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Biologic Interaction and Their Identification

Tyler J. VanderWeele and James Robins

Abstract

The definitions of a biologic interaction and causal interdependence are recon-
sidered in light of a sufficient-component cause framework. Various conditions
and statistical tests are derived for the presence of biologic interactions. The con-
ditions derived are sufficient but not necessary for the presence of a biologic in-
teraction. Through a series of examples it is made evident that in the context of
monotonic effects, but not in general, the conditions which are derived are closely
related but not identical to effect modification on the risk difference scale.



1. Introduction

The distinction between a biologic interaction (or synergism) and a statistical interaction has fre-
quently been noted (Blot and Day, 1979; Rothman et al., 1980; Saracci, 1980). In the case of binary
variables, concrete attempts have been made to articulate which types of counterfactual response
patterns would constitute instances of interdependent e¤ects (Miettinen, 1982; Miettinen, 1985;
Greenland and Poole, 1988). In what follows we reconsider the de�nition of causal interdependence
and its relation to that of biologic interaction or synergism in light of the su¢ cient-component cause
framework (Rothman, 1976). Consideration of this framework gives rise to a de�nition of "de�nite
interdependence" which constitutes a su¢ cient but not necessary condition for the presence of a
biologic interaction. We then derive various statistical tests for the presence of biologic interac-
tions and give a number of examples which illustrate the di¤erence between the concepts of de�nite
interdependence and e¤ect modi�cation on the risk di¤erence scale.

2. The De�nition of a Biologic Interaction

Suppose that D and two of its causes, E1 and E2, are binary variables taking values 0 or 1. In the
discussion that follows E1 and E2 are treated symmetrically so that E1 could be relabeled as E2 and
E2 could be relabeled as E1. We assume a deterministic counterfactual model. Let Dij(!) be the
counterfactual value of D for individual ! if E1 were set to i and E2 were set to j. For event E we
will denote the complement of the event by E. The probability of an event E occurring, P (E = 1),
we will frequently simply denote by P (E). If there were some individual ! for whom D10(!) =
D01(!) = D00(!) = 0 but for whom D11(!) = 1 we would say that there was present a biologic
interaction between the e¤ect of E1 and E2 on D because in such a case there exists an individual
for whom E1 or E2 alone is insu¢ cient for D but for whom E1 and E2 together yield D. There
is thus joint action between E1 and E2 and so we would speak of a biologic interaction. Similarly
if there were individuals for whom D11(!) = D01(!) = D00(!) = 0 and D10(!) = 1; or for whom
D11(!) = D10(!) = D00(!) = 0 and D01(!) = 1; or for whom D11(!) = D01(!) = D10(!) = 0 and
D00(!) = 1 we would again say that a biologic interaction was present. In the �rst of these three
additional cases, there is a biologic interaction because only E1 and E2 together imply D; in the
second case because only E1 and E2 together imply D; and in the third case because only E1 and
E2 together imply D. We have considered four di¤erent response patterns which manifest what
might be called a biologic interaction. We will see below that these four response patterns and in
fact two others are closely related to synergism within the su¢ cient-component cause framework.
Miettinen (1982, 1985) classi�ed the various response patterns which arise from two binary

causes, E1 and E2, and a binary outcome D into sixteen di¤erent response types according to the
individuals�counterfactual outcomes as enumerated in Table 1.
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Table 1 Enumeration of response patterns to four possible exposure combinations.
Type E1 = 1; E2 = 1 E1 = 0; E2 = 1 E1 = 1; E2 = 0 E1 = 0; E2 = 0
1 1 1 1 1
2 1 1 1 0
3 1 1 0 1
4 1 1 0 0
5 1 0 1 1
6 1 0 1 0
7 1 0 0 1
8 1 0 0 0
9 0 1 1 1
10 0 1 1 0
11 0 1 0 1
12 0 1 0 0
13 0 0 1 1
14 0 0 1 0
15 0 0 0 1
16 0 0 0 0

