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In this article, we describe a new software for modeling correlated binary data
based on orthogonalized residuals (Zink and Qaqish, 2009), a recently developed
estimating equations approach that includes, as a special case, alternating logistic
regressions (Carey et al., 1993). The software is flexible with respect to fitting
in that the user can choose estimating equations for the association model based
on alternating logistic regressions or orthogonalized residuals, the latter choice
providing a non-diagonal working covariance matrix for second moment parame-
ters providing potentially greater efficiency. Regression diagnostics based on this
method are also implemented in the software. The mathematical details of the
procedure are briefly reviewed and the software is applied to medical data sets.
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1 Introduction

Statistical methods for the regression analysis of correlated binary data have
been around for three or four decades (Pendergast et al., 1996). However, it
was only with the introduction of the generalized estimating equations (GEE)
approach of Liang and Zeger (1986) that methodological breakthroughs cou-
pled with advances in computing provided a general approach surpassing the
restricted capabilities of earlier methods, particularly weighted least squares
(Koch et al., 1977). For the situation where the association is not of interest,
first-order GEE, also known as GEE1, provides a computationally fast approach
for fitting marginal mean models under an assumed correlation structure. It is
well known that if the assumed correlation structure is incorrect, parameter es-
timates still maintain consistency although some efficiency is lost. Extensions
on the work of Liang and Zeger (1986) have allowed the active modeling of the
association structure (when it is of interest); see for example Zhao and Prentice
(1990); Liang et al. (1992). The computational effort expended in these meth-
ods restricted their usage to data structures characterized by small cluster sizes.
Computational gains may be achieved by imposing extra conditions, but must
be paid for by some degree of loss in efficiency (Prentice, 1988; Lipsitz et al.,
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1991). Alternating logistic regressions, (Carey et al., 1993) addresses some of
these concerns while in turn introducing some of its own complications (Kuk,
2004). Some of these complications were addressed by Zink and Qaqish (2009)
through the use of orthogonalized residuals (ORTH). It is on this work that our
software is based. We have written an R package, aptly named orth, and a
SAS macro (also named orth) based on Zink’s estimation algorithm, a variant
of iterative reweighted least squares, and have incorporated diagnostics based
on the work of Preisser and Qaqish (1996) with extensions thereof to diagnos-
tics for marginal association models (Preisser et al., 2011). For expositional
convenience, when we say ORTH, we mean the method based on orthogonal-
ized residuals, and when we say orth, we mean the software package based on
ORTH.

To get an appreciation of what ORTH does, it is necessary to look briefly
at the background. It goes without saying that to do it justice, a modicum of
math is necessary. We lay this out in the next section. Before that however, we
need to introduce some notation. Let ni denote the size of the i-th cluster and
let

Yi =
[
Yi1 Yi2 · · · Yini

]>
, i = 1, . . . ,K

denote the vector of binary responses for cluster i where K is the number of
clusters. The symbol µµµi shall mean µµµi = E[Yi] and the symbol ψψψi shall mean

ψψψi = [ψi12, ψi13, . . . , ψi(ni−1)ni
]> ,

where ψijk denotes the pairwise odds ratio between the j-th and k-th responses
in cluster i (Carey et al., 1993). The symbol βββ, of dimension p × 1, is the
parameter vector associated with the marginal mean model. The symbol ααα, of
dimension q×1, is the parameter vector associated with the marginal association
model. For link functions g1 and g2, our marginal models are cast as

Mean Model : g1(µµµi) = Xiβββ

Association Model : g2(ψψψi) = Ziααα

where Xi and Zi are design matrices of dimensions ni×p and mi×q respectively
with mi =

(
ni

2

)
.

2 Methods

A good place to start is with the second-order GEE of Liang et al. (1992),
denoted hereafter as GEE2. Define Wijk = YijYik and

Wi =
[
Wi12 Wi13 · · · Wi(ni−1)ni

]>
.

Let δδδi = E[Wi], Y∗i = (Y>i , W>
i )>, and θθθ = (βββ,ααα). The second order gener-

alized estimating equation is

Uθθθ,GEE2 =
(
Uβ,GEE2

Uα,GEE2

)
=

K∑
i=1

[
Di 0
Ai Ci

]>
ΣΣΣ−1
i∗

[
Yi −µµµi
Wi − δδδi

]
= 0 (1)
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where ΣΣΣi∗ = cov(Y∗i ) and

Ai =
∂δδδi
∂βββ

, Ci =
∂δδδi
∂ααα

, Di =
∂µµµi
∂βββ

.

