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1. INTRODUCTION

Comparisons of two independent binomial proportions are one of most commonly encountered

problems in medical studies. However, the most commonly used Wald interval can have poor

coverage accuracy. This point has been nicely illustrated by Brown et al. (2001) for the single

binomial proportion. Brown et al. (2001) and Brown et al. (2002) have also discussed other types

of intervals for the single binomial proportion, including Bayesian credible intervals. In this paper

we propose two new methods for constructing confidence intervals for the difference between two

binomial proportions based on the Edgeworth expansion of the studentized difference.

Let X0 and X1 be two independent random variables with the binomial Bin(n0, p0) and

Bin(n1, p1) distributions, respectively; let p = p1 − p0. Most commonly used confidence interval

for p is so called the Wald interval (WA). Let p̂i = Xi/ni and p̂ = p̂1− p̂0. Then, the 100(1−α)%

Wald interval is defined by


p̂− z1−α/2

√
p̂0(1− p̂0)

n0

+
p̂1(1− p̂1)

n1

, p̂ + z1−α/2

√
p̂0(1− p̂0)

n0

+
p̂1(1− p̂1)

n1


 , (1)

where zα is the α quantile of the standard normal distribution. Even though this interval is very

simple to use and has been almost universely adapted in biostatistics textbooks, it has been shown

that this interval can behave poorly (Agresti and Caffo, 2000).

Many authors have proposed more complicated alternative intervals that can improve on the

Wald interval. For example, Thomas and Gart (1977), Santner and Snell (1980), Santner and

Yamagami (1993) and Coe and Tamhane (1993) developed methods for constructing “exact”

intervals for p. The coverage probabilities of such confidence intervals are guaranteed to be no less

than the desired nominal level, but the computation of these “exact” intervals is complicated and

the resulting intervals tend to have wide interval lengths.

To search for computationally simpler intervals, Anbar (1983) and Mee (1984) derived two

different asymptotic confidence intervals for p. Newcombe (1998) conducted a comprehensive study

on relative advantages of existing asymptotic methods for constructing confidence intervals for p.

He recommended a method (hereafter called the Newcombe’s hybrid score method) which is based

on the score test for a single proportion (Wilson, 1927) and performs substantially better than

the Wald interval, while being computationally simpler than the “exact” intervals. Newscombe’s
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hybrid score interval with the nominal level of 100(1− α)% is defined by

[
p̂−

(
(p̂1 − l1)

2 + (u0 − p̂0)
2
)1/2

, p̂ +
(
(u1 − p̂1)

2 + (p̂0 − l0)
2
)1/2

]
,

where l1 and u1 are the roots of |p1− p̂1| = z1−α/2[p1(1− p1)/n1]
1/2, and l0 and u0 are the roots of

|p0 − p̂0| = z1−α/2[p0(1 − p0)/n0]
1/2. However, the Newcombe’s hybrid score method still has two

potential drawbacks: (1) its theoretical properties are unknown, and (2) its computation may be

too complex for most biostatistics textbooks.

Most recently Agresti and Caffo (2000) proposed an even simpler method than the Newcombe’s

hybrid score method. This method is a simple adjustment to the Wald interval by adding two

successes and two failures, and they showed by a simulation study that their procedure works

quite well for two-sample comparisons of binomial proportions when the nominal level is 95%. Let

us call their procedure the AC method, and the AC interval is defined by

[
p̃− z1−α/2

√
p̃1q̃1/n1 + p̃0q̃0/n0, p̃ + z1−α/2

√
p̃1q̃1/n1 + p̃0q̃0/n0

]
,

where p̃i = (Xi + 1)/(ni + 2), q̃i = 1 − p̃i for i = 0, 1, and p̃ = p̃1 − p̃0. One major advantage of

the AC method over the other methods lies with its computation and presentation. However, the

AC method also has two potential drawbacks. First, it is unknown whether theoretical support

exists for their simulation conclusion that their interval has good coverage accuracy. Second, since

their proposed method of adding 2 successes and 2 failures was developed specifically for the 95%

nominal, it is unclear whether their proposed method will still have good coverage accuracy when

the pre-set nominal level is different from 95%.

In this paper we obtain an Edgeworth expansion for the studentized difference between two

binomial proportions. Based on the Edgeworth expansion, we propose two new easy to compute

confidence intervals for the difference of two binomial proportions. The first interval directly

corrects skewness in the Edgeworth expansion and can be thought of as an extension of Hall’s

(1982) method for the single proportion. The second one corrects the skewness in the Edgeworth

expansion through a monotone transformation.

The Edgeworth expansion is also used to study the coverage accuracy of the proposed intervals.

