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1 Introduction

Causal inferences on the average treatment effect in observational studies are
difficult because the effect could be confounded with the covariates whose
distributions differ systematically in the two treatment groups, and a direct
estimation of the treatment effect is often biased (Rubin 1979, Rosenbaum
and Rubin 1983, Greenland, Robins and Pearl 1999). Propensity score sub-
classification has been shown to be an effective way of reducing this bias
in the point estimation of the average treatment effect (Rosenbaum and
Rubin 1984, Rubin 1997). However, the inference procedures concerning
this average treatment effect have not been well developed. A commonly
used approach is to stratify the data based on the estimated propensity
scores and carry out the desired inferences as in a stratified random sam-
ple. Examples of such analyses can be found in Stone, Obrosky and Singer
(1995), D’Agostino (1998), and Perkins, Tu, Underhill, Zhou and Murray
(2000).

The validity of such procedures, however, is rather questionable. Because
the subclassification is based on the propensity scores estimated from a
common logistic model, the responses within each subclass and between the
subclasses are not likely to be independent (Du 1998). At the meantime,
the estimation of the unknown propensity scores also presents an addition
source of variation, which could affect the variance estimate used in the
inference (Tu, Perkins, Zhou and Murray 1999).

In this paper, we introduce a bootstrap confidence interval that takes
into account the dependent structure of the propensity score stratified data,
and the extra variation arisen from the propensity score estimation, un-
der an assumption that the measured covariates can be balanced within all
the subclasses based on estimated propensity scores. Unlike the currently
used methods, this procedure does not require an estimation of the variance
quantity for the purpose of inference. Nor does it assume any specific dis-
tribution for the pivotal statistic used in the traditional confidence interval
construction.

This paper is organized as follows: In section 2, we briefly review the
practice of the propensity score method in causal inferences. We also discuss
the deficiencies and limitations of the currently used methods. In Section 3
we propose a bootstrap confidence interval for the treatment effect using
propensity score subclassification. In Section 4 we report some preliminary
simulation results on the performance of the proposed method. In Section 5,
we illustrate the proposed bootstrap method through a clinical example. We
conclude the paper in Section 6 with a brief discussion on the potential use
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of the new method in practice.

2 Propensity score method in causal inferences

To expedite the discussion, we first introduce the notation. For an individual
subject, we denote the treatment assignment as Z (Z = 1 if the subject is
in the treatment group, Z = 0 if the subject is in the control group) and the
covariate vector as X. The propensity score is defined as e(X) = Pr(Z =
1|X). For each subject, the observed outcome variable Y (Z) takes one of the
two possible values (Y (1) or Y (0)) depending on the treatment assignment
that the subject receives. Under this notation, the expected causal effect of
the treatment is defined by

δ = E(Y (1)− Y (0)). (1)

A fundamental problem in estimating δ is that only one of the two poten-
tial outcomes Y (0) and Y (1) is observed so that one cannot directly estimate
δ from the observed data (Rosenbaum and Rubin 1984, Rubin 1997).

One way to overcome this difficulty is to use the propensity score e(X).
Under the strongly ignorable treatment assignment assumption, Rosenbaum
and Rubin (1983) showed that

δ = Ee(X)

[
E{Y (1) | e(X), Z = 1} − E{Y (0) | e(X), Z = 0}

]
,

where Ee(X) denotes expectation with respect to the distribution of e(X) in
the population of subjects. If we can stratify the subjects into K homoge-
neous subclasses I1, . . . , IK based on their propensity scores, so that these
scores remain constant within each subclass, and suppose that at least one
subject in each subclass receives each of the treatment, we then have

δ =
K∑

k=1

P (e(X) ∈ Ik)
(
E{Y (1) | e(X) ∈ Ik, Z = 1}

−E{Y (0) | e(X) ∈ Ik, Z = 0}
)
. (2)

See Corollary 4.2 of Rosenbaum and Rubin (1983) for a detailed discussion
on the result (2).