Throughout Uβββ denotes the estimating function for the marginal mean parame-
ters and Uααα denotes the estimating function for the marginal association param-
eters. For example, Uβ,GEE2 and Uα,GEE2 correspond to the GEE2 estimating
functions for βββ and ααα respectively. Note that ΣΣΣi∗ involves 3-rd and 4-th order
moments. Even with restrictions on these higher order moments, the amount of
computation can still be prohibitive for large cluster sizes. Furthermore, mis-
specification of ΣΣΣi∗ may lead to biased estimates of βββ - even if the marginal
mean model g1(µµµi) is correctly specified. The reason for this is that Uβ,GEE2

is a weighted sum of Yi −µµµi and Wi − δδδi where the weights depend upon cor-
rectly specified components of ΣΣΣ∗i . Lipsitz et al. (1991) proposed a procedure to
estimate θθθ that provides unbiased estimates of βββ, even if the model involving ααα
is misspecified. By setting Ai = 0 and cov(Yi,Wi) = 0 in expression (1), the
resulting estimating equation for βββ is

Uβ,GEE1 =
K∑
i=1

D>i V
−1
i (Yi −µµµi) = 0 (2)

where

Vi = diag{√σijj}RiY Y (ααα) diag{√σijj},
σijk = cov(Yij , Yik),

and RiY Y (ααα) is a working correlation matrix for Y. Additionally specifying a
working diagonal covariance matrix for cov(Wi) gives

Uααα =
K∑
i=1

C>i
[
diag(var[Wi])

]−1

(Wi − δδδi) . (3)

Capitalizing on the diagonal structure of the working covariance matrix, (3)
permits fast computations for large cluster sizes but sacrifices some efficiency.
Prentice (1988) had earlier proposed a similar method to fit linear models to
correlations among binary data.

Alternating logistic regressions (ALR) (Carey et al., 1993) takes a some-
what different approach. While keeping the estimating equation of GEE1, their
estimating equation for ααα is based on conditional residuals which are defined by

Yij − ξijk

where, for j > k,

ξijk = E[Yij |Yik] = µij +
σijk
σikk

(Yik − µik) .
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Based on ξξξi = [ξi12, ξi13, . . . , ξi(ni−1)ni
, ]>, they defined their estimating

equation for ααα as

Uα,ALR =
K∑
i=1

[
∂ξξξi
∂ααα

]>
S−1
i (Yi − ξξξi) = 0 (4)

where Si = diag[ξξξi(1 − ξξξi)], and the solution α̂αα is invariant to permutations of
the elements in Yi.

A recurrent theme is played out several times over in the above presentation,
namely, that the expression for Wi is a function of Yi and hence necessarily cor-
relates with Yi. In general, the actual covariance matrix of Wi is not diagonal.
These are the culprits responsible for efficiency loss in the methods of Prentice
and Lipsitz et al. The contribution of orthogonalized residuals addresses this
failing but does so in a way that avoids some of the complications of (4). Recall
that the matrix Si - because it is a function of Yi - is stochastic and hence is not
a covariance matrix in the usual sense. As such, it is not clear how one would
go about introducing a non-diagonal Si if the goal is efficiency improvement. A
further complication caused by a stochastic Si is that standard estimating equa-
tion theory cannot be applied to study the properties of Uααα (Zink and Qaqish,
2009). Lastly, the robust covariance estimator under alternating logistic regres-
sions is not invariant to permutations of Yi. By casting the problem in terms
of orthogonalized residuals, ORTH resolves each of these complications.

2.1 Orthogonalized Residuals

The idea that led to the development of ORTH was to minimize the correla-
tion between Yi and the residual of the association estimating equation and to
approximate the covariance of this residual with a non-diagonal matrix. This
is accomplished as follows. For the i-th cluster, define elements of the mi × 1
vector of orthogonalized residuals Qi = [Qi12, Qi13, . . . , Qi(ni−1)ni

]> by

Qijk = Wijk −
[
µijk + bijk:j(Yij − µij) + bijk:k(Yik − µik)

]
(5)

where

bijk:j = µijk(1− µik)(µik − µijk)/dijk,
bijk:k = µijk(1− µij)(µij − µijk)/dijk,

dijk = σijjσikk − σ2
ijk .

