for boundary constraints based on the trust region method is

used to find the solution (Conn et al. (1988)).

3. Generalized Cross-validation scores
The estimate f)\ is obtained by maximizing the penalized likelihood given a
smoothing parameter A\. A\ controls the tradeoff between the goodness-of-fit
and the smoothness of the estimate. How to choose an appropriate value for
A remains an important issue.

The Cross-validation (CV) method is a common approach which mimics
the situation of training and testing samples based on the available data.
One will leave out data points (x;,y;) one at a time as a testing sample and

10
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obtain the estimate fi_i) (x;) based on the remaining n — 1 points. A good
choice of A is the one such that the prediction based on f)(\_i) (x;) is close to y;
based on goodness-of-fit criteria. To avoid calculating f)(\_i) (z;) by omitting
one observation at a time, an approximation for the leave-one-out estimate
is usually derived. For a non-Gaussian outcome, O’Sullivan et al. (1986)

proposed a Pearson Chi-square based generalized CV score

1 (i — f1i2)*/V (i)
GOV = T —wEwE

wi = Ely], H=Z(Z"WZ +n)\X)"'Z", where Z is a constant matrix with
the ith row 2! satisfying f(x;) = 2I'3. ¥ is the constant matrix such that the
roughness penalty term J(f) equals 37¥3. W is the diagonal matrix with
the dith element fi(z;)(1 — f(z;)) and V (p;) = ps(1 — p;) when the outcome
is binary. Xiang and Wahba (1996) proposed a Kullback-Leibler distance

based generalized approximate cross-validation score

tr(H) Y2 yi(yi — i)
n n—tr(HW)

GACY(N) = =3 [-uifa(w:) + W) +

When there are monotonicity constraints, existing generalized cross-validation
scores may not be appropriate for selecting the optimal A since they are de-
rived without consideration of all the constraints imposed on the #s. Modifi-
cations are needed. Let C'8 < 0 be the constraints imposed. At the solution,
part or all of the constraints will be active constraints, i.e.,have C3 = 0 where
C is a subset of the constraints in C. By the Kuhn-Tucker (KT) optimality
conditions, the linear inequality constrained optimization is equivalent to a
linear equality constrained optimization (Gill et al. (1981), Fletcher (1987))
where the set of equality constraints are the active constraints from the in-
equality problem. As a result, at the solution, the original linear inequality
constrained optimization can be re-written as an unconstrained problem af-

ter some transformation to eliminate the equality constraints. However note

11
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that the active constraints are only known at the solution of the problem,
but not a priori.

For the monotone tensor-product B-spline methods, assume that there
are R constraints active at the solution. Let C' be the collection of the R
rows from the identity matrix I corresponding to the active constraints. Find
the QR decomposition of CT and let Q, be the n X n — R matrix such that

& = (0, Qg][ Rrxr ]

O—r)xr

Then taking the transformation such that g = Qzﬁ, the equivalent uncon-

strained optimization is

minly(3) =~ VTZQuf + B L + AT QIR

O’Sullivan et al. (1986) derived the GCV score by a first- order Taylor se-
ries expansion of the score function around the limiting penalized likelihood
estimate. Xiang and Wahba (1996) derived the GACV score by second-order
Taylor series expansion of the likelihood with respect to f. The deriva-
tion involves a ¥, term such that the penalty term J(f) can be written
as fTS;f where f = (f(z1), -, f(zn))". We will approximate the leave-
one-out estimate fi_i) (z;) by 2F 3D, B9 is the approximate leave-one-out
estimate which is obtained by adapting the approach commonly used to de-
rive the leave-one-out coefficient estimates in generalized linear models (Cook
(1982)).

Given a value of A\, we have

F(—1 R ilzz i Ai
@) = iy - =) 6)
— N Wi

where ﬁii is the ith diagonal element of

H=70Q:(Q3Z"WZQs + n\Q32Q:) "' Q7 Z".