Types 8, 10, 12, and 14 were classi�ed by Miettinen as instances of causal interdependence. Types
3, 5, 7 and 9 were classi�ed as instances of preventive interdependence. Miettinen thus included
types 3, 5, 7, 8, 9, 10, 12, and 14 as those which constituted interdependent e¤ects. Greenland and
Poole (1988) criticized this classi�cation because it was not invariant to interchanging the reference
categories (i.e. relabeling for E1 or for E2 the label "1" as "0" and "0" as "1"). Type 15 for
instance which is not classi�ed as exhibiting causal interdependence in Miettinen�s system would
become a type 12 responder (which Miettinen did classify as exhibiting causal interdependence) if
E2 = 0 were relabeled E2 = 1 and vice versa. Greenland and Poole therefore partitioned the types
into equivalence classes which were invariant under the recoding of exposure indicators. Under the
classi�cation of Greenland and Poole, the equivalence class of types 7 and 10 is invariant and is said
to exhibit mutual antagonism; the class composed of types 8, 12, 14 and 15 is invariant and consists
of those types in which disease occurs for only one exposure combination; the class of types 2, 3,
5 and 9 is invariant and consists of those types in which disease occurs for exactly three exposure
combinations. Under the classi�cation of Greenland and Poole, these three classes constituting
types 2, 3, 5, 7, 8, 9, 10, 12, 14 and15 are all said to represent causal interdependence. Greenland
and Poole note that if none of types 2, 3, 5, 7, 8, 9, 10, 12, 14 or 15 are present then the causal risk
di¤erence will be additive so that E[D11] � E[D00] = (E[D10] � E[D00]) + (E[D01] � E[D00]) where
E denotes the average in the study population. It may be discerned, however, that Greenland and
Poole�s classi�cation is insu¢ ciently stringent for associating causal interdependence with a biologic
interaction.
In the analysis that follows we will frequently use the disjunctive or OR operator,

W
, which is

de�ned by a
W
b = a + b � ab and is such that a

W
b = 1 if and only if either a = 1 or b = 1. A

conjunction or product of the events X1; :::; Xn will be written as X1:::Xn so that X1:::Xn = 1 if and
only if each of the the events X1; :::; Xn takes the value 1. Under the su¢ cient-component cause
framework (Rothman 1976), if S1; :::; Sn are all the su¢ cient causes for D then D = S1

W
:::
W
Sn

and each Si is made up of some product of components, F i1; :::; F
i
mi
, which are binary so that

Si = F i1:::F
i
mi
. Following Rothman (1976; Koopman, 1981), we will say that two causes, E1 and

E2, for some outcome D, exhibit synergism (or a biologic interaction) if E1 and E2 are ever present
together or "co-participate" in the same su¢ cient cause. If E1 and E2 are present together in the
same su¢ cient cause then the two causes again have a biologic interaction and E1 and E2 are said
to exhibit antagonism; in this case it could also be said that E1 and E2 exhibit synergism.
There are certain correspondences between response types and sets of su¢ cient causes. Green-
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land and Poole (1988), in the case of two binary causes, enumerate nine di¤erent su¢ cient causes
each involving some combination of E1 and E2 and their complements along with certain binary
background causes. We may label these background causes as A0; A1; A2; A3; A4; A5; A6; A7; A8.
The nine di¤erent su¢ cient causes Greenland and Poole give are then A0, A1E1, A2E1, A3E2,
A4E2, A5E1E2, A6E1E2, A7E1E2 and A8E1E2. We thus have that

D = A0
W
A1E1

W
A2E1

W
A3E2

W
A4E2

W
A5E1E2

W
A6E1E2

W
A7E1E2

W
A8E1E2:

If one of A5; A6; A7; A8 were non-zero, it would then be proper to speak of a biologic interaction
between E1 and E2.
Knowing whether there is a biologic interaction between E1 and E2 will in general require having

some knowledge of the causal mechanisms for the outcome D. For although a particular set of
su¢ cient causes along with the presence or absence of the various background causes A0, A1, A2,
A3, A4, A5, A6, A7, A8 for a particular individual su¢ ces to �x a response type (Greenland and
Poole 1988), the converse is not true (Greenland and Brumback 2002). That is to say, knowledge
of an individual�s response type does not generally fully determine which background causes are
present. As an example, an individual who has A1(!) = A3(!) = 1 and Ai(!) = 0 for i 6= 1; 3 has
a su¢ cient cause completed if and only if E1 = 1 (in which case A1E1 is completed) or E2 = 1 (in
which case A3E2 is completed). For such a individual we could write D = E1