Next, RiQQ = CORR(Qi) is approximated by an exchangeable working correla-
tion matrix

R∗iQQ := λ11> + (1− λ)Imi (6)

where Ir is an r × r identity matrix, 1 is an mi × 1 vector of ones and λ is the
exchangeable correlation parameter to be estimated. Letting vijk denote the
variance of Qijk, we approximate cov(Qi) by

Pi = diag(
√

vi)R∗iQQ(λ) diag(
√

vi) (7)
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where vi = {vijk}. Putting all of these together, ORTH’s estimating equation
for ααα is

Uα,ORTH =
K∑
i=1

C>i P−1
i Qi = 0 (8)

where

C>i = E

[
−∂Q

>
i

∂ααα

]
,

while that for βββ is the same as (2). The correlation parameter λ is estimated
by a moment estimator:

λ̂(θθθ) =
1
M

K∑
i=1


∑
j<k

Qijk√
vijk

2

−
∑
j<k

Q2
ijk

vijk

 ; M =
K∑
i=1

mi(mi − 1) .

Assuming that the data is missing completely at random (MCAR), it may be
shown that √

K(θ̂θθ − θθθ) D→ Np+q
(
0,KL−1ΛΛΛ(L−1)>

)
where L and ΛΛΛ have manageable block structures (Zink and Qaqish, 2009). By
construction, Uα,ORTH and its associated robust covariance estimator for ααα,
KL−1ΛΛΛ(L−1)>, are invariant to reordering. By not estimating λ; i.e. setting
it to 0, it may be shown that Uα,ORTH = Uα,ALR. Thus, Uα,ALR is a special
case of Uα,ORTH . This holds for all link functions g1 and g2. This essentially
means that alternating logistic regressions can be recast in a way consistent
with standard estimating equation theory. Standard approaches based on this
theory may be gainfully employed if we want to study properties of alternating
logistic regressions. If it so happens that R∗iQQ is close to the true correlation
matrix of Qi, the incorporation of λ leads to further efficiency gains.

To understand why ORTH (and ALR) improve efficiency for ααα-estimation
compared to (3), let RiY W = CORR(Yi,Wi), RiWW = CORR(Wi), and
RiY Q = CORR(Yi,Qi). It may be shown that CORR(Yij , Qijk) = CORR(Yik, Qijk) =
0 (Zink and Qaqish, 2009). This means that (ni − 1) zeros are introduced into
each row of RiY Q. It turns out that the orthogonalized residuals tend to shrink
the non-zero entries of RiY Q relative to RiY W and the off-diagonal entries of
RiQQ relative to RiWW . Thus the procedure based upon (8) is in a sense
closer to GEE2 than the procedure based upon (3), leading to more efficient
estimation.

2.2 Diagnostics

Deletion diagnostics for these models are also available at both the cluster level
and the observation level. Formulae for these diagnostics are based on one-
step approximations given by Preisser and Qaqish (1996) and extensions made
thereafter (Preisser et al., 2011).
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Cluster-Level Diagnostics The object of cluster-level diagnostics is to lo-
cate clusters which influence (in some sense) either the values of the estimates
or the predicted values. Exact techniques for assessing this influence typically
entails removing the cluster from the data and refitting the model of interest.
If the parameter estimates change noticeably we regard that cluster as influen-
tial. In the correlated binary data setting where we may encounter large cluster
sizes or many clusters, the combination of both a marginal mean model and a
marginal association model often renders the exact approach computationally
impractical (Preisser and Perin, 2007). In the ensuing discussion, we give fast
computational formulae based on one-step approximations implemented in our
software.

We start with deletion diagnostics for βββ - the parameter vector for the
marginal mean model. Let β̂ββ(i) denote the parameter estimate associated with
a design matrix X(i) in which the rows of X associated with cluster i are re-
moved. Then the influence on β̂ββ - denoted DFBETA - of cluster i is defined by
β̂ββ− β̂ββ(i). Analogously, the influence on α̂αα - to be denoted DFALPHA - of cluster

i is defined by α̂αα− α̂αα(i). Letting DFBETACi
denote cluster i’s influence on β̂ββ,

the one-step approximation formula for DFBETACi
is defined by

̂DFBETACi
≈
(
D>V−1D

)−1

D>i V−1
i (Ini

−Hi1)−1(Yi −µµµi) (9)

where

Hi1 = Di

(
D>V−1D

)−1

D>i V−1
i ,

D =
[
D>1 · · · D>k

]>
,

V = blockdiag(V1 · · · Vk),

and Ri(ααα) is a working correlation matrix. We call Hi1 the leverage matrix
for βββ associated with cluster i. Similarly, let DFALPHACi

denote cluster
i’s influence on ααα. The one-step approximation formula for DFALPHACi

is
defined by

̂DFALPHACi
≈
(
C>P−1C

)−1

C>i P−1
i (Imi

−Hi2)Qi (10)

where Qi is defined in (5), Pi is defined in (7), Imi
is an mi×mi identity matrix

and

Ci = E

[
−∂Q

>
i

∂ααα

]
,

Hi2 = Ci

(
C>P−1C

)−1

C>i P−1
i ,

C =
[
C>1 · · · C>k

]>
,
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and

P = blockdiag(P1 · · · Pk) .