Since the propensity score e(X) is rarely known, we usually estimate the
unknown propensity scores via a logistic model,

log
Pr(Z = 1|X = x)

1− Pr(Z = 1|X = x)
= xtβ, (3)
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and then estimate the propensity score e(X) as

ê(x) =
exp(xtβ̂)

1 + exp(xtβ̂)
. (4)

Selecting a propensity score model is a key component in the propensity
score methodology. In practice, the model selection process may need to
be carried out in an iterative fashion before satisfactory balance can be
achieved in all (or most) of the important covariates. In the meantime,
substantial input from subject scientists can help to facilitate the model
selection process.

In our method, the model selection is done using the original data. We
assume that the propensity score model (3) estimated from the original
sample is a proxy of the true propensity model. Under this assumption,
the ensuing bootstrap iterations simply refit (3) using the resampled data
without altering the model. For discussions on the issue of model selection
in bootstrap settings, see Sauerbrei and Schumacher (1992), and Sauerbrei
(1999).

Using the estimated propensity scores we stratify all the subjects into K
subclasses so that the estimated propensity scores have similar values within
each subclass. We assume there are Ntk treated subjects, Ytk1, . . . , YtkNtk

,
and Nck control subjects, Yck1, . . . , YckNck

, in the kth subclass, k = 1, . . . , K.
We let Ȳtk =

∑Ntk
i=1 Ytki/Ntk and Ȳck =

∑Nck
i=1 Ycki/Nck be the mean re-

sponses for the treated and the control subjects in the kth subclass, and
nt =

∑K
k=1 Ntk and nc =

∑K
k=1 Nck be the total numbers of treated and

control subjects in the entire experiment, respectively. We note that while
nt and nc are considered as fixed in a given experiment, Ntk and Nck are
random quantities that depend on the estimated propensity scores.

From (2) we see that in order to estimate δ we need to estimate the frac-
tion of propensity scores in each subclass, P (e(X) ∈ Ik), and the expected
values of the outcome in the two treatment groups within each subclass,
E(Y (1) | e(X) ∈ Ik, Z = 1) and E(Y (0) | e(X) ∈ Ik, Z = 0). Using
(Ntk + Nck)/(nt + nc), Ȳtk, and Ȳck to estimate these three respective com-
ponents, we have the following estimate for δ:

δ̂ =
K∑

k=1

Ntk + Nck

nt + nc

(
Ȳtk − Ȳck

)
. (5)

The estimate δ̂ given by (5) uses cut-off points determined by the quan-
tiles of the estimated propensity scores of the combined treatment groups.
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D’Agostino (1998) gives an excellent and detailed survey on the different
stratification strategies. The investigator must also decide K, the number
of subclasses used in the analysis. A useful guideline on the selection of K
can be found in the Appendix A of Rosenbaum and Rubin (1984), where
they stated that five subclasses based on the propensity score would remove
over 90% of the bias due to unbalanced covariates.

As in the analysis of stratified random samples, the variance of the av-
erage treatment effect estimate (5) is often calculated using formula

Var(δ̂) =
K∑

i=1

(
Ntk + Nck

nt + nc

)2

Var(Ȳtk − Ȳck). (6)

The inferences about the true treatment effect are then made by assuming
that δ̂ follows a normal distribution with the variance given by (6), as one
would do in the analyses of stratified random samples (Perkins et al. 2000).

The validity of such inferences hinges not only on the assumption of the
normality of the point estimator δ̂, but also on several rather implicit as-
sumptions: 1) the cut points of the subclasses are fixed; 2) the responses are
independent across all the subclasses; and 3) within each subclass, the re-
sponses from the treated and control subjects are independent. In his Ph.D
thesis, Du (1998) has shown that these assumptions are not true because the
subclassification is based on orders of estimated propensity scores and hence
introduces an order statistics structure into the problem. Consequently, the
resulting subclassification destroys the original independent data structure
(both within and between subclasses) and the variance estimate in (6) be-
comes incorrect. Tu et al. (1999) further showed that even if the independent
structure were maintained, the variance formula for stratified random sam-
ple should not be used in propensity score based inferences because it also
failed to account for the uncertainty associated with the estimation of the
propensity scores.