W
E2. Thus this

individual would be of response type 2 because the individual will escape disease only if exposed to
neither E1 nor E2 so that no su¢ cient cause is completed. In contrast, knowledge of a individual�s
response type does not generally fully determine which background causes are present. A individual
who is of response type 2 could have either A1(!) = A3(!) = 1 and Ai(!) = 0 for i 6= 1; 3 in which
case we could write D = E1

W
E2 or alternatively such a individual may have A5(!) = A6(!) =

A7(!) = 1 and Ai(!) = 0 for i 6= 5; 6; 7 in which case we could write D = E1E2
W
E1E2

W
E1E2. As

noted by Greenland and Brumback (2002), it is thus impossible in this case to distinguish from the
counterfactual response pattern alone the set of su¢ cient causes E1

W
E2 from the set of su¢ cient

causes E1E2
W
E1E2

W
E1E2. With both sets of su¢ cient causes, D will occur when either E1 or

E2 is present. Whether E1
W
E2 or E1E2

W
E1E2

W
E1E2 represent the proper description of the

causal mechanisms for D can only be resolved with knowledge of the subject matter in question.
Using the su¢ cient cause representation for D given above we can see that Greenland and

Poole�s (1988) classi�cation of those types which represent causal interdependence is insu¢ ciently
stringent for associating causal interdependence with a biologic interaction. Greenland and Poole
include types 2, 3, 5 and 9 amongst those types that are said to exhibit interdependent action.
However, types 2, 3, 5 and 9 can in fact be observed even when D can be represented as D =
A0
W
A1E1

W
A2E1

W
A3E2

W
A4E2. For example, if A5 = A6 = A7 = A8 = 0 but if for some some

individual !, A0(!) = A2(!) = A4(!) = 0 and A1(!) = A3(!) = 1 so that D(!) = E1
W
E2 then,

as seen above, this would give rise to response type 2. Similarly if A0(!) = A1(!) = A4(!) = 0
and A2(!) = A3(!) = 1 then this would give rise to response type 3; if A0(!) = A2(!) = A3(!) = 0
and A1(!) = A4(!) = 1 this would give rise to response type 5; if A0(!) = A1(!) = A3(!) = 0
and A2(!) = A4(!) = 1 this would give rise to response type 9. Response types 2, 3, 5 and 9
might of course also arise from biologic interactions. As noted above, response type 2 would arise
if A0(!) = A1(!) = A2(!) = A3(!) = A4(!) = A5(!) = 0 and A5(!) = A6(!) = A7(!) = 1.
Without further information concerning which biological causes are present we cannot, in the case
of types 2, 3, 5 and 9, ascertain from the counterfactual response patterns alone whether or not a
biologic interaction is present. The types that Greenland and Poole classify as not representing
causal interdependence (types 1, 4, 6, 11, 13, 16) can, like types 2, 3, 5 and 9, also all be observed
when D can be represented as D = A0

W
A1E1

W
A2E1

W
A3E2

W
A4E2. But all of these types,

other than type 16, can also be observed when one or more of A5; A6; A7; A8 are non-zero. In
contrast types 7, 8, 10, 12, 14, and 15 cannot be observed when A5 = A6 = A7 = A8 = 0, i.e.
when D = A0

W
A1E1

W
A2E1

W
A3E2

W
A4E2. These six types thus clearly do constitute instances
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of biologic interaction because one or more of A5; A6; A7; A8 must be non-zero for such types to
be present. Thus although biologic interactions will sometimes be unidenti�ed even when the
counterfactual response patterns for all individuals are known, they will not always be unidenti�ed.
As suggested above and as has been demonstrated in related work (VanderWeele and Robins

2006a) when an individual of type 7, 8, 10, 12, 14, or 15 is present in the population there must be
synergism - there is no su¢ cient cause representation for D in which E1 and E2 never appear in the
same su¢ cient cause. We will use the term "de�nite interdependence," which we make precise in
De�nition 1, to refer to a counterfactual response pattern which necessarily entails the presence of
a biologic interaction.
Note that D10(!) = D01(!) = 0 and D11(!) = 1 if and only if individual ! is response type 7 or

8; also D11(!) = D00(!) = 0 and D01(!) = 1 if and only if individual ! is response type 10 or 12;
also D11(!) = D00(!) = 0 and D10(!) = 1 if and only if individual ! is response type 10 or 14; and
�nally D01(!) = D10(!) = 0 and D00(!) = 1 if and only if individual ! is response type 7 or 15.
The presence of one of the six types that necessarily entails a biologic interaction is thus equivalent
to the presence of an individual ! for whom one of the following four conditions hold: D10(!) =
D01(!) = 0 and D11(!) = 1; or D11(!) = D00(!) = 0 and D01(!) = 1; or D11(!) = D00(!) = 0
and D10(!) = 1; or D01(!) = D10(!) = 0 and D00(!) = 1. Consequently, we de�ne de�nite
interdependence as follows.