We first show that both the intervals have their coverage probabilities converging to the nominal

confidence level at the rate of O(n−1/2), where n is the size of the combined samples. We then
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compare the finite-sample performance of the proposed intervals with the best existing intervals

in simulation studies. Simulation results suggest that in finite samples the new interval based

on the indirect method has the very similar performance to the best existing intervals in terms

of coverage accuracy and average interval length and that the another new interval based on the

direct method has the best average coverage accuracy but could have poor coverage accuracy

when two true binomial proportions are close to the boundary points. This paper is organized

as follows. In Section 2 we give the Edgeworth expansion for the studentized difference. In

Section 3 we describe the two new methods based on this expansion. In Section 4 we evaluate

the finite-sample performance of the proposed methods and compare them to the usual normal

approximation based method, the AC method, and Newcombe’s hybrid score method in terms of

the coverage probability and the average length of the confidence interval. Theoretical derivations

of the Edgeworth expansion and the asymptotic order of the error of the new methods are included

in the Appendix. In Section 5 we contrast our methods with the existing methods in three real

clinical studies.

2. EDGEWORTH EXAPNSION FOR THE STUDENTIZED DIFFERENCE

Let X0 and X1 be two independent binomial random variables with distributions Bin(n0, p0)

and Bin(n1, p1), respectively. Let qi = 1 − pi for i = 0, 1. The most commonly used interval for

p = p1 − p0 is based on the standard normal approximation to the distribution of the studentized

difference in the two sample proportions,

T ≡ p̂− p√
p̂1q̂1/n1 + p̂0q̂0/n0

, (2)

where p̂i = Xi/ni, q̂i = 1− p̂i for i = 0, 1 and p̂ = p̂1 − p̂0.

The normal approximation is a rather crude approximation, especially when sample sizes are

not large; it does not take into consideration the skewness of the underlying distribution which is

often the main source of error of the normal approximation. To see the impact of the skewness, we

develop the Edgeworth expansion for T . To state this Edgeworth expansion we need the following

notation. Let Rn(p0, p1, t) be a periodic function and has a range of [−0.5, 0.5]. Define δ, σ, a,

and b to be

δ =
(

n

n1

)2

p1q1(1− 2p1)−
(

n

n0

)2

p0q0(1− 2p0),
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σ =
(

n

n1

p1q1 +
n

n0

p0q0

)1/2

, a =
δ

6σ2
, and b =

n(1− 2p1)

2n1

− δ

6σ2
,

respectively. Define Q(t) = σ−1(a + bt2), and n = n0 + n1. Now we can state the Edgeworth

expansion for T as follows.

Theorem 1 Assume that p0 and p1 are rational numbers, min(n0, n1) −→ ∞, and n1 = O (n0).

Then,

P (T ≤ t) = Φ(t) + n−1/2Q(t)φ(t)

+
(
nσ2

)−1/2
Rn(p0, p1, t)φ(t) + O

(
n−1loglogn

)
, (3)

where Φ(·) and φ(·) are the cdf and the pdf of the standard normal distribution respectively.

In the Edgeworth expansion (3), Q(t) represents the error due to the skewness of the binomial

distributions, and Rn(p0, p1, t) represents the rounding error. The proof of Theorem 1 is given in

the Appendix. It is worthwhile to note that the reminder term in our Edgeworth expansion is at

rate of n−1 log log n, which is larger than the rate for the one-sample binomial case.

From Theorem 1 we see that if δ is close to 0 (which may happen when p is near 0, or both

p0 and p1 are near boundary point 0 and 1), then the main part of σQ(t) is n(1 − 2p1)t
2/(2n1)

which is larger than the rounding error |Rn(p0, p1, t)| if p1 > (1 + c0)/2 or p1 < (1 − c0)/2 where

c0 = 1/((1 + n0/n1)t
2).

3. TWO NEW CONFIDENCE INTERVALS

We propose two intervals by eliminating the error due to the skewness in the Edgeworth

expansion of T given in Theorem 1. The first approach directly eliminates this error from the

Edgeworth expansion, as suggested in Hall (1982). The resulting two-sided 100(1−α)% skewness-

corrected confidence interval for p is defined as follows:

I1α =

[
p̂−

(
p̂1q̂1

n1

+
p̂0q̂0

n0

)1/2 (
z1−α/2 − n−1/2Q̂(z1−α/2)

)
,

p̂−
(

p̂1q̂1

n1

+
p̂0q̂0

n0

)1/2 (
zα/2 − n−1/2Q̂(zα/2)

)]
,

where Q̂(t) = σ̂−1
(
â + b̂t2

)
. Here â, b̂, σ̂, and δ̂ are estimates of a, b, σ, and δ, respectively. They

are computed by replacing the pi’s in the formulas for a, b, σ, and δ with the p̂i’s.

6

http://biostats.bepress.com/uwbiostat/paper201



Another method for removing the skewness is to use a monotone transformation of T , derived

from the Edgeworth expansion. This method was originally introduced by Hall (1992) for removing

the skewness of a statistic in an one-sample setting. The monotone transformation is defined by

(see Hall,1992)

g(T ) = n−1/2âσ̂ + T + n−1/2
(
b̂σ̂

)
T 2 + n−1 · 1

3

(
b̂σ̂

)2
T 3,

where σ̂ = {(n/n1) · p̂1q̂1 + (n/n0) · p̂0q̂0}1/2. Using this transformation, we can construct another

two-sided 100(1− α)% confidence interval for p,

I2α =

[
p̂−

(
p̂1q̂1

n1

+
p̂0q̂0

n0

)1/2

g−1(z1−α/2), p̂−
(

p̂1q̂1

n1

+
p̂0q̂0

n0

)1/2

g−1(zα/2)

]
,

where

g−1(T ) = n1/2
(
b̂σ̂

)−1
{(

1 + 3
(
b̂σ̂

) (
n−1/2T − n−1âσ̂

))1/3 − 1
}

.