Therefore, in order to achieve correct inferences, one must be able to
find a method that accommodates the dependent structure caused by the
subclassification, and to account for the additional source of variation in the
propensity score estimation.

3 A BCa confidence interval for the treatment ef-
fect

Attempts have been made by several authors to alleviate the aforementioned
deficiencies in the current practice. For example, Tu et al. (1999) discussed
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the construction of a fully parametric likelihood ratio test for the treat-
ment effect under an alternative stratification scheme with random subclass
sizes. One of the limitations of the likelihood ratio test is the multivari-
ate normal assumption on the covariate vector. Since many observational
studies have categorical explanatory variables, the assumption appears to
be too restrictive in most applications. In this research, we consider a boot-
strap confidence interval for the average treatment effect that is conceptually
straightforward and relatively easy to implement.

Several bootstrap confidence interval procedures have been proposed in
the past two decades (Efron 1985, Efron and Tibshrani 1986, Hall 1992).
Among the methods discussed in the literature, percentile-t and bias-corrected
accelerated (BCa) bootstrap methods have been shown to possess better ac-
curacy. Since the percentile-t method requires a variance measure for the es-
timated treatment effect that is not readily available in the propensity score
subclassification situation, we focus on the BCa approach. Efron (1987) has
shown that the BCa bootstrap interval has three highly desirable properties:
(1) it is of second order accuracy, (2) it is transformation-respecting, and (3)
it is range-preserving. The original one-sample BCa bootstrap method, how-
ever, is not directly applicable here because the causal inference on a treat-
ment effect is in essence a two-sample problem. In an extension to Efron’s
one-sample BCa procedure, Hall and Martin (1988) described a two-sample
BCa procedure that is both second order accurate and second order cor-
rect, as defined by Efron and Tibshirani (1993). In this research, we apply
Hall and Martin’s (1988) procedure to the propensity score subclassification
situation.

To better describe the proposed bootstrap procedure, we re-introduce
the notation with the subscription reserved for the subject: Let n = nt +
nc be the total number of subjects; (Yi,Xi, Zi) be a vector containing the
response variable, the covariate vector for the true propensity model, and
the treatment assignment for the ith subject, where i = 1, . . . , n.

Our procedure starts with the fitting of propensity model (3) using the
original sample, (Xi, Zi) for i = 1, . . . , n. After fitting the model, we es-
timate the propensity score (êi) of each subject using (4). Based on these
estimates, we partition the subjects into K homogeneous subclasses. The
post-stratification balance of each covariate is then examined, a point esti-
mate for the average treatment effect (δ̂) is obtained using (5).

For each bootstrap iteration b, b = 1, . . . , B, we resample with replace-
ment nt treated and nc control subjects separately from the treated and
control subjects in the original sample. Let (Y (b)

i′ ,X(b)
i′ , Z

(b)
i′ ) be the bth
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bootstrap, i′ = 1, . . . , n = nt + nc. Using the resampled data (X(b)
i′ , Z

(b)
i′ ),

for i = 1, . . . , n, we re-fit the same logistic model and re-estimate the propen-
sity score for each of the resample subjects, ê

(b)
i′ . Then we stratify the boot-

strapped responses Y
(b)
i′ , compute the mean treatment effect, and denote it

as δ̂b.
After repeating this process a large number (B) of times, we compute

the 100(1− 2α)% BCa confidence interval for the average treatment effect δ
following Hall and Martin’s (1988) procedure. The bias-correction constant
is computed as

d̂ = Φ−1

(
#[δ̂ < δ̂b]

B

)
,

where Φ(·) is the cumulative distribution function of the standard normal
distribution. The two-sample acceleration parameter is computed as

â =
1
6
σ̂−3/2(n−2

t γ̂t − n−2
c γ̂c),

where σ̂2 = σ̂2
tjackn

−1
t + σ̂2

cjackn
−1
c ; here we use the jackknife variance esti-

mates from the original sample σ̂2
tjack and σ̂2

cjack to estimate the unknown
variances of the two treatment groups, as suggested by Efron and Tibshirani
(1993); γ̂t and γ̂c are the sample skewnesses of the respective groups.