Definition 1 (De�nite Interdependence). Suppose that D and two of its causes, E1 and E2,
are binary. We say that there is de�nite interdependence between the e¤ect of E1 and E2 on D
if there exists an individual ! for whom one of the following holds: D10(!) = D01(!) = 0 and
D11(!) = 1; or D11(!) = D00(!) = 0 and D01(!) = 1; or D11(!) = D00(!) = 0 and D10(!) = 1; or
D01(!) = D10(!) = 0 and D00(!) = 1.

The de�nition of de�nite interdependence is equivalent to the presence within a population of an
individual with a counterfactual response pattern of type 7, 8, 10, 12, 14, or 15. As de�ned above,
if E1 and E2 exhibit de�nite interdependence then there must be a biologic interaction between E1
and E2. If D10(!) = D01(!) = 0 and D11(!) = 1 then A5 6= 0 and there will be synergism between
E1 and E2. If D11(!) = D00(!) = 0 and D01(!) = 1 then A6 6= 0 and there will be synergism
between E1 and E2. If D11(!) = D00(!) = 0 and D10(!) = 1 then A7 6= 0 and there will be
synergism between E1 and E2. If D01(!) = D10(!) = 0 and D00(!) = 1 then A8 6= 0 and there
will be synergism between E1 and E2. As made clear in the discussion above, however, although
de�nite interdependence is su¢ cient for a biologic interaction, it is not necessary. There may be a
biologic interaction between E1 and E2 even if they do not exhibit de�nite interdependence.
Greenland and Poole (1988) note that there is a one-to-one correspondence between response

types 8, 12, 14 and 15 and "cause types" corresponding to A5(!) = 1, A6(!) = 1, A7(!) = 1 and
A8(!) = 1 respectively with all other Ai(!) = 0. They also note that response type 16 arises if and
only if Ai(!) = 0 for all i. However, they claim that there are no other one-to-one correspondences
for the remaining 11 response types. They fail to notice that response type 7 arises if and only
if A5(!) = 1 and A8(!) = 1 with Ai(!) = 0 for all i =2 f5; 8g and that response type 10 arises if
and only if A6(!) = 1 and A7(!) = 1 with Ai(!) = 0 for all i =2 f6; 7g. We will see below that
this insight that response types 7 and 10 necessarily entail a biologic interaction is important in
constructing statistical tests for the presence of a biologic interaction. A further comment relating
de�nite interdependence and what Greenland and Poole (1988) de�ne as causal interdependence is
given in the Appendix.
The de�nition of de�nite interdependence given above is invariant to the relabeling of the levels

of E1 and E2 i.e. relabeling for E1 and/or for E2 the level "1" as "0" and "0" as "1." De�nite
interdependence as de�ned above is not however invariant to the relabeling of the levels of D. If
D is relabeled so that "1" is "0" and "0" is "1" then types 8, 12, 14, and 15 become types 9, 5,
3, and 2 respectively and these latter types do not exhibit de�nite interdependence. We argue,
however, that the fact that de�nite interdependence is not invariant to the relabeling of the levels
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of D is actually in accord with intuition. As above, consider again the presence in an individual
of a certain dominant genetic trait D. Let E1 denote the gene inherited from the mother and E2
the gene inherited from the father. We would in this case represent the su¢ cient causes for D by
D = E1

W
E2. No biologic interaction or interdependence between E1 or E2 would be thought to

be present. If, on the other hand, the outcome of interest were the recessive trait D then D would
be present if and only if both the gene inherited from the mother and the gene inherited from the
father were recessive, E1 and E2, respectively. We would then represent the su¢ cient causes for D
by D = E1E2 and thus for D, E1 and E2 would be thought to have a biologic interaction. The
presence of a biologic interaction for an outcome does not imply the presence of a biologic interaction
for the complement of that outcome.