The following theorem gives the asymptotic coverage probabilities of the two proposed intervals.

The proof for this result is given in the Appendix.

Theorem 2

P (p ∈ Ikα) = 1− α + O(n−1/2), k = 1, 2.

4. A NUMERICAL STUDY

In this section, we conduct a numerical study to assess the finite-sample performance of the

two newly proposed intervals, the direct Edgeworth expansion method, denoted by EE, and the

transformation method, denoted by TT. In the numerical study we also compare their performance

with the two of the better existing methods on the basis of coverage probability and expected

length, Newscombe’s hybrid score method (NH) and the AC method, as well as the commonly

used Wald interval (WA). To compare the relative performance of EE, TT, NH, AC, and WA

intervals for p = p1 − p0, we compute their coverage probabilities and the average lengths. For

fixed values of (p0, p1) and (n0, n1), we let Cn0,n1(p0, p1) and Wn0,n1(p0, p1) denote the coverage

probability and the expected length of a two-sided (1 − α)% level confidence interval L(X0, X1)

for p = p1 − p0, given n0, n1, p0, and p1, respectively. Then,

Cn0,n1(p0, p1) = E{I[p1−p0∈L(x0,x1)] | n0, n1, p0, p1} =
n0∑

x0=0

n1∑

x1=0

bin(x0; n0, p0)bin(x1, n1, p1)I[p∈L(x0,x1)],

(4)
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where I[p∈L(x0,x1)] is 1 if p ∈ L(x0, x1) and zero otherwise, and bin(xk; nk, pk) is the binomial

probability when Xk = xk. Denote the lower and upper endpoints of L(x0, x1) to be lower(x0, x1)

and upper(x0, x1), respectively. Then, the expected interval length for L(x0, x1) is calculated using

the formula,

Wn0,n1(p0, p1) =
n0∑

x0=0

n1∑

x1=0

{upper(x0, x1)− lower(x0, x1)}bin(x0; n0, p0)bin(x1; n1, p1).

We first compare the performance of the five intervals for fixed values of p = p1 − p0 as p1

varies on (0,1). In Figures 1-3, we plot the coverage probability Cn0,n1(p0, p1) for the five intervals,

p1 varying over the points given by 0.05 + 0.02j for j = 0, 1, · · · , 45 as p fixed at 0, p1 varying over

the points given by 0.5+0.01j for j = 0, 1, · · · , 45 as p fixed at 0.4, and p1 varying over the points

given by 0.85 + 0.002j for j = 0, 1, · · · , 50 as p fixed at 0.8, for (n1, n0) = (15, 15), (30, 30), and

(30, 15), respectively.

FIGURES 1-3 GO HERE

Tables 1-3 summarize the average coverage probability of three nominal levels confidence in-

tervals for fixed values of p = p1− p0, averaging with respect to p1’s. Table 4 presents the average

length of the confidence intervals for fixed p = p1 − p0, averaging with respect to p1’s.

TABLES 1-4 GO HERE

We then compare the performance of the five intervals in three averaging performance measures

of Cn0,n1(p0, p1) and Wn0,n1(p0, p1) over the 10000 randomly chosen values of p0 and p1 from the

unit square [0,1]x[0,1]. The first two measures are the average coverage probability and average

expected length, which are defined by

∫ 1

0

∫ 1

0
Cn0,n1(p0, p1)dp0dp1, and

∫ 1

0

∫ 1

0
Wn0,n1(p0, p1)dp0dp1,

respectively; the last one is the proportion of the chosen values of p for which the coverage

probability of the nominal 90% interval falls below 0.88, which is defined by

# of 10,000 pairs (p0, p1) : Cn0,n1(p0, p1) < 0.88

10, 000
.

Since averaging performance measures do not provide information on effects of particular values

of p0 and p1 on the coverage probability and expected interval length, we also plot Cn0,n1(p0, p1)

8
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as functions of p0 and p1 for the EE, TT, NH, and AC intervals when (n0, n1)=(15, 15) and (30,

30), respectively. The statistic T is undefined when (X0, X1) is (0, 0), (0, n1), (n0, 0) or (n0, n1).

In our study, we replace Xk by Xk + 0.5 and nk by nk + 1 for k = 1, 0. This is motivated by a

similar technique used by Agresti and Coull (1998).

Table 5 displays the summary performances of the five intervals.

TABLE 5 GOES HERE

Figures 4-5 display the coverage probabilities of the four intervals as functions of p0 and p1 over

a grid of points given by (p0, p1)=(0.02i, 0.02j) for i, j = 0, 1, . . . , 50 when (n0, n1) = (15, 15) and

(30, 30), respectively.