12
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Replace h;; with Tr(H)/n, then the modified Pearson Chi-squared based

generalized cross-validation score for our constrained problem is,

GCV()\) — lZin:l (yl - ﬂi,/\)Q/‘z (6)
no[n—tr(HW)]?

and the corresponding Kullback-Leibler distance based generalized approxi-

mate cross-validation score is

GAOY() = -3 il + b)) + o) i f’ifé}{vﬁi’” |

i=1

(7)

A second complication of adding monotonicity constraints is that the
constraints by themselves provide some degree of smoothing. Hence, the
balance between the goodness-of-fit and the smoothness of the estimate is
not just controlled by the smoothing parameter A, but is also restricted by
the monotonicity constraints. This means that subject to the monotonicity
constraints, when the value of A is small enough, as it gets smaller, the
estimate won’t become rougher as in the unconstrained scenarios. Under
these circumstance, the approximation for fi_i) (x;) by (5) does not work

(yi—ii)

well because even though f)‘(xz) doesn’t change much, s =

—hiiwi;

will become
larger as A gets smaller. As a result, there is an arbitrary over-correction on
fr(;) to generate the approximate f)(fi) (x;)-

However, notice that the values of GCV(\) and GACV () in (6) and
(7) increase as A decreases when fx stays similar. ) is chosen to be the one
that corresponds to the minimum of GCV or GACYV scores. Therefore, the
modified GCV and GACYV scores are expected to perform reasonably well

even though the approximation for fi_i) (x;) is not valid when A is small.

4. Simulation Studies

Simulation studies are conducted to investigate the performance of the con-
strained tensor-product B-spline. We assess the potential gain from the ad-
dition of monotonicity constraints and the accuracies of the modified GCV
and GACYV scores in the selection of \.

13
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We focus on a two dimensional problem where the true underlying mono-

tone function f(X) is

(@i, m2) = 2.5 —123;° — 1.2(1 + exp(—15 + 6z;)) "

—1.27,° — 1.2(1 + exp(—15 + 6z33)) "

which has contour plot and surface plot as shown in Fig 1. The binary re-
sponses y;s are generated from independent Bernoulli distribution with mean
exp(f(x;))/(1 + exp(f(x;))) where ;s are sampled from a bivariate normal
distribution. Datasets with sample size 50, 100, and 200 are generated. We
chose basis functions of degree 3. The number of interior knots considered
are 4, 6 and 8 and the knots have equal distance between them. Five hundred

simulations are carried out for each scenario.

[Figure 1 about here.]
4.1 Selection of the smoothing parameter
To assess the accuracy of the \ selected by the GC'V and GACYV scores,
we need to define the optimal smoothing parameter. Let f be the true
underlying function. Two criteria are chosen based on which an optimal A

will be determined. One is weighted mean square error (WMSE)
I~ p
WMSE =~ ;wi(f)\(:ci) — f(x:))?,

where w; is the expected Fisher information for f at the design points and
equals to p;(1 — ;) for binary y. p; = E[y;]. The other is Kullback-Leibler
distance (K LD) between f, and the true f

KL(f.fs) = _Zmog 2y F29) )

oA
D CARTEIER) S ST AL T |

For each simulated dataset, we define the optimal smoothing parameter \*

as the one that minimizes WMSE(A) or KLD(A) over the range of possible

14
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values for A\. Note that A\* may differ slightly depending on which criteria is
used, WMSE or KLD.