3. Testing for General Biologic Interactions

When there is no confounding of the causal e¤ects of E1 and E2 on D or if there exists a set of
variables C such that conditioning on C su¢ ces to control for the confounding of the causal e¤ects
of E1 and E2 on D then it is possible to develop statistical tests for the presence of a biologic
interaction. Theorem 1 gives a condition which is su¢ cient for the presence of a biologic interaction
and which with data can be statistically tested. The proof of Theorem 1 and that of Theorem 2
below are given in the Appendix.

Theorem 1. Suppose that D and two of its causes, E1 and E2, are binary. Let C be a set of
variables that su¢ ces to control for the confounding of the causal e¤ects of E1 and E2 on D then if
for any value c of C we have that P (D = 1jE1 = 1; E2 = 1; C = c)� P (D = 1jE1 = 0; E2 = 1; C =
c)� P (D = 1jE1 = 1; E2 = 0; C = c) > 0 then E1 and E2 have a biologic interaction.

When the condition of Theorem 1 is met, an individual of either type 7 or type 8 must be present
and from the discussion above it follows that there must be synergism between E1 and E2. Theorem
1 has analogues for testing for synergism between E1 and E2 or between E1 and E2 or between E1
and E2. If for some c, P (D = 1jE1 = 1; E2 = 0; C = c)�P (D = 1jE1 = 1; E2 = 1; C = c)�P (D =
1jE1 = 0; E2 = 0; C = c) > 0 then an individual of type 10 or type 14 must be present and there
will be synergism between E1 and E2. If P (D = 1jE1 = 0; E2 = 1; C = c)� P (D = 1jE1 = 1; E2 =
1; C = c) � P (D = 1jE1 = 0; E2 = 0; C = c) > 0 then an individual of type 10 or type 12 must
be present and there will be synergism between E1 and E2. If P (D = 1jE1 = 0; E2 = 0; C =
c) � P (D = 1jE1 = 0; E2 = 1; C = c) � P (D = 1jE1 = 1; E2 = 0; C = c) > 0 then an individual of
type 7 or type 15 must be present and there will be synergism between E1 and E2. Theorem 1 and
its analogues demonstrate that the claim of Rothman and Greenland (1998, p. 339) that inference
about the presence of biologic interactions "must make untestable assumptions about the absence
of other response types" is false. Rothman and Greenland failed to observe the implication given
in Theorem 1. Theorem 1 makes no assumption about the absence of any response type.
In general to test the null that P (D = 1jE1 = 1; E2 = 1; C = c)� P (D = 1jE1 = 0; E2 = 1; C =

c)�P (D = 1jE1 = 1; E2 = 0; C = c) � 0 for a particular sample one may let nij denote the number of
individuals in stratum C = c with E1 = i and E2 = j and let let dij denote the number of individuals
in stratum C = c with E1 = i, E2 = j and D = 1 then tests of the null hypothesis P (D = 1jE1 =
1; E2 = 1; C = c) � P (D = 1jE1 = 0; E2 = 1; C = c) � P (D = 1jE1 = 1; E2 = 0; C = c) � 0 can

be constructed using critical regions of the following form: f (
d11
n11

� d01
n01

� d10
n10

)r
d11(n11�d11)

n311
+
d01(n01�d01)

n301
+
d10(n10�d10)

n310

>

Z1��g. This can be seen by letting pij denote the true probability of D = 1 conditional on
E1 = i, E2 = j and C = c. The hypothesis P (D = 1jE1 = 1; E2 = 1; C = c) � P (D = 1jE1 =
0; E2 = 1; C = c) � P (D = 1jE1 = 1; E2 = 0; C = c) � 0 is that (p11 � p01 � p10) � 0. We
have that dij � Bin(nij ; pij) with E[ dijnij ] = pij and V ar(

dij
nij
) =

pij(1�pij)
nij

. By the central limit
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central limit theorem
(
d11
n11

� d01
n01

� d10
n10

)�(p11�p01�p10)q
p11(1�p11)

n11
+
p01(1�p01)

n01
+
p10(1�p10)

n10

:
�N(0; 1) and by Slutsky�s theorem we have

(
d11
n11

� d01
n01

� d10
n10

)�(p11�p01�p10)r
d11(n11�d11)

n311
+
d01(n01�d01)

n301
+
d10(n10�d10)

n310

:
�N(0; 1). To test the hypothesis H0: (p11�p01�p10) � 0 vs.