FIGURES 4-5 GO HERE

From the results on the summary measures in Tables 1-5, we conclude that the two new

intervals and the two best existing intervals all have good coverage accuracy and are superior to

the Wald interval. Among the four good intervals, the direct Edgeworth expansion method has

the best average coverage accuracy, closely followed by the Newscombe’s hybrid score method

and the transformation method, and then by the AC method. However, when looking at effects

of particular values of p0 and p1 on the coverage accuracy in Figures 1-5, we see that the direct

Edgeworth expansion method can have the poor coverage accuracy when p0 and p1 are near 0 or

1. The transformation method still has very similar coverage accuracy to those of the existing

methods.

5. REAL EXAMPLES

In this section, we contrast our methods with the existing methods in three real datasets.

5.1 A study on prostate cancer

Tempany et al (1994) conducted a study on the accuracy of conventional magnetic resonance

imaging (MRI) in detecting advanced stage prostate cancer (Tempany et al, 1994). This study

was a multi-center trial. We are interested in assessing whether the sensitivity of the conventional

MRI is the same between two hospitals. Sensitivity of a test is defined as the probability of giving

a positive result in a patient with the advanced stage prostate cancer. We summarize the data in

Table 2.
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TABLE 6 GOES HERE

Let p1 be the sensitivity of the MRI among the patients in hospital 1 and p0 be the sensitivity of the

MRI among the patients in hospital 2. Using the methods described in this paper, we derived 95%

confidence intervals for p1 − p0. The resulting intervals are [−0.361, 0.074] using the direct Edge-

worth expansion method, [−0.361, 0.074] using the transformation method, [−0.364, 0.076] using

the Wald method, [−0.347, 0.074] using the Newscombe’s hybrid score method, and [−0.353, 0.077]

using the Agresti and Caffo method. Although there is some difference among these four intervals,

they point to the same conclusion that there is no statistical difference between two proportions.

It is worth to point out that although the Wald interval in this example has the similar length as

the other methods, in general it has a shorter length than the two new methods.

5.2 A study on sudden infant death syndrome (SIDS) children

Fisher and Van Belle (1993) reported a study by Peterson et al (1980) on the effect of the

genetic component on sudden infant death syndrome (SIDS). In the study, two groups of twins

with at least one SIDS child were examined to see whether both twins died during the study

period. In the one group, all twins are identical ones, and in the another group all twins are

fraternal ones. We summarize the data in Table 7.

TABLE 7 GOES HERE

Let p1 be the probability that both twins died for an identical twin and p0 be the probability that

both twins died for an fraternal twin. Using the methods described in this paper, we derived 95%

confidence intervals for p1−p0. The resulting intervals are [0.005, 0.516] using the direct Edgeworth

expansion method, [−0.024, 0.544] using the transformation method, [−0.081, 0.426] using the

Wald method, [−0.011, 0.483] using the Newscombe’s hybrid score method, and [−0.058, 0.452]

using the Agresti and Caffo method. The direct Edgeworth expansion method gives an opposite

conclusion than the other methods. Since the observed proportions are 0.1 and 0.03, respectively,

we may assume that p0 is close to 0.0. From the simulation results, we know that in this case, the

transformation method produces a better confidence interval than the direct Edgeworth method.

Therefore, we would use [−0.024, 0.544] as our 95% confidence interval for p1 − p0.

5.3 A vaccine example
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To illustrate the conservativeness of an “exact” confidence interval for p1 − p0, we used the

data from a vaccine trial to compute the one commonly used “exact” interval that was proposed

by Santner and Snell (1980) and implemented by Cytel software in its 3 verion of StatXact. This

example also illustrates that the Wald interval produces a slightly different interval. We summarize

the data in Table 8.

TABLE 8 GOES HERE

The 95% confidence interval for p1 − p0 is [0.046, 0.467] using the direct Edgeworth expansion

method, [0.051, 0.497] using the transformation method, [0.125, 0.542] using the Wald method,

and [−0.019, 0.629] using the “exact” interval method. From these intervals, we see that the exact

interval has the longest length and that the Wald interval has the smallest length. The result from

the exact method is different from the other methods. Although the Wald method leads to the

same conclusion of no statistical difference as the two new methods, it produces a lower endpoint

that is much larger than the onses given by the two new methods.

6. DISCUSSION

Agresti and Caffo (2000) have shown by simulation that the standard Wald interval for the

difference in two binomial proportions has poor coverage accuracy. In this paper, we first derived

Edgeworth expansion for Studentized t statistics. We then derived two new confidence intervals for

the difference in the two binomial proportions. The newly proposed methods share the same good

property of being computational simple as the two of the better existing intervals. However, unlike

the two of the existing intervals, we have shown that the proposed intervals also have a sound

theoretical property that their coverage probabilities converge to the nominal level at the rate of

O(n−1/2). Our simulation study suggests one of the two proposed method, the transformation

method, has similar coverage accuracy and length with the two best existing intervals. The other

one has the best average coverage accuracy over 10,000 values of (p0, p1) from [0,1]x[0,1], but has

the worst coverage accuracy when p0 and p1 are are close to the boundary points. Among the

two newly proposed methods, we recommend the direct Edgeworth corrected interval (EE) if p0

and p1 are not close to the boundary points; otherwise we recommend the transformation interval