Sorting the bootstrap treatment effect estimates into increasing order,
δ̂(1) ≤ · · · ≤ δ̂(B), the resulting 100(1 − 2α)% confidence interval is defined
as (

δ̂[B(β̂a(α))], δ̂[B(β̂a(1−α))]
)
,

where β̂a(α) = Φ{d̂+(d̂+zα){1− â(d̂+zα)}−1} and [x] is the largest integer
less than or equals to x.

4 A Simulation Study

To assess the finite sample performance of the proposed procedure, we con-
ducted a simulation study. We focus primarily on the coverage of the boot-
strap confidence intervals by reporting the empirical coverage probabilities
of the proposed procedure under a set of pre-determined parameter settings.

For each configuration, we first generate the covariates X. In our sim-
ulation, we consider a logistic regression propensity model with three co-
variates: a continuous covariate X1 and two binary covariates X2 and X3.
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In order to simulate situations where the covariate distributions differ sys-
tematically in the two treatment groups, we generate the covariate de-
viates for the treatment and control groups separately: For the control
group (Z = 0), we assume that X1 ∼ N(0, σ2

1), X2 ∼ Bernoulli(p2c), and
X3 ∼ Bernoulli(p3c); for the intervention group (Z = 1), we assume that
X1 ∼ N(d, σ2

1), X2 ∼ Bernoulli(p2t), and X3 ∼ Bernoulli(p3t). By control-
ling d and the probabilities p2c, p2t, p3c, and p3t in the Bernoulli distribu-
tions, we will be able to simulate situations with varying level of differential
covariate distributions.

With the pseudo-random covariate deviates X and the treatment as-
signment Z, we then generate responses Y from a linear relationship Y =
Zδ + Xtβ + ε using pre-specified values of δ, β and the independently gen-
erated normal errors ε ∼ N(0, σ2

ε ). Herein, δ represents the true treatment
effect. Since the covariates X have different distributions in the two treat-
ment groups, the effect of the treatment (δ) can not be directly estimated
from the response Y without first adjusting for the effects of X. For simplic-
ity, we set the coefficients of the covariates to be (β1, β2, β3) = (0.5, 0.4, 0.4)
throughout the simulation; the values of the rest of the parameters that
we used in the simulation are listed in Table 1. It should be noted that a
number of factors contribute to the extend of confounding effects of X on
Y , including: 1) magnitudes of β1, β2, β3, which affect the level of confound-
ing directly; and 2) the differential distributions of X in the two treatment
groups, which have an indirect effect on the level of confounding.

To evaluate the coverage probability of the proposed BCa Bootstrap con-
fidence interval procedure based on the propensity score subclassification,
we apply the proposed procedure to the simulated data. For each parameter
configuration, we conduct 1000 simulations in an iterative fashion. Within
each iteration, we use 2000 bootstraps to construct a 95% confidence inter-
val. The empirical coverage probabilities under different parameter configu-
rations are reported for the assessment of the performance of the proposed
procedure. To understand how the coverage property changes in various
sample size situations, we consider three sample sizes, nC = nt = 500, 1000,
and 2000, for each of the parameter settings in Table 1. The simulation
results are reported in Table 2.

The preliminary simulation results indicate reasonably good coverage
probabilities in the proposed procedure. This coverage appears to be better
when the sample sizes are larger. Further observations of the simulation
study are discussed in Section 6.
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5 Data Example

We now illustrate the procedure described in Section 3 with a pharmacoepi-
demiological example.