We defined cluster-level Cook’s distance for βββ, ααα, and θθθ as follows:

Dα,Ci
=

[α̂αα− α̂αα(i)]> [var(α̂αα)]−1 [α̂αα− α̂αα(i)]
q

, (11)

Dβ,Ci
=

[β̂ββ − β̂ββ(i)]>
[
var(β̂ββ)

]−1

[β̂ββ − β̂ββ(i)]

p
, (12)

Dθ,Ci =
[θ̂θθ − θ̂θθ(i)]>

[
var(θ̂θθ)

]−1

[θ̂θθ − θ̂θθ(i)]

p+ q
. (13)

The one-step approximations of these formulae are obtained by substituting
̂DFBETACi

and ̂DFALPHACi
as given immediately above. Robust or model-

based covariance estimates of the parameter estimates may be used in (11) to
(13).

Analogous to the cluster-level deletion diagnostics presented above, observation-
level deletion diagnostics are available. However, there is limited utility of
observation-level deletion diagnostics in the context of correlated binary data re-
gression models. As such, we do not present their formulae here. The interested
reader may consult Preisser and Qaqish (1996), Hammill and Preisser (2006),
Preisser and Perin (2007), and Preisser et al. (2011) for detailed expositions.

3 Software Details

We have written an R (R Development Core Team, 2008) package and a SAS
(SAS Institute Inc., 2009) macro that implement both parameter estimation
for the marginal mean and marginal association models as well as the deletion
diagnostics described in section 2.2. For the R package, how we specify model
structures and data are based on standard R notations. Users of R who are
familiar with the modeling routines lm() and glm() for linear and generalized
linear models respectively should have little trouble using orth(). The full
details of how to use the R implementation of orth may be seen in By et al.
(2008). The SAS implementation is slightly more cumbersome to describe; its
usage is best left to an example. One of the main differences between the R and
the SAS implementation is how we compute diagnostics. Since R is a functional
language, functions are provided to compute/extract diagnostics. This task is
separate from parameter estimation. In SAS, macro options must be turned
on or off. If diagnostics are desired, then this task is performed along with
estimation.

7
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3.1 The Correlation Parameter For The Residuals

As mentioned earlier, alternating logistic regressions is a special case of orthog-
onalized residuals in which the correlation parameter for the residuals λ is set to
0. Thus, users are given the option of obtaining estimates based on alternating
logistic regressions by not estimating λ and setting it 0. In addition, users are
able to fix λ at a given value rather than estimating it. The third and final
option is to estimate λ as described in section 2.1.

3.2 Data Set Construction

3.2.1 R Implementation

R estimation routines require both a model formula and a data set. orth is
no different. Since we are modeling a mean model and an association model,
two model formulae must be provided. The model formula for the mean must
be a two-sided formula. For example, y ~ x1 + x2 + factor(A) is a two-
sided formula for the marginal mean model. For the association model, the
model formula must be one-sided; i.e., there is no left side. For example,
~ z1 + z2 + factor(B) is a one-sided formula for the marginal association

model. Two different data frames - one for the mean model and one for the as-
sociation model - must be provided separately. The structure of the data frame
for the mean model must be in case-record format. This means that covariates
for each observation within a cluster must be stacked on top of each other. If
cluster weights are used, then the weights must exist as a column in the data
frame for the mean model. The most difficult part in using orth is the construc-
tion of the design matrix for the association model - the Z matrix. As far as we
know, there is no algorithm for automatically generating a general Z matrix.
Thus, this task is left to the user. Examples are given in By et al. (2008).

3.2.2 SAS Implementation

The SAS implementation of ORTH, in the form of a SAS macro available at
http://www.bios.unc.edu/∼qaqish/software.htm, is very similar to the R imple-
mentation. Like R’s, SAS data sets for the X and Z matrices must be created
separately. A separate SAS data set of K observations for cluster weights must
also be created; if cluster weights are not used, then all should be assigned a
value of one to the weight variable in this data set. Both the name of the weight
data set as well as the name of the weight column must be passed in as macro
arguments.