(TT).
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Although our two new intervals have much better coverage accuracy than the Wald inter-

val, they do not have much improvement over the best existing intervals. However, it is worth

noting that our methods for the problem of two-sample interval estimation are based on general

transformation and skewness correction techniques whereas the others are specifically targeted at

this problem. Thus, our successful application of these two general techniques to the problem of

two-sample interval estimation adds further credibility to these general techniques. This result

naturally leads to a future research topic that is whether it is possible to use the transformation

and skewness correction methods for other problems where the Wald interval performs poorly,

such as for the odds ratio.
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APPENDIX

Proof of Theorem 1:

To derive the Edgeworth expansion for the studentized sample difference T , as stated in The-

orem 1, we first derive the Edgeworth expansion for the standardized sample difference, Tn, to

be defined below. Note that for each i = 0, 1, we can write Xi =
∑ni

k=1 Xik where Xik’s are i.i.d.

Bernoulli random variables with parameter pi. Then the standardized sample difference is defined

as follows.

Tn ≡ p̂− p√
p1q1/n1 + p0q0/n0

=
n∑

k=1

Dk√
nσ

where

Dk =




−(1 + n1/n0) · (X0k − p0), k = 1, 2, · · · , n0,

(1 + n0/n1) · (X1k − p1), k = n0 + 1, n0 + 2, · · · , n.

Our derivation of the Edgeworth expansion for Tn is different from that in Hall (1982) for

one sample binomial proportion because Tn is no longer a sum of i.i.d. discrete random variables

but is a sum of independent discrete random variables with different distributions. To derive the
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Edgeworth expansion for Tn we will use a result by Kolassa (1995, page 170) on the Edgeworth

expansion for the sum of independent but nonidentically distributed random variables supported

on the same lattice. Kolassa’s result was originally developed for the Edgeworth expansion of the

rank sum test statistics.

To apply the Kolassa’s result to our setting, we need to show that the Dk’s are independent

random variables supported on the same lattice. Since p0 and p1 are rational, we can take a positive

integer l large enough such that l(1 + n1/n0), l(1 + n0/n1), l(1 + n1/n0)p0 and l(1 + n0/n1)p1 are

integers. Let ∆ = 1/l and let A be a constant such that A/∆ is an integer. Also let

k1 = (1 + n1/n0)p0/∆− A/∆, k2 = (1 + n1/n0)p0/∆− ((1 + n1/n0)/∆ + A/∆),

k3 = −(1 + n0/n1)p1/∆− A/∆, and k4 = −(1 + n0/n1)p1/∆ + ((1 + n0/n1)/∆− A/∆),

then {(1 + n1/n0)p0,−(1 + n1/n0)(1− p0),−(1 + n0/n1)p1, (1 + n0/n1)(1− p1)} = {A + k1∆, A +

k2∆, A + k3∆, A + k4∆} fall in the lattice {A + ∆Z} = {..., A− 2∆, A−∆, A, A + ∆, A + 2∆, ...}.
Thus the Dk’s are all constrained to the same lattice {A + ∆Z}. Further, they are independent

with mean zero and finite variances. Also, it is not difficult to show that Tn has mean zero and

variance 1, and its third and fourth cumulants are

κ3 =
1√
nσ3

[(
n

n1

)2

p1q1(1− 2p1)−
(

n

n0

)2

p0q0(1− 2p0)

]
≡ δ√

nσ3

and

κ4 =
1

nσ4

[(
n

n0

)3 (
E(X01 − p0)

4 − 3p2
0q

2
0

)
+

(
n

n1

)3 (
E(X11 − p1)

4 − 3p2
1q

2
1

)]

respectively. By the theorem in Kolassa (1995, page 170), we obtain that Tn has the following

Edgeworth expansion:

P (Tn ≤ t) = Φ(t) +
(
nσ2

)−1/2 · δ

6σ2

(
1− t2

)
φ(t)

+
(
nσ2

)−1/2
Rn0(p0, p1, t)φ(t) + O

(
n−1

)
(5)

where Rn0(p0, p1, t) is a function taking values in [−0.5, 0.5] and represents the rounding error,

whose exact form can be found in Kolassa (1995, page 170). Next we use the Edgeworth expansion

for Tn to obtain an Edgeworth expansion for T . Note that

P (T ≤ t) = P


 p̂− p√

((p̂− p) + (p̂0 + p)) (1− ((p̂− p) + (p̂0 + p))) /n1 + p̂0q̂0/n0

≤ t


 .
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By solving the inequality for p̂− p in the right side of the above equation, we obtain that

P (T ≤ t) = P
(
Tn ≤ t̃0

)
, (6)

where

t̃0 =

(
1

p1q1/n1 + p0q0/n0

)1/2 (
(1− 2p̂0 − 2p) t2

2 (n1 + t2)

+
(n/n1)

1/2t [4 (p(q − 2p̂0) + (1 + n1/n0)p̂0q̂0) /n + t2 (1 + 4n1p̂0q̂0/n0) /(n1n)]
1/2

2 (1 + t2/n1)


 .