The performance of GCV and GACV are assessed by comparing the
WMSE (KLD) associated with the \ selected by GCV or GACV to the
WMSE (KLD) associated with the optimal \*. Let WM SE(X*) (K LD(X\*))
be the one corresponding to A\*, WMSE(Agev) (KLD(Agey)) correspond-
ing to X selected using GCV score, and WMSE(Agacy) (KLD(Agacy))

corresponding to ) selected using GACYV score. Then, relative efficiencies

Ef(\)§Grse = WMSE(\)/WMSE(Agov)
EF(NE = KLD(\")/KLD(Agov)
Eff(j\)gv/lz\gglf = WMSE()‘*)/WMSE(S\GACV)

Ef(A\)§AY = KLD(\*)/KLDMgacv)

are used to evaluate the effectiveness of the two selecting scores. The values
of Eff assess how good the CV scores are at giving an estimate of f that is
close to the true f, compared to the best you can do. Therefore the values of
Eff is expected to be less than 1.0 with numbers near 1.0 indicating successful
choice of A. Figure 2 shows boxplots of the efficiencies for GCV and GACV
across 500 simulations in estimating A for various number of knots. The
boxplots suggest that GCV and GACYV both perform relatively well in terms
of the efficiency with GCV slightly better in the scenarios with larger sample
size (n = 200) and GACYV slightly better in the scenarios with smaller sample
size (n = 50).

[Figure 2 about here.]
4.2 Efficiency gain with monotonicity constraints
WMSE and KLD provide general quantitative summaries of how the es-
timated regression surface differ from the true underlying f and are hence
used to assess the efficiency gain obtained by introducing the monotonicity

15
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constraints. In addition, for our purpose, the constrained tensor-product
B-spline is used to estimate a monotone smooth discriminant function for
screening or diagnostic tests. In these setting, sensitivity and specificity are
of particular interest.

The efficiency gain obtained by adding monotonicity constraints is as-

WMSE(\ —-WMSE(\ KLD(\ —KLD(\ 3
Sessed by %xngg(x)uncan ( )con or (I)é}/ngo(nx)uncon ( )Con ’ Where KLD()\)U/IZCO’IL

~

and WM SE(\)uncon are the distance measures at the unconstrained solution.
In addition, the mean estimated sensitivity given a cutoff point (0.80) for
specificity is evaluated for f,\ with and without constraints, and for the true
underlying f in each simulated dataset. Let D = {i : y; = 1,i=1,--- ,n}
and D = {i : y; = 0,5 = 1,--- ,n}. Then for each dataset, the sensitivity
is calculated by >, I(fx(z:) > ¢)/ Y icp Yi Where c is the minimum in the
set {t:> .ch I(fx(z) < 1)/ > iep(l — ;) >= 0.80}. The results are shown
in table 1.

We were surprised to observe that the efficiency gain with the addition of
constraints is significantly larger when GCV is used as the selection score for
the smoothing parameter. Further investigations reveal that the GCV score
by O’Sullivan et al. (1986) in unconstrained scenarios has lower efficien-
cies than the modified GCV score (6) in constrained scenarios (results not
shown). It has been reported that GCV (in unconstrained scenarios) tends to
undersmooth and often has multiple minima (Hastie and Tibshirani (1990)).
We also observe (results not shown) that GCV tends to undersmooth in un-
constrained scenarios. One possible explanation for why GCV score (6) in
the presence of monotonicity constraints behaves much better is that under
the constraints, the estimate won’t exhibit a too wiggly form even when A
becomes small and hence avoid multiple minima or severe under-smoothing.

In general, table 1 suggests that, the efficiency gain decreases as the sam-

ple size becomes larger. The gain in efficiency varies slightly when different
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numbers of interior knots are chosen. However, the gain doesn’t necessarily
increase when a larger number of interior knots are used. Although the true
underlying risk of disease is a monotone function of the markers, when the
sample size is small, the unconstrained estimate may or may not be mono-
tone. Under these circumstances, adding monotonicity constraints is actually
adding additional information to the data. However, when the sample size
grows, it is more likely that the unconstrained estimate will be monotone.
Hence, it is expected that the efficiency gain will be larger for smaller sample
sizes.