Whether the R or SAS implementation is used, missing data is not permitted.
The user must remove all rows with missing data.

3.3 Limitations

There are a couple of limitations in the current version of our package. First, al-
though the theory supports general link functions g1 and g2, orth only supports
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the logit link for the mean model and the log odds ratio link for the association
model. The other limitation is a computational issue. Users of R are familiar
with the fact that R has some trouble handling large data sets and for some
reason, often performs very slowly. This problem applies to orth in the setting
of large cluster sizes. In cluster-randomized trials and survey samples, it is not
uncommon to encounter clusters with very large cluster sizes. In the construc-
tion of the Z matrix, if we let ni denote the cluster size for the i-th cluster, then
the i-th cluster contributes mi rows to the Z matrix. For example, a cluster
with 60 subjects contributes 1770 rows to the Z matrix. A study with 100 clus-
ters of size 60 contains 177000 rows in the Z matrix. A noticeable slowdown
will occur. An illustration of this will be seen in the examples section. With
up to 20 measurements per cluster, orth performs in a reasonable amount of
time. While the SAS implementation is subject to these very same limitations,
its performance (as measured by speed) is much better than R’s in the large
cluster size setting.

4 Examples

In this section, we apply orth to two data sets. Our first example is a medical
practice data set analyzed using GEE1 by Preisser and Qaqish (1996). Our
second example is based on data analyzed by Fitzmaurice and Lipsitz (1995,
Table 2) and later re-analyzed by Ekholm et al. (2000) using a different approach.

4.1 Medical Practice Data

From 1990 to 1991, charts of 3889 patients were randomly chosen from 57 med-
ical practices. Each practice may be thought of as a cluster. Practices can have
multiple physicians or subclusters so that patients are nested within physicians
that, in turn, are nested within practices. The number of patients in each prac-
tice ranges from 19 to 197. These may be thought of as large cluster sizes. Note
that the cluster with 197 patients contributes 19306 rows to the Z matrix. Let
Yij be an indicator for the event that the j-th patient made at least one health
maintenance visit to a physician in the i-th practice in the years 1990 to 1991.
For the marginal mean model, we are interested in covariates that influence the
probability of a health maintenance visit, µij = Pr(Yij = 1). The model formula
for the linear predictor is

1 +NBRMDS +M3 + SPECLTY +MDAGE

+MDSEX +MDFLU + PATAGE

+BLACKPAT +MALEPAT +NOINSUR (14)

where NBRMDS is the number of doctors in the practice, M3 is the number
of patients over 50 years old seen per day (centered and scaled), SPECLTY
is the doctor’s specialty (0 if family or general practitioner and 1 for internist),
MDAGE is the doctor’s age (centered and scaled), MDSEX (0 for male and

9
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1 for female) is the doctor’s gender, MDFLU is the doctor’s flu vaccination
status (1 if he/she gives flu shot and 0 if not), PATAGE is the patient’s age
(centered and scaled), BLACKPAT indicates whether a patient is black (1 if
black and 0 if not), MALEPAT indicates whether a patient is male (1 if male
and 0 if female), and NOINSUR indicates whether a patient is not insured (1
if not insured 0 if insured).

The model formula for the marginal association model is

1 + SAMEMD + CLSSIZE (15)

where SAMEMD indicates whether two patients j and k have the same physi-
cian and CLSSIZE denotes the size of the cluster (centered and scaled). These
two variables are thought to influence the pairwise odds ratio of a health main-
tenance visit for patients j and k in cluster i.

Parameter estimates for models (14) and (15) based on alternating logistic
regressions defined with orthogonalized residuals (λ = 0) are presented in the
first three columns of Table 1. Doctors’ age as well as the patients’ age, ethnic-
ity, gender, and insurance status have a statistically significant influence in the
probability of at least one health maintenance visit. From the association pa-

Table 1: Parameter estimates for mean and association models based on the med-
ical practice data. The data come from a North Carolina Early Cancer Detection
Program at the Lineberger Cancer Center. The symbol ∗ denotes p < 0.05

ALR1 ORTH (λ̂ = 0.0134)

Effects Est. S. E. χ2 Est. S. E. χ2

Mean Parms.
(Intercept) −0.1061 0.1726 0.38 −0.1652 0.1675 0.97
NBRMDS −0.0344 0.0388 0.78 −0.0098 0.0458 0.05
M3 0.2488 0.1701 2.14 0.2065 0.1664 1.54
SPECLTY −0.0781 0.2492 0.10 −0.0226 0.2378 0.01
MDAGE −0.2642 0.0641 16.96∗ −0.2440 0.0665 13.47∗