Let us define t0 to be the t̃0 except that p̂0 and q̂0 are replaced by p0 and q0 respectively, i.e.,

t0 =

(
1

p1q1/n1 + p0q0/n0

)1/2 (
(1− 2p1) t2

2 (n1 + t2)

+
t [4 (p1q1/n1 + p0q0/n0) + t2 (1 + 4p0q0n1/n0) /n2

1]
1/2

2 (1 + t2/n1)


 .

Then,

P
(
Tn ≤ t̃0

)
= P (Tn ≤ t0) +

(
P

(
Tn ≤ t̃0

)
− P (Tn ≤ t0)

)

≡ I1 + I2. (7)

The Edgeworth expansion (5) may be used to obtain an expansion for I1. We have, after some

algebra, that

I1 = Φ(t0) +
(
nσ2

)−1/2 · δ

6σ2

(
1− t20

)
φ(t0)

+
(
nσ2

)−1/2
Rn0(p0, p1, t0)φ(t0) + O

(
n−1

)

= Φ(t) +
(
nσ2

)−1/2 (
a + bt2

)
φ(t)

+
(
nσ2

)−1/2
Rn(p0, p1, t)φ(t) + O

(
n−1

)
. (8)

Now we show that I2 = O (n−1loglogn). By p̂0 − p0 = O
(
n−1/2loglogn

)
a.s., we can find a

positive constant C such that |t̃0 − t0| ≤ C (n−1loglogn) a.s.. That is, the interval formed by t̃0

and t0 is contained by (t0 − C (n−1loglogn) , t0 + C (n−1loglogn)] a.s.. It follows from (5) that

|I2| ≤ P
(
Tn ≤ t0 + C

(
n−1loglogn

))
− P

(
Tn ≤ t0 − C

(
n−1loglogn

))

= O
(
n−1loglogn

)
(9)

14

http://biostats.bepress.com/uwbiostat/paper201



Theorem 1 then follows from (7)–(9).

Note the remainder term in the Edgeworth expansion (3) has the same rate as that of P
(
Tn ≤ t̃0

)
−

P (Tn ≤ t0) in (9) whereas that for the Edgeworth expansion for a single studentized sample pro-

portion has a rate of O (n−1) (Hall, 1982). This is because in the one-sample case we do not

need to consider this difference. In the two-sample case, however, t̃0 is involved in p̂0 which has

a convergence rate of O
(
n−1/2loglogn

)
with probability one, the remainder term has a rate of

O (n−1loglogn).

Proof of Theorem 2:

First we show that

P (p ∈ I1α) = 1− α + O
(
n−1/2

)
.

For any 0 < α < 1, we have

P
(
T ≤ zα − n−1/2Q̂ (zα)

)

= P
(
T ≤ zα − n−1/2Q (zα)

)

+
[
P

(
T ≤ zα − n−1/2Q̂ (zα)

)
− P

(
T ≤ zα − n−1/2Q (zα)

)]

≡ J1 + J2.

Noting that Φ(x), φ(x) and q1(x) are smooth functions of x, by Theorem 1 and Taylor expansion,

we obtain that

J1 = Φ
(
zα − n−1/2Q(zα)

)
+ n−1/2Q

(
zα − n−1/2Q(zα)

)
φ

(
zα − n−1/2Q(zα)

)

+
(
nσ2

)−1/2
gn

(
p0, p1, zα − n−1/2Q(zα)

)
φ

(
zα − n−1/2Q(zα)

)
+ O

(
n−1loglogn

)

= Φ (zα) + O
(
n−1/2

)
= α + O

(
n−1/2

)
.

For the term J2, by p̂i − pi = O
(
n−1/2loglogn

)
, a.s., we can get

Q̂(zα)−Q(zα) = o (1) , a.s.

Hence by Theorem 1,

J2 = P
{
zα − n−1/2Q(zα) < T ≤ zα − n−1/2Q(zα)− n−1/2

(
Q̂(zα)−Q(zα)

)}

≤ P
{
zα − n−1/2Q(zα) < T ≤ zα − n−1/2Q(zα) + Cn−1/2

}

= Cn−1/2φ
(
zα − n−1/2Q(zα)

)
+ O

(
n−1/2

)
= O

(
n−1/2

)
.
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Therefore,

P (p ∈ I1α) = P
(
T ≤ z1−α/2 − n−1/2Q̂

(
z1−α/2

))
− P

(
T ≤ zα/2 − n−1/2Q̂

(
zα/2

))

= 1− α + O
(
n−1/2

)
. (10)

Now we show that

P (p ∈ I2α) = 1− α + O
(
n−1/2

)
.

Using a Taylor expansion on the function (1 + y)1/3, we get

[
1 + 3

(
b̂σ̂

) (
n−1/2x− n−1âσ̂

)]1/3 − 1

= n−1/2
(
b̂σ̂

)
x− n−1

(
b̂σ̂

) [
(âσ̂) +

(
b̂σ̂

)
x2

]
+ Op

(
n−3/2

)
,

hence we have

g−1(x) = x− n−1/2Q̂(x) + O
(
n−1

)
.

An argument similar to the proof of (10) leads to P (p ∈ I2α) = 1 − α + O
(
n−1/2

)
. The proof of

Theorem 2 is thus completed.