Comparison of the average sensitivities obtained from estimates with or
without constraints and that obtained from true f in table 1 provides another
means of assessing the properties of f;\ as a method for detecting disease. The
results also suggests that when GACV is used to select A, adding constraints
results in estimates that are closer to the sensitivity for the true f when
the sample size gets smaller. The unconstrained estimates are similar as
those with constraints when the sample size is large. However, when GCV is
used to select A, the unconstrained estimates don’t have good performance
even when the sample size is large. With the monotonicity constraints, the
estimates are close to the true sensitivities.

4.3 Comparing to logistic regression

Logistic regression with main effects only is probably the simplest method
to obtain a discriminant function that is smooth and monotone. No mono-
tonicity constraints are needed and the estimate is obtained by maximizing
the likelihood. However, f is pre-specified parametrically and the boundary
of the positive region is pre-determined to be linear. Table 2 shows some re-
sults from comparing the constrained tensor-product spline to logistic regres-

W MSE(N)10gis—W MSE(N)ipbs

sion. The efficiencies gain displayed are the average of WM S E gy

KLD(;\)logis _AKLD (j‘)tpbs
KLD()‘)logis

or across 500 simulations. tpbs stands for constrained
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tensor-product B-spline. In addition, the mean estimated sensitivity given
cutoff point 0.80 for specificity are evaluated for flogis- The results suggest
that under the circumstances that we have studied, the constrained tensor-

product B-spline methods perform better than simple logistic regression.
5. Cross-validated ROC curves

For medical practitioners, plotting the ROC curve (based on the estimate fA
from observed data) is a popular way to visually assess the performance of a
screening or diagnostic test. However, since both the estimation and assess-
ment are based on the same set of data, the plotted ROC curve will be too
“rosy”. If there is an independent testing sample (y},7),7 = 1,---,m,
we can estimate the sensitivity, Pr( fA(x;) > clyj = 1) and specificity,
Pr(f)\(x;) < cly; = 0). Varying the cutoff value of ¢, an honest ROC
curve for the constructed screening test will be obtained. When an in-
dependent testing sample is not available, a leave-one-out cross-validation
procedure can be used to approximate such an honest ROC curve. Let
D={i:y=1,i=1,---,n}and D={i:y; = 0,5 =1,--- ,n}. For the
cross-validation ROC curve, we estimate the sensitivity and the specificity
by Yiep I\ V(@) > )/ Ciepvs and Yiep I} 7 (2:) < )/ Liep(1 = i)
where f)(\_i) is the estimate with the ith observation omitted. If fi_i),i =
1,---,n are all close to fy, then the cross-validated ROC curve is a good
approximation of the honest ROC curve for f)\.

In practice, we propose using (5) to approximate the leave-one-out esti-
mates fi_i) (;),i = 1,--- ,n. We also estimated f§_i) for each 7 to assess
the performance of the approximation by (5). Three simulated datasets with
sample size 50,100 and 200 respectively, are randomly selected. The true
leave-one-out ROC curve based on { f)(\_i) », that are obtained by omitting

one observation at a time are compared to the approximate leave-one-out

ROC curve based on (5) along with the plug-in curves which are constructed
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based on the original estimate fx. Curves corresponding to four different
values of the smoothing parameter are shown in figure 3 for sample size 50
and 200. The \s selected by GACV and GCV scores are 0.01 for all these

three simulated dataset.
[Figure 3 about here.]

The plots suggest that, in unconstrained scenarios, the approximation
using (5) for f)(fi) (x;),1 = 1,--- ,n performs well. For small A\, the degree
of over-fitting of the plug in estimate fx is substantial. The cross-validated
ROC curve provides a more honest presentation. For the constrained scenar-
ios, as discussed in section 3, when A becomes small enough, the roughness
of f will be restricted by the monotonicity constraints imposed and the es-
timate f) gives a smaller degree of over-fitting. Hence, the plug in ROC
curve has only a small degree of optimism associated with it. Under these
circumstances, using formula (5) will results in an arbitrary overcorrection
and the approximation is not valid. The smaller A becomes, the larger the
magnitude of the overcorrection. Given that A = 0.01 was selected by GCV
or GACV, the approximation of fi_i) by (5) does give an honest estimate of
the ROC curve.

