


chromosome 12 of specimen 6 as two separate segments. This is because the CBS procedure identifies trends in

the data. The Bayesian HMM, on the other hand, is motivated from the perspective of copy number change.

It declared these clones as high-level amplifications and therefore as a single region. The next set of clones

having lower log2 ratios were identified as focal aberrations because they are localized changes less than 2 Mb

in width. The two amplified regions detected by the Bayesian HMM correspond to the two minimal common

regions (MCRs) on chromosome 12 associated with copy number gains (see Table 1 of Aguirre et al.) The first

MCR contains the KRAS2 gene, point mutations of which occur in more than 75% of pancreatic cancer cases

(Almoguera et al., 1988). The CBS algorithm failed to detect the second MCR.

The bottom left panel of Figure 2 displays the profile for chromosome 17 of specimen 13. The region from

17p13.3 to 17q11.1 (10.36 Mb to 12.8 Mb) contains the tumor supressors p53 and MKK4. Mutations on the

gene p53 are found in at least 50% of pancreatic adenocarcinoma cases (Caldas et al., 1994). The single probe

corresponding to this region was easily detected by the Bayesian HMM as a deletion. In contrast, the CBS

algorithm effectively declared the entire chromosome as copy-neutral.

The bottom right panel presents the array-CGH profile of chromosome 18 of specimen 2. The Bayesian HMM

algorithm detected an outlier associated with a copy number loss around 48 Mb. The outlier corresponds to

the SMAD4 tumor suppressor gene located at 18q21, a mutation on which is associated with pancreatic cancer

(Bardeesy and DePinho, 2002). Aguirre and co-authors mention that the CBS procedure completely missed the

well-established association with the SMAD4 gene, even though it was clearly visible in several specimens of the

data set.

The CBS procedure often ignores obvious single-probe aberrations to control the False Discovery Rate. Such

errors can be misleading, because subsequent gene validation involves experimental techniques that are much

more expensive than CGH. For this reason, single-probe aberrations that are frequently observed across tumor

specimens provide one of the most cost-effective avenues for further research about the underlying causes of cancer.

There are many other instances of the differences between the CBS and Bayesian HMM algorithms. For example,

the MCR from 68.27 to 68.85 Mb on chromosome 12 maps to highly amplified clones in 34 out of 37 specimens

(see the supplementary materials). In every case, the Bayesian HMM declared them as high-level amplifications,

but the CBS procedure detected only the amplification in specimen 8. The Bayesian HMM also outperformed

the CBS algorithm in detecting the mutation on gene FEZ1 in specimen 26, and of the genes OZF and AKT2 in
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specimen 6.

The results demonstrate that the Bayesian HMM is effective not only in detecting global trends, but also

highly localized changes in copy number. This feature is important in identifying genes associated with cancer

(e.g. SMAD4 in the foregoing example) on which the point mutations do not become large-scale genomic changes

as the disease progresses. The algorithm has potential for use as a diagnostic tool during the early stages of cancer.

4.2 Corriel cell lines

The Corriel cell line is widely regarded a “gold standard” data set and analyzed in Snijders et al. (2001).

The data, normalized to the genome-wide median log2 ratio, are available in Web Tables E–H at http://

www.nature.com/ng/ journal/v29/ n3/suppinfo/ng754 S1.html. A table of known karyotypes is presented

in Web Table I on the same website. We compared these cytogenically mapped alterations with the profiles

produced by our algorithm and verified that the results match in all the specimens. For example, for cell line

GM05296, Web Table I reports a trisomy at 10q21–10q24 and a monosomy at 11p12–11p13. The array-CGH

profile for chromosomes 10 and 11 of cell line GM05296 are displayed in Figure 3. The regions of gain and loss

identified by the Bayesian HMM match the karyotypes presented in Web Table I. We omit the results for the

other cell lines for brevity.

4.3 Breast cancer data

A useful feature of the Bayesian approach is that posterior probability plots can be created for the different kinds

of genomic alterations. These plots provide a “bird’s eye view” of the copy number alterations. They are useful

in identifying genomic regions associated with the disease. The procedure can be easily automated for a large

number of genomic profiles. To illustrate, we analyzed the breast cancer data given in Snijders et al. (2001).