REFERENCES

Agresti, A. and Coull, B. A. (1998). Approximate is better than “exact” for interval estimation

of binomial proportion. The American Statistician, 52, 119-126.

Agresti, A. and Caffo, B. (2000). Simple and effective confidence intervals for proportions and

differences of proportions result from adding two successes and two failures. The American

Statistician, 54, 280-288.

Anbar, D. (1983). On estimating the difference between two probabilities, with special reference

to clinical trials. Biometrics, 39, 257-262.

Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion.

Statistical Science, 16, 101-133.

Brown, L. D., Cai, T. T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion

and asymptotic expansions. Ann. of Statist., 30, 160-201.

16

http://biostats.bepress.com/uwbiostat/paper201



Coe, P. R. and Tamhane, A. C. (1993). Small sample confidence intervals for the difference, ratio

and odds ration of two success probabilities. Commun. in Statist.–Simula., 22, 925-938.

Cytel Software. (1995). StatXact, Version 3. Cambridge, MA.

Fisher, L. D. and Van Belle, G. (1993). Biostatistics: A methodology for the health sciences . New

York, U.S.A.: Wiley & Sons.

Hall, P. (1982). Improving the normal approximation when constructing one-side confidence

intervals for binomial or Poisson parameters. Biometrika, 69, 647-652.

Hall, P. (1992). On the removal of skewness by transformation. J. Roy. Statist. Soc., B 54,

221-228.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion Springer, New York.

Kolassa, J. E. (1995). Edgeworth approximations for rank sum test statistics. Statist. & Probab.

Lett., 24, 169-171.

Mee, R. W. (1984). Confidence bounds for the difference between two probabilities (letter).

Biometrics, 40, 1175-1176.

Newcombe, R. G. (1998). Interval estimation for the difference between independent proportions:

comparison of eleven methods. Statistics in Medicine, 17, 873-890.

Peterson, D. R., Chinn, N. M., and Fisher, L. D. (1980). The sudden infant death syndrome:

repetitions in families. Journal of Pediatrics, 97, 265-267.

Santner, T. J. and Snell, M. K. (1980). Small sample confidence intervals for p1 − p2 and p1/p2

in 2× 2 continence tables. J. Amer. Statist. Assoc., 75, 386-394.

Santner, T. J. and Yamagami, S. (1993). Invariant small sample confidence intervals for the

difference of two success probabilities. Commun. in Statist.–Simula., 22, 33-59.

Thomas, D. G. and Gart, J. J. (1977). A table of exact confidence limits for differences and ratios

of two proportions and their odd ratios. J. Amer. Statist. Assoc., 72, 73-76.

Tempany, C. M., Zhou, X. H., Zerhouni, E. A., et al (1994). Staging of prostate cancer with

MRI: the results of Radiology Diagnostic Oncology Group project: comparison of different

techniques, including the endorectal coil. Radiology, 192, 47-54.

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. J. Amer.

Statist. Assoc., 22, 209-212.

17

Hosted by The Berkeley Electronic Press



Table 1. Average coverage probability of nominal 90% confidence intervals for fixed p = p1 − p0,

averaging with respect to p1’s.

p (n1, n0) EE TT NH AC WA

0.0 (15,15) 89.64 92.51 91.12 92.64 85.97

(30,30) 90.02 91.02 90.51 91.61 88.89

(30,15) 90.05 91.76 90.52 91.97 86.08

0.4 (15,15) 90.28 91.34 89.08 89.39 88.49

(30,30) 89.82 90.19 89.69 90.60 89.65

(30,15) 89.54 89.76 89.82 90.02 87.74

0.8 (15,15) 90.53 88.61 92.78 92.78 79.25

(30,30) 90.40 88.56 91.44 91.44 83.03

(30,15) 91.92 89.59 90.74 90.60 83.24

Note:

When p = 0, p1 varies over the points given by 0.05 + 0.02j for j = 0, 1, · · · , 45.

When p = 0.4, p1 varies over the points given by 0.5 + 0.01j for j = 0, 1, · · · , 45.

When p = 0.8, p1 varies over the points given by 0.85 + 0.002j for j = 0, 1, · · · , 50.

18

http://biostats.bepress.com/uwbiostat/paper201



Figure 1: Coverage probability of the various confidence intervals for p = p1 − p0
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Figure 2: Coverage probability of the various confidence intervals for p = p1 − p0
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Figure 3: Coverage probability of the various confidence intervals for p = p1 − p0