6. Illustration using pancreatic cancer data
We apply the constrained tensor-product B-spline approach to a dataset
from a pancreatic cancer study used in Pepe and Thompson (2000). In this
study, data from 90 pancreatic cancer patients and 51 control patients with
pancreatitis are collected. Two serum markers, CA 125 and CA19-9, were
measured on each patient. The constrained tensor-product B-spline approach
is used to estimate the regression surface, using 10 interior knots for each of
the covariates.

The upper row of figure 4 shows the contour plots of the predicted prob-
ability of disease derived from the estimated tensor-product B-spline using
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GCV and GACV as the method of choosing A, respectively. The estimate
of A\ are 0.005 for GCV and 0.01 for GACV. The estimates of the regression
surface using GCV or GACV are very similar. Overall, the data suggests
some nonlinear patterns in the risk of disease as a function of the markers,
although the deviation from linearity doesn’t seem to be dramatic. The ROC
curves for each of the two markers separately are shown in the lower left plot
in figure 4. These suggest that CA19-9 is better than CA 125 in terms of
better prediction for patients disease status. The plug-in ROC curve and the
cross-validated ROC curve based on the approximation proposed in section
5 are shown in the lower right plot in figure 4. Compared to the ROC curves
corresponding to the single marker, the tests from the combined markers has

a slightly higher ROC curve.

[Figure 4 about here.]

7. Discussion

In this paper, we have proposed a tensor-product B-spline based approach
to generate a smooth monotone discriminant function for disease screening
based on a combination of markers. B-spline is a popular smoothing method
in regression. Another popular smoothing approach, which we didn’t explore
in this paper, is to use a smoothing spline (Villalobos and Wahba (1987))
with monotonicity constraints. The smoothing spline belongs to an infinite
space of smooth functions. However, we expect little difference practically
between the two approaches since the span of the B-spline basis is in general
a rich family that allow good approximations to most smooth functions. In
addition, a B-spline is likely to be computationally more efficient.

To incorporate the monotonicity constraints, we propose a re-parameterization
such that a set of simple boundary constraints ensure monotonicity. The log-
likelihood of the data is maximized with a roughness penalty to obtain the
estimate. In practice, it is not necessary to include a penalty term when a
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small to moderate number of knots are chosen for the B-spline. If the rough-
ness penalty term is not included, one should be more careful about the
positioning of the knots as the smoothness of the estimate is likely to be in-
fluenced by their placements. However, we recommend to use the monotone
tensor-product B-spline approach with a relatively large number of knots to
allow a flexible family of curves and to include a roughness penalty term to
reduce the variance.

We have investigated the accuracies of the selection scores and the effi-
ciency gain by adding the monotonicity constraints. The simulation results
suggest that the modified GCV and GACV scores perform well and the gain
in efficiency by adding monotonicity constraints increases when the sample
size becomes smaller.

The proposed method can be extended to scenarios where only part of
the regression surface is restricted. The constraints are imposed only on
the coefficients for those basis functions that are non-zero within the region
where the corresponding regression surface is believed to be monotone.

Although we use cases where X is of two dimension as illustration, the
method can be extended to higher dimension. High dimension smoothing is
generally a harder problem because the data is likely to be sparse and large
sample sizes will be needed to get a reasonable estimate. In these situations,
people often resort to more restricted families of smooth functions, such as
generalized additive models. For cases where the underlying multivariate
regression function is monotone, adding monotonicity constraints provides
additional information that may not be obvious from the data. Therefore, the
advantage of adding monotonicity constraints could be even greater in high
dimensional scenarios. The down side of imposing monotonicity constraints
in high dimension smoothing is that computationally it could be slow since

the number of constraints needed will be large. Under these circumstances,
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the gain in computation efficiency by re-parameterizing the linear inequality
constrained problem into a simple boundary constrained B-spline will be

greater.