The data were normalized by centering to the genome-wide median log2 ratios. The posterior probability plot

for specimen S1514 is displayed in Figure 4. There are several high-level amplifications on chromosome 20 and

deletions on chromosomes 13 and 14. Consistent with Figure 4, a region of high-level amplifications is seen on

the array-CGH profile of chromosome 20 in Figure 5.
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4.4 Comparisons with some existing methods

Using the Glioblastoma Multiforme data of Bredel el al. (2005), Lai et al. (2005) evaluated 11 array-CGH algo-

rithms based on segment detection as well as smoothing. The data was normalized using the Limma package

(Smyth, 2004) and are available at http://www.chip.org/∼ppark/Supplements/ Bioinformatics05b.html.

Graphical summaries of the results are presented in that paper as Figures 3 and 4. Sample GBM31 (Figure 3 of

Lai et al., 2005) exhibits low signal-to-noise ratio. There is a large region of losses on chromosome 13. Lai and

co-authors found that the algorithms CGHseg of Picard et al. (2005), GLAD of Hupe et al. (2004), CBS of Olshen

et al. (2004) and GA of Jong et al. (2003) segmented chromosome 13 into two regions and detected the region of

copy number loss. Smoothing-based methods like lowess, the quantreg algorithm of Eilers and de Menezes (2005)

and wavelet algorithm of Hsu et al. (2005) were sensitive to local trends but were less effective in detecting global

trends. The HMM algorithm of Fridlyand et al. (2004) did not find any segments.

We followed an identical evaluation procedure to compare the Bayesian HMM with the afore-mentioned

methods. Figure 6 displays the result for sample GBM31. The partitioned regions are the same as those identified

by the CGHseg, CBS, GLAD and GA algorithms. Local changes in the number of copies, identical to those

collectively detected by the GLAD and CGHseg algorithms, are marked as high-level amplifications (N) and

deletions (H).

The second data set investigated in Lai et al. (2005) is a fragment of chromosome 7 from sample GBM29

(refer to Figure 4 of that paper). The data show some high log2 intensity ratios around the EGFR locus.

The algorithms CGHseg, quantreg, GLAD, wavelet and GA separated the data into three distinct amplification

regions. The algorithms CBS, CLAC and ACE (Lingjaerde et al., 2005) detected two distinct regions instead of

three. ChARM (Myers et al., 2004) grouped all the high log2 intensity ratios into a single region. The HMM

algorithm of Fridlyand et al. (2004) did not detect the amplifications.

Figure 7 displays the results for the Bayesian HMM algorithm. The high log2 ratios are identified as high-

level amplifications (N). Unlike the algorithms investigated in Lai et al. (2005), the single clone having a highly

negative value is detected by the algorithm and marked as a deletion. The amplifications are identified as focal

aberrations, rather than as separate regions, because both clusters are less than 5 Mb in width.

We find that the Bayesian HMM algorithm combines the strength of the smoothing-based algorithms in

detecting local features with the strength of the segmentation-based methods in detecting global trends. The
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reliability of the procedure is especially impressive with noisy data.

5 SIMULATION STUDIES

5.1 Comparison with non-Bayesian HMM and CBS algorithms

The frequentist analysis matching the foregoing Bayesian procedure estimates the hyperparameters of the likeli-

hood using the Baum-Welch EM algorithm, iteratively incrementing the likelihood until relative changes in the

hyperparameters become sufficiently small. Conditional on the estimated hyperparameters, the Viterbi algorithm

then computes the aposteriori most likely sequence of states s1, . . . , sn. This technique is not identical as the non-

Bayesian HMM of Fridlyand et al. (2004). In particular, the latter technique does not assign biological meanings

to the latent states and cannot directly detect changes in copy number.

To find the global maximum in the 20-dimensional hyperparameter space, the EM algorithm has to be run

from several starting points. For typical array-CGH data, each run often requires hundreds of iterations to

converge. Because of this, the computational costs associated with the frequentist and Bayesian analyses are

often comparable. When R is used as the computing platform, the CBS algorithm is considerably faster than

either method. However, all three approaches are computationally feasible and have negligible costs compared to

the many months of experimental effort required to process the tumor specimens.