MDSEX 0.4235 0.2625 2.60 0.4540 0.2561 3.14
MDFLU −0.0721 0.0988 0.53 −0.0869 0.0975 0.79
PATAGE −0.0966 0.0339 8.13∗ −0.0967 0.0336 8.27∗

BLACKPAT −0.3948 0.1226 10.36∗ −0.3910 0.1214 10.38∗

MALEPAT −0.4110 0.0653 39.56∗ −0.4061 0.0653 38.65∗

NOINSUR −0.4158 0.1190 12.21∗ −0.4182 0.1193 12.29∗

Association Parms.
(Intercept) 0.5384 0.1727 9.71∗ 0.3791 0.1497 6.42∗

SAMEMD 0.2898 0.1125 6.64∗ 0.3531 0.0938 14.18∗

CLSSIZE −0.1788 0.0620 8.33∗ −0.0477 0.2864 0.03

1 Defined with orthogonalized residuals (λ = 0)

rameters, we see that the odds ratio of a health maintenance visit between two
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patients with the same doctor is 1.34 times more than the odds ratio between
two patients with different doctors.

The last three columns of Table 1 presents estimates based on ORTH (λ
estimated). The estimates for the mean parameters are similar to those obtained
under alternating logistic regressions. However, the association parameters are
noticeably different from alternating logistic regressions. The standard errors
for the association parameters have changed as well. Under alternating logistic
regressions, CLSSIZE is significant but under ORTH, it is not.

Under alternating logistic regressions, we considered Cook’s distance for ααα
and βββ using the robust covariance. Based on the one-step approximation for-
mulae, the top two clusters with the largest Cook’s distance for ααα are clusters
34 and 52 with respective values 0.1433 and 0.1465. Cluster 5 has the largest
Cook’s distance for βββ with value 0.1247. It turns out that the 5-th cluster also
has the largest overall Cook’s distance with value 0.0997. Figure 1 presents a
two dimensional plot of DFALPHAC for both the intercept and sameMD. The
34-th cluster seems to have the largest influence on both the intercept parameter
and the parameter for sameMD. The 15-th cluster has the largest effect on the
intercept parameter but not on that for sameMD.

4.2 Arthritis Clinical Trial

The data for our next example is from a clinical trial for the effects of aura-
nofin on arthritic symptoms (self-assessed) over time. Investigators were chiefly
interested in the effects of treatment (auranofin) on the probability of a good
self-assessment (the response). Subjects were measured at baseline (week 0),
week 1, week 5, week 9, and week 13. However, subjects are only randomized
to treatment after week 1; no treatment was given prior to this. Missing data is
a prominent feature of this data set. We will not concern ourselves with issues
related to missing data. Rather, we assume missing completely at random.

For their marginal mean model, Fitzmaurice and Lipsitz (1995) used the
model formula

1 + TIME +GENDER+AGE + TREATMENT

where AGE denotes the subject’s baseline age, TREATMENT is an indicator
for auranofin (1 if subject is assigned to auranofin and 0 if the subject is assigned
to placebo), and TIME denotes a linear trend for measurement occasion (at
0, 1, 5, 9, and 13 weeks). For their association model, they assumed that the
pairwise odds ratio of a good assessment follows an autoregressive structure:

ψijk = α1/|k−j| .

This leads to an association model of the form

logψijk =
1

|k − j|
logα ,
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Figure 1: Two-dimensional plot of DFALPHAC for the Intercept term (between
MD’s) and the sameMD term
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where |k− j| denotes the number of weeks that elapsed between times k and j.
Using our notation, we may write this as

logψijk = α̃zijk,

where zijk = 1/|k − j| and α̃ is logα. The appendix provides both R and SAS
code for applying alternating logistic regressions. Parameter estimates based

Table 2: Estimates under ALR as a special case of orth (λ = 0)

Parameter Estimate Std Error χ2 p value

Mean Parameters
Intercept 1.0934 1.3781 0.63 0.4275
TIME −0.0272 0.0296 0.84 0.3594
GENDER (male) 0.5956 0.4785 1.55 0.2132
AGE −0.0154 0.0247 0.39 0.5337
TREATMENT (auranofin) 1.4572 0.4509 10.44 0.0012