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed
in the US. One potential adverse effect related to the long term use of these
drugs is the risk of renal insufficiency. Several studies have indicated that
this risk may vary for different NSAIDs. For example, Bunning and Barth
(1982) and Ciabatonni, Cinotti and Pierucci (1984) reported that Sulindac,
one of the prescription NSAIDs, may be “renal sparing”, comparing to some
of the over-the-counter NSAIDs, such as Ibuprofen. Clinical evidence on
the renal sparing effect of Sulindac, however, is rather mixed (Murray and
Brater 1993, Murray, Greene and Kuzmik 1995). In an ideal situation, a
randomized clinical trial would have provided a more definitive answer. But
due to ethical concerns, it is often not feasible for the physicians to prescribe
a non-renal sparing drug to patients with known histories of renal problems
or other serious diseases. Therefore, the investigation can only be carried
out as an observational study (Perkins et al. 2000). In this article, it is not
our intention to address the clinical question on the renal sparing effect of
Sulindac. Instead, we focus on the methodological issues associated with
the causal inferences in observational studies. In particular, we will use
the NSAIDs data to illustrate the bootstrap confidence interval procedure
described in Section 3. Herein, we restrict our attention to the comparison
of the renal effects of two popular NSAIDs, Ibuprofen and Sulindac. The
renal effects of NSAIDs are measured by the differences of serum creatinine
concentrations taken pre- and post-treatments. The goal of analysis is to
compare these differences, adjusting for potential confounders.

The data are extracted from the Regenstrief Medical Record System
(McDonals, Overhage and Tierney 1999). For the purpose of illustration,
we only use the records of 1946 patients with complete medical records.
Among them, 1694 had Ibuprofen and 252 had Sulindac in the study pe-
riod. The outcome of interest is the change in serum creatinine concentra-
tions before and after the use of the NSAIDs. The data set also contains 31
explanatory variables providing relevant demographic and clinical informa-
tion of the study subjects. These variables are tabulated in Table 3. Careful
examination of the explanatory variables reveals the apparent covariate im-
balance between the two treatment groups. For example, the average age
of the study subjects in the Sulindac group is 70.714, while that of the
Ibuprofen group is only 57.824, with a difference of 12.89 years in the mean
between the two groups. To formally check whether observed differences in
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the explanatory variables between the two treatment groups are statistically
significant, we use t-tests for continuous variables and chi-square tests for
discrete variables. The p values of the tests are reported in Table 3, which
show significant imbalance in 18 of the 31 covariates at α = 0.05 significance
level. Generally, the Sulindac patients are older and have poorer health con-
ditions than the Ibuprofen patients. For example, 20.24% of the Sulindac
users suffered from chronic heart failures, while only 10.27% of the Ibuprofen
users suffered from the same condition. If left unadjusted, these unbalanced
covariates could confound with the true treatment effect and lead to a bias
in the point estimation.

– Insert Table 3 here –
To adjust for the covariates, we first use the information provided by the

31 explanatory variables to fit a logistic regression model for the probability
of a study subject receiving Sulindac. Following the common practice of
using 5 subclasses, we then stratify the entire data set according to the
quintiles of the estimated propensity scores. In our data example, propensity
score subclassification greatly improves the balance of the covariates.

The post-stratification balance of the continuous covariates are re-examined
using a two-way analysis variance model with propensity score quintiles and
the treatment assignment as the main effects, the interaction between the
two main effects is also included in the model. For the binary covariates,
we fit logistic models with the same main effects and interaction, as sug-
gested by Rosenbaum and Rubin (1984), and D’Agostino (1998). The re-
examination reveals a great improvement in the balance of covariates within
each subclass. Of the 31 covariates considered in the model, only 4 still
show significant imbalances (marked by ∗ in Table 2), comparing to 18 co-
variates before the subclassification. Further examining the data, we found
that even though some of the imbalances were still statistically significant
as our t tests and chi-square tests had suggested, the magnitudes of the dif-
ferences were greatly reduced. For example, the covariate “Age” still tested
significant. But the magnitude of differences in age of the two treatment
groups within the subclasses were all less than 3 years, as comparing to the
12.89 years before the subclassification. It is our opinion that though such
imbalances were statistically significant, they may no longer represent any
clinically meaningful differences between the two groups. Figure 1 shows the
balance of the covariate “Age” for all 5 subclasses after the stratification.