The non-Bayesian array-CGH profiles for the Section 4.1 data are presented in the supplementary materials.

A detailed comparison with the Bayesian profiles reveals that the two procedures often gave similar results.

However, there are many profiles for which the answers are noticeably different. Examples of such chromosome–

specimen pairs include (5, 2), (5, 7), (12, 10), (7, 13), (15, 13), (5, 19), (18, 31) and (19, 34). Two of the profiles are

displayed in Figure 9. The non-Bayesian hyperparameter estimates correspond to a greater value of the likelihood

function than the Bayes estimates in all these examples. However, the Bayesian profiles look more reasonable.

We performed a simulation study of the differences between the methods. For each of the afore-mentioned

chromosome–specimen pairs, we obtained signal-to-noise ratios that were typical of array-CGH data by setting the

hyperparameters equal to the Bayes estimates. We then generated the underlying copy number states and data

for n = 200 clones. The Bayesian and non-Bayesian HMMs were applied to infer the latent copy number states.

The procedure was independently replicated 100 times. Table 1 displays the percentage of correctly labeled copy
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number states for the two methods. The Bayesian HMM outperforms the non-Bayesian HMM in all the cases.

Using eight randomly selected chromosome–specimen pairs, but an otherwise identical simulation strategy,

Table 2 compares the CBS algorithm with the Bayesian and non-Bayesian HMMs. The method used by Aguirre

et al. (2004) was applied to declare copy number gains and losses for the CBS algorithm. The Bayesian HMM

outperforms the CBS algorithm, often substantially, in seven cases. The difference is inconclusive in one case.

In six out of eight cases, the Bayesian HMM outperforms the non-Bayesian HMM, with the difference being

inconclusive in one case. These results provide significant evidence in favor of the Bayesian HMM.

The Bayesian HMM is found to benefit from the informative priors of Section 2.2. Prior knowledge about

array-CGH helps the procedure distinguish between competing sets of hyperparameter values that are almost

equally plausible under the likelihood but not under the posterior. For example, consider the frequently encoun-

tered situation where there are very few log2 ratios are assigned to one or more copy number state. In such a

situation, the likelihood alone may be unable to distinguish between the matching non-Bayesian HMM and a

model having fewer than four states. This results in likelihood-based estimates where one or more of the µj ’s are

approximately equal. Because of the well-defined meanings assigned to the four states of the HMM, the sequence

of copy number states assigned by the non-Bayesian model often seem incorrect in such cases. The Bayesian

approach is more robust in such situations. The informative priors prevent even states having very few probes

and log2 ratios having a considerable amount of overlap due to high measurement error from being classified as

a common state. For some data, a model having fewer states than four may be better-fitting than the proposed

model. However, the states might not have a simple biological interpretation in terms of copy number change.

The detection of copy number gains and losses, which is one of the main goals of the analysis, may also be less

straightforward.

Several examples in Section 4.1 suggest that the Bayesian HMM is better than the CBS algorithm in detecting

amplifications that are localized to a small number of probes. This advantage is of practical importance, because

single-probe amplifications frequently occurring across specimens are often the focus of future, more expensive

gene validation studies. To investigate the difference by a controlled simulation, we independently generated 25

data sets using the following procedure: (i) Fifty out of n = 200 clones were randomly chosen to be amplifications

having a mean signal of 2 on the log2 scale. (ii) The remaining clones were assumed to be copy-neutral with a

mean signal of zero. (iii) The data were generated by adding Gaussian noise with a standard deviation of 0.1 to
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these means.

The high signal-to-noise ratio (SNR) of 20 is atypical of array-CGH data. The percentage of amplified probes

(25%) is also very high. However, in spite of these features that simplify the detection of copy number change,

the CBS algorithm failed to detect any amplification. The Bayesian HMM on the other hand, correctly identified

all the amplifications. Unsurprisingly for such a high SNR, the false discovery rate of the Bayesian HMM was

zero for all the data sets and the average true discovery rate exceeded 99%.