Level 0.99, n1=n0= 30, p=p1-p0=0

p1

c
o
v
e
ra

g
e

0.2 0.4 0.6 0.8

0
.8

5
0
.9

5

NA

EE

TT

NH

AC

Level 0.99, n1=30,n0=15, p=p1-p0=0

p1
c
o
v
e
ra

g
e

0.2 0.4 0.6 0.8

0
.8

5
0
.9

5

Level 0.99, n1=n0=30, p=p1-p0=0.4

p1

c
o
v
e
ra

g
e

0.5 0.6 0.7 0.8 0.9

0
.8

5
0
.9

5

Level 0.99, n1=30, n0=15, p=p1-p0=0.4

p1

c
o
v
e
ra

g
e

0.5 0.6 0.7 0.8 0.9

0
.8

5
0
.9

5

Level 0.99, n1=n0=30, p=p1-p0=0.8

p1

c
o
v
e
ra

g
e

0.86 0.88 0.90 0.92 0.94

0
.8

5
0
.9

5

Level 0.99, n1=30, n0=15, p=p1-p0=0.8

p1

c
o
v
e
ra

g
e

0.86 0.88 0.90 0.92 0.94

0
.8

5
0
.9

5

21

Hosted by The Berkeley Electronic Press



Figure 4: Coverage probability of the various two-sided 90% intervals when n1=15 and n0=15
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Figure 5: Coverage probability of the various two-sided 90% intervals when n1=30 and n0=30
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Table 2. Average coverage probability of nominal 95% confidence intervals for fixed p = p1 − p0,

averaging with respect to p1’s.

p (n1, n0) EE TT NH AC WA

0.0 (15,15) 95.73 97.21 95.66 97.02 91.02

(30,30) 94.61 96.22 95.79 95.79 94.00

(30,15) 93.65 95.69 96.07 96.33 91.49

0.4 (15,15) 94.46 95.41 95.22 95.22 90.93

(30,30) 94.72 95.31 95.09 94.77 93.58

(30,15) 93.53 94.12 94.92 95.28 92.88

0.8 (15,15) 94.01 92.64 93.02 97.23 80.97

(30,30) 94.32 95.28 93.46 95.30 93.76

(30,15) 95.35 93.66 94.71 94.70 89.36

Table 3. Average coverage probability of nominal 99% confidence intervals for fixed p = p1 − p0,

averaging with respect to p1’s.

p (n1, n0) EE TT NH AC WA

0.0 (15,15) 97.08 99.37 99.14 99.14 94.73

(30,30) 97.52 99.30 99.19 99.13 98.27

(30,15) 97.40 98.51 99.21 99.20 96.53

0.4 (15,15) 97.59 98.80 98.54 98.96 96.88

(30,30) 98.37 98.92 98.92 99.01 98.30

(30,15) 97.76 98.21 98.83 98.87 97.34

0.8 (15,15) 97.85 99.43 97.48 99.75 95.77

(30,30) 98.65 98.14 97.36 99.48 94.71

(30,15) 99.34 98.65 97.42 99.74 91.97
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Table 4. Average length of the confidence intervals for fixed p = p1 − p0,

averaging with respect to p1’s.

nominal level (n1, n0) EE TT NH AC WA

90% (15,15) 0.4683 0.4786 0.4634 0.4693 0.4609

(30,30) 0.3360 0.3396 0.3344 0.3368 0.3340

(30,15) 0.4068 0.4117 0.4029 0.4081 0.4014

95% (15,15) 0.5580 0.5763 0.5479 0.5593 0.5492

(30,30) 0.4004 0.4066 0.3975 0.4013 0.3980

(30,15) 0.4848 0.4934 0.4771 0.4863 0.4783

99% (15,15) 0.7333 0.7844 0.7010 0.7350 0.7218

(30,30) 0.5262 0.5411 0.5170 0.5274 0.5231

(30,15) 0.6371 0.6588 0.6139 0.6391 0.6285
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Table 5. Summary of performance of nominal 90% confidence interval for p = p1 − p0, averaging

with respect to uniform distributions for (p0, p1): p0 ∼ U [0, 1], p1 ∼ U [0, 1]

Characteristic (n1, n0) EE TT NH AC WA

Ave. Cov. (15,15) 0.895 0.910 0.905 0.912 0.863

(30,30) 0.897 0.905 0.903 0.907 0.882

(60,60) 0.898 0.903 0.902 0.904 0.891

(30,15) 0.898 0.904 0.905 0.911 0.866

(60,30) 0.898 0.902 0.903 0.906 0.884

Length (15,15) 0.469 0.479 0.464 0.470 0.462

(30,30) 0.335 0.339 0.334 0.336 0.333

(60,60) 0.239 0.240 0.239 0.240 0.239

(30,15) 0.407 0.411 0.403 0.408 0.401

(60,30) 0.291 0.293 0.290 0.292 0.290

Cov. Prob.< .88 (15,15) 0.234 0.072 0.086 0.029 0.674

(30,30) 0.173 0.038 0.025 0.013 0.269

(60,60) 0.098 0.009 0.006 0.003 0.076

(30,15) 0.202 0.081 0.006 0.008 0.713

(60,30) 0.093 0.017 0.001 0.003 0.186

Note:

k = 10000 observations for (p1, p0).

Ave. Cov.= mean of coverage probabilities C(n0, p0; n1, p1)’s.

Length = mean of expected confidence interval lengths.

Cov. Prob. = proportion of cases with C(n0, p0; n1, p1) < 0.88.
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Table 6. Test results of the conventional MRI among patients with advanced stage prostate

cancer

Hospital Positive Negative Total

Hospital 1 18 17 35

Hospital 2 27 14 41

Table 7. Data on SIDS children

Twin type One death Two deaths Total

Identical 8 2 10

Fraternal 35 1 36
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