– Insert Figure 1 here –
Applying the proposed bootstrap procedure described in the previous

section based on 2000 bootstrap iterations, we obtain a 95% confidence in-
terval of (−0.2453, 0.2752) for the difference in the serum creatinine changes
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between the Ibuprofen and Sulindac treated patients. This interval is slightly
wider than the currently used 95% normal confidence interval of (−0.2122,
0.2413) based on the the variance estimate given in (6). Though both inter-
vals point to the same conclusion that the renal effects of the two NSAIDs
are not significantly different, the increased interval length in the new pro-
cedure may suggest the need for a variance adjustment by the bootstrap,
which could lead to an improvement in the coverage probability.

6 Discussion

Since Rubin and Rosenbaum’s early groundbreaking work, propensity score
methodology has been successfully applied to many clinical and epidemiolog-
ical studies. It has become a widely used tool for reducing the potential bias
in treatment effect estimation in observational data analysis. In this paper,
we have proposed a bootstrap based inference procedure for the treatment
effect within the framework of propensity score subclassification.

Our study suggests that the proposed method provides valid causal infer-
ences in large observational studies. In summary, it has several advantages
over the existing methods: First, it does not require a variance estimate. Our
experience indicates that a direct analytical derivation of the variance of the
treatment effect estimate in a general situation is difficult, if not entirely im-
possible. Secondly, the method does not rely on any restrictive distributional
assumption on the covariates. This is particularly important in practice be-
cause one rarely has all normally distributed explanatory variables. Thirdly,
the bootstrap interval accounts for the variation that arises from the estima-
tion of propensity scores, and it accommodates the dependency among the
responses both within and between subclasses due to the ordering structure
introduced by the subclassification. Finally, the new bootstrap procedure
can be implemented relatively easily in most computing platforms.

Our simulation shows that the empirical coverage of the procedure are
reasonably good. While the empirical coverage of the probabilities are below
the nominal level (95%), they are generally close to the nominal level when
the sample sizes are greater than 1000 per group. The simulation results
also show that the coverage probability the BCa confidence interval is not
affected by the size of the treatment effect δ. This should not be a surprise
because in our simulation scheme, the size of the treatment effect is an ad-
ditive component in a linear model; when the responses are generated from
this model, δ simply represents a shift in the central locations between the
two treatment groups. The simulation also shows that the proposed method
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adjusts for the effects of the systematically different covariates quite effec-
tively, when all of the covariates are used in the logistic regression model to
estimate the unknown propensity scores (ie, strongly ignorable assumption
holds).

Although the preliminary simulation results are promising, a more exten-
sive simulation study is apparently needed to establish the operating charac-
teristics of the proposed procedure under various practical data situations.
In this respect, the current simulation has several limitations: First, it con-
siders only balanced designs while most observational data have unbalanced
group sizes. For example, the NSAIDs data that we used to illustrate our
method have a rather substantial imbalance between the Ibuprofen group
(nI = 1694) and the Sulindac group (nS = 252). Second, the range of values
of the parameters used in the current simulation is still limited. For exam-
ple, only one set of β values in linear relationship Y = Zδ + Xtβ + ε were
used to generate random responses. Since β directly affects the level of con-
founding between the observed covariates X and the treatment assignment
Z, it would be of interested to examine the performance of the proposed pro-
cedure under many different β values. Holding other parameters constant,
a smaller value β decreases the level of confounding (in the most extreme
case of β = 0, we have Y = Zδ+ ε, implying no confounding effect from X.)
In addition, for a set of pre-selected β values, parameters d, p2c, p3c, p2t,
and p3t control the differential distributions between the treatment groups.
The magnitude of d, and the difference between p2c and p2t (or that between
p3c and p3t) reflect the separation in covariate distribution between the two
treatment groups. In the current simulation, only one d value, and a limited
number of binomial probabilities were considered. In light of these observa-
tions, we feel that further investigation is certainly needed in order to have
a fuller understanding of the new method’s operating characteristics. The
authors plan to expand the simulation study to include: 1) unbalanced de-
signs by altering nt and nc; 2) different levels of confounding by adjusting β
values; and 3) different magnitudes of separation in covariate distributions
between the two groups by controlling d, p2c, p3c, p2t, and p3t. We will also
investigate the sensitivity of our procedure when the propensity model is
mis-specified.