8. Acknowledgment

The authors are grateful to Jeffrey Fessler for stimulating discussions and
helpful comments. This work was partially supported by NIH grant CA
86400.

REFERENCES

Aitchison, J. and Aitken, C. (1976). Multivariate binary discrimination by
the kernel method. Biometrika 63, 413—420.

Baker, S. G. (2000). Identifying combinations of cancer markers for further
study as triggers of early intervention. Biometrics 56, 1802-1087.

Conn, A., Gould, N. and Toint, P. (1988). Testing a class of methods for
solving minimization problems with simple bounds on the variables. Math-
ematics of computation 50, 399-430.

Cook, R. D. (1982). Residuals and influence in regression. Chapman and
Hall, New York.

de Boor, C. (2001). A practical guide to splines. Springer, New York.

Eilers, P. and Marx, B. (1996). Flexible smoothing with b-splines and penal-
ties. Statistical Science 11, 89-121.

Fletcher, R. (1987). Practical Methods of Optimization. John Wiley, Chich-
ester.

Friedman, J. and Silverman, B. (1989). Flexible parsimonious smoothing and
additive modeling (with discussion). Technometrics 31, 3-39.

Gill, P. E., Murray, W. and Wright, M. (1981). Practical Optimization.

Academic Press, London.

22

http://biostats.bepress.com/umichbiostat/paper23



Green, P. and Silverman, B. (1994). Nonparametric Regression and Gener-
alized Linear Models. Chapman and Hall, New York.

Hall, P. (1981). On nonparametric multivariate binary discrimination.
Biometrika 68, 287-294.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman
and Hall, New York.

He, X. and Shi, P. (1998). Monotone b-spline smoothing. Journal of the
American Statistical Association 93, 643-650.

Kelly, C. and Rice, J. (1990). Monotone smoothing with application to
dose-response curves and the assessment of synergism. Biometrics 46,
1071-1085.

Kooperberg, C. and Stone, C. (1992). Logspline density estimation for cen-
sored data. J. Comput. Graph. Statist. 1, 301-328.

Mammen, E. (1991). Estimating a smooth monotone regression function.
Ann. Statist. 19, 724-740.

Mukarjee, H. and Stern, S. (1994). Feasible nonparametric estimation of
multiargument monotone functions. Journal of the American Statistical
Association 89, 77-80.

Mukerjee, H. (1988). Monotone nonparametric regression. Ann. Statis. 16,
741-750.

O’Sullivan, F., Yandell, B. S. and Raynor, W. (1986). Automatic smooth-
ing of regression functions in generalized linear models. Journal of the
American Statistical Association 81, 96-103.

Pepe, M. and McIntosh, M. (2002). Combining several screening tests: opti-
mality of the risk score. Biometrics 58, 657-664.

Pepe, M. and Thompson, M. (2000). Combining diagnostic test results to
increase accuracy. Biostatistics 1, 123-140.

Ramsay, J. (1988). Monotone regression splines in action. Statistical Science

23

Hosted by The Berkeley Electronic Press



3, 425-441.

Su, J. Q. and Liu, J. S. (1993). Linear combinations of multiple diagnostic
markers. Journal of the American Statistical Association 88, 1350-1355.

Villalobos, M. and Wahba, G. (1987). Inequality-constrained multivariate
smoothing splines with application to the estimation of posterior proba-
bilities. Journal of the American Statistical Association 82, 239-248.

Wright, D. and Stander, J. (1997). Nonparametric density estimation and
discrimination from images of shapes. Appl. Statis. 46, 365-380.

Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation
for smoothing splines with non-gaussian data. Statistica Sinica 6, 675—

692.