Association Parameters
Distance (zijk) 3.6841 1.0000 13.57 0.0002

on alternating logistic regressions using orthogonalized residuals are presented
in Table 2. The marginal mean parameter estimates and standard errors are
exactly the same between alternating logistic regressions as a special case of
ORTH and the alternating logistic regressions based on conditional residuals
(not shown) as implemented in SAS (SAS Institute Inc., 2009). For the associ-
ation parameter, ALR estimates using ORTH are the same as ALR estimates
using conditional residuals but their standard errors are different. From the
methods section, the reader may recall that under ORTH, the estimate of the
variance of the association parameters is invariant to re-ordering of the data
whereas under alternating logistic regressions, as devised by Carey et al. (1993),
it is not. What SAS does is to first compute the sandwich estimator under the
original data structure after which it reverses the order of the data and recom-
putes the sandwich estimator which creates an “invariance” to ordering, though
it is an approximation. What we see from SAS’s PROC GENMOD is the average of
those two numbers.

5 Concluding Remarks

We have presented a software for analyzing correlated binary data based on
orthogonalized residuals. This method is in its infancy and further studies are
needed. But at the very least, our software permits estimation of alternating lo-
gistic regressions under a fundamentally different approach than that practiced
by SAS’s PROC GENMOD. Choosing alternating logistic regressions based on or-
thogonalized residuals versus that based on conditional residuals (Carey et al.,
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1993) has implications on the computed standard errors. We know that the
sandwich estimates for the standard errors given by our software are invariant
to permutations. Standard errors based on SAS’s implementation of alternat-
ing logistic regressions are an average of two runs of the estimation algorithm
creating “invariance” to the dataset ordering –though still an approximation. It
is not clear to us that this is the correct thing to do. Furthermore, the software
allows us to estimate the correlation of the residuals by an exchangeable cor-
relation parameter. Whether this improves upon the standard errors remains
unanswered. If the true correlation of the residuals indeed follows the exchange-
able structure, then estimates under ORTH are more efficient than ALR. If the
exchangeable structure is incorrect, then it is not clear whether our estimates
are worse or better than ALR. These issues should be in the minds of the user
at all times.
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A Analysis Of Arthritis Clinical Trial Data

A.1 R Code

The code to analyze the arthritis clinical trials data (Fitzmaurice and Lipsitz,
1995) using R follows.
setwd("C:/Documents and Settings/Desktop")

# This is longitudinal data where each subject is measured on five occasions

# which we label as weeks 0, 1, 5, 9, and 13. There are several missing

# values. Subjects are randomized to treatment after week 1. This means that

# at weeks 0 and 1, no treatment was given.

arth = read.table("fitz.csv", h=T, sep=",")

# Removes records with missing responses.

arth2 = na.omit(arth)

# Column names : gender, age, patient, y, time, trt

#

# gender : 1 = male, 0 = female

# age (in years)

# patient (subject id)

# y : 1 indicates good self-assessment and 0 a bad self-assessment

# time (in weeks): 0 for baseline, 1, 5, 9, 13

# trt (treatment) : 1 for auranofin and 0 for no treatment

# Creating Z matrix associated with continuous time AR(1) log-odds ratio

n <- as.vector( table( as.factor(arth2$patient) ) )

last <- cumsum(n);

first <- last - n + 1;

z.arth <- NULL

for ( i in 1:length(n) )

{

n.i <- n[i]

id.i <- arth2$patient[ first[i] ]

occ.i <- arth2$time[ first[i]:last[i] ]

if (n.i == 1) { z.i <- cbind(0,0) }

else

{

id.i <- rep(id.i, choose(n.i, 2))

z.i1 <- rep(NA, choose(n.i, 2) )

l <- 1

for( j in seq(1, n.i - 1) )

{
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for( k in seq(j+1, n.i) )

{

z.i1[l] <- 1 / ( abs(occ.i[k] - occ.i[j]) )

l <- l+1

}

}

z.i <- cbind(id.i, z.i1)

}

z.arth <- rbind(z.arth, z.i)

}

## Remove any rows of zeros. These correspond to cluster size 1 which do ##

## not exists in the association matrix. Clusters of size 1 provide no ##

## information on the association. ##

z.arth <- data.frame(z.arth)

names(z.arth) <- c("patient", "distance")

z.arth <- z.arth[(z.arth$patient != 0), ]

## invokes the orth package (assuming that it is installed)

library(orth)

## ALR: odds-ratio follows continuous time AR(1) structure.

## Model from Fitzmaurice et al 1995.

## Mean Model : 1 + GENDER + age + TREATMENT + week

## Assoc Model : distance

## where distance denotes the reciprocal of the spacing of two measurements.

fitz.1 <- orth(y ~ time + factor(gender) + age + factor(trt),

data=arth2, formula.z = ~ -1 + distance,

dataz = z.arth, id=patient, estLam=F, tol=0.00001)

summary(fitz.1)

## The following is an output from the ORTH procedure.

Class: summary.orth

Summary values based on robust covariance. Those interested in

model-based covariance may use the 'SUMMARY()' method on this

summary.orth class.