5.2 Prior sensitivity

The preceding analyses assumed that ε = 0.1 for the supports of the µj ’s (refer to Section 2.2) and that θij = 1 for

the priors of the transition matrix rows, where i = 1, . . . , 4 and j = 1, . . . , 4. To alleviate concerns that the results

are sensitive to the choice of ε, we generated 100 data sets with n = 500 clones each. For each data set, the true

means µ1, . . . , µ4 were uniformly generated from narrow intervals centered respectively at −0.5, 0, 0.5 and 1. The

standard deviations σj were uniformly generated in the interval [0.2, 0.25] which is typical of noisy array-CGH

data. The true transition matrices were simulated as follows. For row 2 corresponding to the copy-neutral state,

the off-diagonal elements were uniformly generated in the intervals [0.01, 0.02]; for the remaining rows, the off-

diagonal elements were uniformly generated in the intervals [0.02, 0.05]. These nine elements uniquely determined

the row-stochastic transition matrix. For k = 1, . . . , 500, the copy number states sk were then generated and the

data were obtained by adding Gaussian noise to the means µsk
.

For ε belonging to a grid of points in the interval [0.05, 0.15], the Bayesian HMM was used to analyze each

simulated data set. The posterior expectations of the means µj , the true discovery rates and false discovery rates

were found to be robust to the choice of ε. Figures 8 plots the estimates of µ1, . . . , µ4 for three randomly chosen

data sets as ε varies. The flatness of the lines provides evidence of the lack of sensitivity to ε ∈ [0.05, 0.15]. The

results were also found to be robust to {θij}i,j that were small compared to n.

6 CONCLUSIONS

We propose a Bayesian hierarchical approach relying on a hidden Markov model for analyzing array-CGH

data. The informative priors allow Bayesian learning from the data. One of the strengths of the fully automated

approach is the ability to detect copy number changes like gains, losses, amplifications, outliers and transition
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points based on the posterior. Summaries of the array-CGH profiles are generated. The profiles can then be

compared across individuals to identify the genomic alterations involved in the disease pathogenesis.

The examples of Section 4 demonstrate the reliability of the Bayesian HMM. The sensitivity of the algorithm

to individual probes often allows us to find candidate genes that are missed by other algorithms. The performance

of the algorithm is impressive not only for the “gold-standard” Corriel cell lines but also for the Glioblastoma

data set of Bredel el al. (2005) having high measurement error. Combined with the results presented in Lai et al.

(2005), the latter analysis reveals a very favorable comparison with outstanding algorithms like those of Picard

et al. (2005) and Olshen et al. (2004). Section 5 compares the Bayesian HMM and alternative algorithms using

controlled simulations. The results confirm the accuracy of the approach.

A strength of the Bayesian HMM is that it relies on essentially no tuning parameters. Unlike many other

algorithms (see Lai et al., 2005), the user is only required to input the normalized log2 ratios. This is a convenient

feature for the end-user with little or no statistical training. In all our analyses, we have used the default

parameterizations specified in Section 2.2. Certain features of the Bayesian HMM may be changed to produce

a different result. Possible features include the constant ε in the prior specification of the means µj and the

constants θij in the transition matrix priors in Section 2.2. However, the simulation study in Section 5.2 and

our own experience with the algorithm indicate that the results are robust to variations in these quantities. The

informative priors for the means µj substantially influence the results, as we find in Section 5.1 on comparing

the Bayesian HMM with the matching non-Bayesian model. However, the order constraints on the µj ’s and the

biological meanings assigned to sk ∈ {1, 2, 3, 4} allow the specification of priors that work consistently well across

different data sets. For this reason, we recommend using the default parameterizations of the Bayesian HMM for

most array-CGH applications.
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APPENDIX

An MCMC algorithm

The following algorithm is independently run for each chromosome to generate an MCMC sample for the chro-

mosomal parameters. We group the model parameters into four blocks, namely, B1 = A, B2 = (s1, . . . , sn),
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B3 = (µ1, µ3, µ4), and B4 =
(
σ2, σ2