Our current work focuses on a resampling based approach for the con-
struction of a simple confidence interval of an unknown treatment effect.
Several related issues have yet to be explored. For example, the adjustment
of covariates in treatment effect estimates via regression (instead of subclas-
sification) has not been studied. Treatment effects summarized by other
measures, such as odds ratios, also need to be discussed. These issues will
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be at the center of our future exploration.
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Table 1: Parameter Settings for Simulation

Setting δ d σ1 σε p2c p3c p2t p3t

1 0.0 0.5 1.0 1.0 0.3 0.7 0.8 0.4
2 0.5 0.5 1.0 1.0 0.3 0.7 0.8 0.4
3 1.0 0.5 1.0 1.0 0.3 0.7 0.8 0.4
4 2.0 0.5 1.0 1.0 0.3 0.7 0.8 0.4

5 0.0 0.5 1.25 1.0 0.4 0.8 0.7 0.3
6 0.5 0.5 1.25 1.0 0.4 0.8 0.7 0.3
7 1.0 0.5 1.25 1.0 0.4 0.8 0.7 0.3
8 2.0 0.5 1.25 1.0 0.4 0.8 0.7 0.3
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Table 2: Coverage Probabilities of the 95% BCa Confidence Intervals

Parameter Sample size Coverage
Setting nt = nc Probabilities

1 500 0.911
1000 0.931
2000 0.945

2 500 0.910
1000 0.933
2000 0.947

3 500 0.915
1000 0.935
2000 0.945

4 500 0.912
1000 0.934
2000 0.947

5 500 0.908
1000 0.935
2000 0.943

6 500 0.912
1000 0.938
2000 0.946

7 500 0.909
1000 0.935
2000 0.945

8 500 0.908
1000 0.936
2000 0.948
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Table 3: Explanatory Variables in the NSAIDs Data

Ibuprofen Sulindac Unadjusted
(n = 1694) (n = 252) p value

Patient demographics
Age (years) 57.824 70.714 <0.0001∗
Sex (% male) 25.86 31.75 0.0484
Race (% white) 40.38 37.30 0.3523

Clinical Variables
Prior average systolic BP (mmHg) 131.5 138.22 <0.0001
Last systolic BP prior to NSAIDs 130.94 136.90 <0.0001
Prior average serum potassium (mEq/l) 4.0500 4.0511 0.9693
Last serum potassium prior to NSAIDs 4.0611 4.0599 0.9702
Prior average weight (lb) 179.71 183.00 0.3382
Last weight prior to NSAIDs 180.08 182.48 0.4920
Last SCC prior to NSAIDs (mg/dl) 0.9747 1.0226 0.0149

Disease (% of patient having the disease)
Arrhythmia 6.91 16.67 <0.0001∗
Ascities 1.30 1.19 0.8868
Asthma 3.96 1.98 0.1220
CAD 13.22 18.65 0.0202
CHF 10.27 20.24 <0.0001∗
Cirrhosis 9.21 5.56 0.0429
COPD 8.97 13.49 0.0228
Diabetes 29.40 38.49 0.0035
Hypertension 73.49 87.70 <0.0001
Liver diseases 0.71 1.59 0.1494
Myocardial infraction 5.84 9.13 0.0449
Osteoarthritis 8.97 17.06 <0.0001∗
Rheumatoid arthritis 0.41 1.98 0.0030
Stroke 4.55 5.56 0.4786
ACE inhibitors 10.28 9.13 0.5741
Beta adrenergic antagonists 14.64 26.59 <0.0001
Blood pressure medications 53.96 73.03 <0.0001
Calcium channel antagonists 9.09 9.52 0.8240
Diuretic 45.99 67.46 <0.0001
Insulin 12.04 15.87 0.0868
Oral hypoglycemics 8.56 9.52 0.6121

Asterisk (*) indicates significant imbalance after propensity score stratification.
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