Marginal Mean Parameters:

Estimate Std. Error Chi Square Pr(>Chi)

(Intercept) 1.09338601 1.37808222 0.6295015 0.427538230
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time -0.02717259 0.02964747 0.8400146 0.359392593

factor(gender)1 0.59564765 0.47848133 1.5497044 0.213179081

age -0.01536315 0.02468207 0.3874334 0.533651587

factor(trt)1 1.45721185 0.45092111 10.4434560 0.001230847

Association Parameters (log-odds):

Estimate Std. Error Chi Square Pr(>Chi)

distance 3.684099 1.024464 12.93209 0.0003229965
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A.2 SAS Code

Below is an example of SAS code used to analyze the arthritis data. Depending
on the reader’s experience, he or she may prefer to create the data set for the
Z matrix in another way. In fact, PROC IML may be used to create the Z data
set in exactly the same manner as the R code.

filename INF "APSTAT.DAT";

** Reads in ASCII file containing the data **;

** Note y_j = 0 denotes good self assessment and **;

** y_j = 1 denotes bad self assessment. **;

** Gender : 1 if male **;

** age : in years **;

** treat : treatment (1 if auranofin, 0 if placebo) **;

data temp;

infile inf;

input gender age trt y1-y5;

patient = _n_; /* Create patient ID */

run;

%let y = y;

%let x = int time gender age treat;

%let z = distance;

data XY (keep=patient &y &x) Z (keep = patient &z);

set temp;

int = 1; /* intercept */

array y_[*] y1-y5;

array t_[*] t1-t5 (0 1 5 9 13);

/* Creates the design matrix for the mean model */

/* as well as the response. */

do j = 1 to 5;

y = y_[j];

if (y ^= .) then do

y = ^y; * model prob(good);

time = t_[j];

treat = trt * (j>2);

output XY;

end;

end;

/* Creates the design matrix for the association model. */

do j = 1 to 4;

if (y_[j] ^= .) then do k = (j+1) to 5;

if (y_[k] ^= .) then do;

distance = 1 / abs(t_[j]-t_[k]);
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output Z;

end;

end;

end;

run;

** Create weight matrix **;

** Each cluster has weight 1 **;

data weight (keep=w);

set temp;

w=1;

run;

** Invokes the macro **;

%include "ORTH.macro";

** Performs ALR using ORTH **;

%ORTH(xydata=xy, yvar=&y, xvar=&x, id=patient, zdata=z, zvar=&z,

wdata=weight, wvar=w, maxiter=20, epsilon=0.0000001, estlamb = NO,

CLSOUT=clsout, OBSOUT=obsout, monitor=no, IBETA=, IALPHA=);

quit; * Stops IML from continuing;

proc print data = clsout; title2 "clsout"; run;

proc print data = obsout; title2 "obsout"; run;

/* The following is output printed by the ORTH procedure */

Marginal Mean Parameter Estimates with Model-based (Naive) Standard Errors

VAR PARM N_STDERR

INT 1.0933862 1.0812585

TIME -0.027173 0.0365192

GENDER 0.5956477 0.4353876

AGE -0.015363 0.018969

TREAT 1.4572118 0.4726857

ORTHRES Macro, Version 1.0

Method of Orthogonalized Residuals

Richard Conrad Zink & Bahjat F. Qaqish

(c) 2003

********** RESULTS **********
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Number of Clusters: 51

Maximum Cluster Size: 5

Minimum Cluster Size: 2

Number of Iterations: 9

Outcome Variable: y

Note: Robust Standard Errors are Presented

LAMBDA

Note: Lambda is fixed at 0 .

Marginal Mean Parameter Estimates

VAR PARM STDERR CHISQ PVALUE

INT 1.0933862 1.3780824 0.6295015 0.4275382

TIME -0.027173 0.0296475 0.8400149 0.3593925

GENDER 0.5956477 0.4784813 1.549705 0.213179

AGE -0.015363 0.0246821 0.3874335 0.5336516

TREAT 1.4572118 0.450921 10.44346 0.0012308

Marginal Odds Ratio Parameter Estimates

VAR PARM STDERR CHISQ PVALUE

DISTANCE 3.6840989 1.0244654 12.932068 0.000323
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