4

)
. The starting values of the parameters are generated from the priors. The

algorithm iteratively generates each of the four blocks conditional on the remaining blocks and the data. Let

B
(v−1)
1 , . . . , B

(v−1)
4 denote the values of the blocks at the (v − 1)st iteration. In the next iteration, the blocks are

generated as follows:

Updating block B1. The transition matrix is generated using a Metropolis-Hastings step because the nor-

malizing constant of the full conditional cannot be computed in closed form. This step makes independent

proposals from a distribution that closely approximates the full conditional of the transition matrix. The pro-

posal is accepted or rejected with a probability that compensates for the approximation. Typically, most of the

Metropolis-Hastings proposals are accepted. Using the the copy number states generated at iteration v − 1, we

compute the number of transitions from state i to state j, denoted by u
(v)
ij =

∑n−1
k=1 I

(
s
(v−1)
k = i, s

(v−1)
k+1 = j

)
,

where i, j = 1, . . . , 4. We generate a proposal C for the transition matrix from the distributions [ci | Y , B−1] ∼

D3

(
1 + u

(v)
i1 , 1 + u

(v)
i2 , 1 + u

(v)
i3 , 1 + u

(v)
i4

)
, where row i = 1, . . . , 4, and B−1 denotes the blocks, {B2, B3, B4}. The

proposal ignores the marginal distribution of state s1 and so it differs from the full conditional of the transition

matrix. To compensate for this, we accept the proposal (in other words, set A(v)=C) with probability β, where

β = min
{

1, πC(s(v−1)
1 )/πA(v−1)(s(v−1)

1 )
}

, and otherwise reject the proposal (in other words, set A(v)=A(v−1)).

As defined earlier, πD(s) denotes the probability of state s under the stationary distribution of a given transition

matrix D.

Updating block B2. The copy number states are generated by a stochastic version of the forward-backward

algorithm. We compute the distribution [sn | B−2, Y1, . . . , Yn] at the beginning of the backward step. We generate

sn from this distribution. The backward step is continued to compute and generate a draw the distribution [sn−1 |

sn, B−2, Y1, . . . , Yn]. The sequence of computing and generating a draw from [sk | sk+1, B−2, Y1, . . . , Yn] is iterated

for k = n− 2 down to k = 1. This produces a sample from the joint distribution [s1, . . . , sn | B−2, Y1, . . . , Yn].

Updating block B3. For s = 1, . . . , 4, let δ0s be the center of the untruncated normal distribution in the prior

specification of µs. Compute the sums ns =
∑n

k=1 I
(
s
(v)
k = s

)
, averages Ȳs = 1

ns

∑n
k=1 Yk ·I(s(v)

k = s), precisions

θ2
s = τ−2

s +
(
σ

(v−1)
s /

√
ns

)−2

and weighted means γs = 1
θ2

s

[
δ0s · τ−2

s + Ȳs ·
(

σ(v−1)
s√

ns

)−2
]

. For s = 1, . . . , 4, generate
[
µ

(v)
s | Y,B−3

]
∼ N

(
γs, θ−2

s

) · Is, where the intervals Is denotes the support of the µs (see prior specification).

24

http://biostats.bepress.com/harvardbiostat/paper24



Chromosome

lo
g2

ra
tio

1 3 4 5 6 7 8 9 10 11 13 15 17 20 23

−
0.

5
0.

0
0.

5
1.

0

Figure 1: Normalized copy number ratios of a comparison of DNA from cell strain S0034 (Snijders et

al., 2001) with normal DNA. The BACs are ordered by position in the genome beginning at 1p and

ending at Xq. The vertical bars indicate borders between chromosomes.