24

http://biostats.bepress.com/umichbiostat/paper23



ADVD 4q pajoares 1ejourered Surgjoows

19°0 19°0 19°0 65 0€'¢ (9'9)
19°0 19°0 19°0 18°¢ Le¢ (8‘8) 002
19°0 19°0 19°0 0v'e 76'C (o1‘01)
09°0 65°0 650 cO'F 86'¢ %)
09°0 6S°0 6S°0 6¢°F ST'¥ (9'9) 001
09°0 65°0 650 c8'F A (3'8)
€9°0 19°0 19°0 86'S VTS #'v)
€9°0 29°0 19°0 79'8 AR (9'9) 0¢g
€9°0 29°0 19°0 VL 969 (8'8)
d peurersuooun d peurersuod d aniy ASINM a1 Kysusp 9ZIS
ANATISuds [eotrdurd (SIUTRIISUOD [)IM ures % puid ordures
ADD £q pajosres rerewrered Suryjoows ,
79°0 19°0 19°0 2011 €6'8 (9'9)
c9'0 19°0 19°0 ITel 1801 (8‘8) 00%
¢9°0 19°0 19°0 9c-¢eT 60°TT (o1'01)
29°0 09°0 6S°0 6621 ¢80T (¥'7)
79°0 6S°0 6S°0 6903 gL LT (9‘9) 00T
¢9°0 6S°0 6S°0 80°¥7¢ 1702 (89)
L9°0 19°0 19°0 LE°1T 1891 (%)
0L°0 290 19°0 GT'8% 8F°¢T (9‘9) 0¢
1.0 29°0 19°0 18°2¢ €8 LT (8'8)
d paurerjsuooun d paurerjsuod d anrj HSINA AT %ﬁmn% 9ZIS
»K)TAT)ISURS Teotrrdurd pSIUTRIISUOD [IIM UTed % puis ordures

$YNSIY UOYDINULLG

T o[qBL

25

Hosted by The Berkeley Electronic Press



ADVD £q peroapes 1ejeurered Jurgjoouss ,
ADD £q po3oares 1wjeurered Surjoous ,

19°0 19°0 8¢°0 19°0 €ea1 61 LT 69°L1 ¢40¢ (8‘9) 00¢
660 660 9¢°0 660 ¢l 91 7¢o1 G a1 00°0¢ (8‘9) 00T
190 190 S¢0 190 99'8T ¢9'9g erer 26'¢T #'7) 0¢
g St oustbord  denn  gSINM AT ASINAM T S10uy Ioujut oz1s
Ay1AT)ISUOS [eoLIIdure ﬁmoqﬁumu& ur ured % LAOUSIONJo Ul ured % Jo Iequunu o[dures

u01ssa4ba.4 215160] 9pdusrs 03 (sqdyw) aunds-g 19Mposd-105ua] du0IOUOUL [0 UOSLIDAULOY)

¢ °9IqEL

26

http://biostats.bepress.com/umichbiostat/paper23



70—
S0—
90—
0—1

w

2
o
o
o 9
5\ %, ]

Figure 1. Contour plot and surface plot of the true underlying probability
of disease
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Figure 2. Boxplots of efficiencies of selection scores. Sample size 200(up-
per row) and 50 (lower row). The vertical scale shows relative efficiency
(WMSE(N)/WMSE(X) or KLD(X*)/KLD(}). 1, Agey under WMSE
criteria; 2, Agcy under WMSE criteria; 3, Agacy under KLD criteria; 4,

Aaacy under KLD criteria.
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Figure 3. Leave-one-out cross-validated ROC curves (solid line), approxi-
mate leave-one-out cross-validated ROC curves (dash-dotted line) and plug-
in ROC curves (dotted line). Constrained tensor-product B-splines (left two
columns) and unconstrained tensor-product B-splines (right two columns).
Sample size 50 (upper two rows) and 200 (lower two rows).
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Figure 4. Contour plot of the estimated probability of disease (upper row).
Smoothing parameter selected by GCV (upper left, A= 0.005) and GACV
(upper right, A= 0.01). ROC curves for individual marker (lower left) CA19-
9 (solid line) and CA125 (dashed line). ROC curves for combined markers
(lower right), Plug-in and cross-validated ROC curve.
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