Updating block B4. For j = 1, . . . , 4, compute nj =
∑n

k=1 I
(
s
(v)
k = j

)
and Vj =

∑n
k=1

(
Yk − µ

(v)
sk

)2

·

I
(
s
(v)
k = j

)
. Generate

[
σ

(v)
j | Y, B−4

]
∼

[
gamma

(
1 +

nj

2
, ε +

Vj

2

)]−0.5

.
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Figure 2: Array-CGH profiles of some pancreatic cancer specimens. In each panel, the clonal distance

in Mb from the p telomere has been plotted on the x-axis. High-level amplifications and outliers

are respectively indicated by N and H. The broken vertical lines represent transition points. For

comparison, the green lines display the segment means computed by the CBS algorithm. See Section

4.1 for further discussion.
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Figure 3: Array-CGH profile of chromosomes 10 and 11 of Corriel cell strain GM05296. The x-axis

displays the clonal distance from the p telomere in Mb. The broken vertical lines represent transition

points.
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Figure 4: Posterior probabilities of genomic alterations for specimen S1514. The solid line represents

high-level amplifications while the dashed line corresponds to deletions. The numbers on the horizontal

axis represent the q telomere of the chromosomes. The BACs are ordered by position in the genome

beginning at 1p and ending at Xq.
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Figure 5: Array-CGH profile of chromosome 20 of S1514. The x-axis represents clonal distance in Mb

from the p telomere. The broken vertical lines represent transition points. High-level amplifications are

shown using N.
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Figure 6: Array-CGH profile of chromosome 13 of GBM31. The clonal distance in Mb from the p

telomere is plotted on the x-axis. High-level amplifications and outliers are respectively indicated using

N and H. The broken vertical line represents a transition point.
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Figure 7: Partial array-CGH profile of chromosome 7 of GBM29. The clonal distance in Mb from the p

telomere is plotted on the x-axis. High-level amplifications and outliers are respectively indicated using

N and H.

0.06 0.08 0.10 0.12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Estimated means

Epsilon

E
st

im
at

e

Figure 8: Estimated means Ê[µj |Y ] for three independently generated data sets (shown by solid, dashed

and dotted lines) plotted against ε.
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Figure 9: Examples from Section 4.1 where the Bayesian and non-Bayesian array-CGH profiles are

different. The upper panels correspond to chromosome 5 of sample 7 and the lower panels correspond

to chromosome 19 of sample 34. The clonal distance in Mb from the p telomere has been plotted on

the x-axis. High-level amplifications and outliers are indicated using N and H respectively. The broken

vertical lines represents transition points.

30

http://biostats.bepress.com/harvardbiostat/paper24



Source Bayesian HMM Non-Bayesian HMM
Chromosome Specimen % accuracy SE % accuracy SE

5 2 94.81 0.789 86.89 1.685
5 7 91.99 1.188 81.44 1.942
12 10 95.22 0.390 89.08 1.378
7 13 92.41 1.019 80.09 2.333
15 13 92.42 1.322 82.55 1.649
5 19 88.02 2.189 73.09 2.873
18 31 84.95 2.512 71.17 2.448
19 34 88.13 2.000 72.10 2.124

Table 1: Estimated percentages of correctly discovered copy number states for the Bayesian and non-

Bayesian methods, along with the estimated standard errors. The estimates were based on 100 inde-

pendently generated data sets. The first two columns specify the chromosome and specimen numbers

of the Section 4.1 data set whose the estimated hyperparameters were used to generate the data. See

the text for an explanation.

Source Bayesian HMM Non-Bayesian HMM CBS
Chromosome Specimen % accuracy SE % accuracy SE % accuracy SE

13 33 94.38 1.203 72.01 2.634 67.72 3.512
19 4 88.20 1.129 87.94 0.534 75.36 1.726
14 1 87.35 1.893 76.47 1.834 86.70 0.426
12 17 80.84 1.736 76.11 1.453 44.12 1.791
1 24 40.64 2.512 54.31 1.460 35.37 2.470
3 35 96.03 0.239 72.06 2.509 92.43 0.488
23 12 74.31 3.417 65.2 2.420 58.08 3.311
15 34 90.79 2.164 68.3 2.798 55.22 4.175

Table 2: Estimated percentages of correctly discovered copy number states for the Bayesian and non-

Bayesian methods, along with the estimated standard errors. The estimates were based on 100 inde-

pendently generated data sets. The first two columns specify the chromosome and specimen numbers

of the Section 4.1 data set whose the estimated hyperparameters were used to generate the data. See

the text for an explanation.
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