HA: (p11�p01�p10) > 0 one may thus use the test statistic:
(
d11
n11

� d01
n01

� d10
n10

)r
d11(n11�d11)

n311
+
d01(n01�d01)

n301
+
d10(n10�d10)

n310

.

If C consists of a small number of binary or categorical variables then it may be possible to
use the tests constructed above to test all strata of C. When C includes a continuous variable
or many binary and categorical variables such testing becomes di¢ cult because the data in certain
strata of C will be sparse. One might then model the conditional probabilities P (D = 1jE1; E2; C)
using a binomial or Poisson regression model with a linear link (Greenland, 1991; Wacholder, 1986;
Zou, 2004; Greenland, 2004; Spiegelman and Hertzmark, 2005). For case-control studies it will be
necessary to use an adapted set of modeling techniques (Wild, 1991; Wacholder, 1996; Greenland,
2004).

4. Testing for Biologic Interactions under the Assumption of Monotonic E¤ects

We next consider a context in which the direction of the e¤ect (positive or negative) that E1 and
E2 have on D is known. We make these ideas precise by introducing the concept of a monotonic
e¤ect. Considerable intuition regarding biologic interactions can be garnered by the consideration
of the setting of monotonic e¤ects. Furthermore, as will be seen shortly, the setting of monotonic
e¤ects also allows for the construction of more powerful tests for detecting biologic interactions than
is possible without the assumption.

Definition 2 (Monotonic E¤ect): We will say that E1 has a positive monotonic e¤ect on D
if for all individuals ! we have Dij(!) � Di0j(!) whenever i � i0; we will say that E2 has a
positive monotonic e¤ect on D if for all individuals ! we have Dij(!) � Dij0(!) whenever j � j0.
Similarly, we will say that E1 has a negative monotonic e¤ect on D if for all individuals ! we have
Dij(!) � Di0j(!) whenever i � i0 and that E2 has a negative monotonic e¤ect on D if for all
individuals ! we have Dij(!) � Dij0(!) whenever j � j0.

The de�nition of a monotonic e¤ect essentially requires that some intervention either increase
or decrease some other variable D not merely on average over the entire population but rather for
every individual in that population regardless of the other intervention. The requirements for the
attribution of a monotonic e¤ect are thus considerable. However whenever a particular intervention
is always bene�cial or neutral for all individuals, one will be able to attribute a positive monotonic
e¤ect; whenever the intervention is always harmful or neutral for all individuals, one will be able to
attribute a negative monotonic e¤ect. VanderWeele and Robins (2006b) provide further discussion
of the idea of a monotonic e¤ect and relate the concept to causal e¤ects, covariance, confounding
and bias.
Theorem 2 gives a result similar to that of Theorem 1 but under the assumption that both E1

and E2 have positive monotonic e¤ects on D.

Theorem 2. Suppose that D and two of its causes, E1 and E2, are binary and that E1 and
E2 have a positive monotonic e¤ect on D. Let C be a set of variables that su¢ ces to control for
the confounding of the causal e¤ects of E1 and E2 on D then if for any value c of C we have that
P (D = 1jE1 = 1; E2 = 1; C = c)�P (D = 1jE1 = 0; E2 = 1; C = c) > P (D = 1jE1 = 1; E2 = 0; C =
c)� P (D = 1jE1 = 0; E2 = 0; C = c) then E1 and E2 have a biologic interaction.

The condition provided in Theorem 2 has obvious analogues if one or both of E1 and E2 have
a negative monotonic e¤ect rather than a positive monotonic e¤ect on D. If the condition of

6
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Theorem 2 is met, an individual of type 8 must be present. Individuals of type 7, the other type
that entails synergism between E1 and E2, are precluded because E1 has a positive monotonic e¤ect
on D (and similarly because E2 has a positive monotonic e¤ect on D). Rothman and Greenland
(1998) note the equivalent result in the setting of no confounding factors. The condition of Theorem
2 can be tested in a manner analogous to the condition of Theorem 1 in the previous section. In
general to test the null that P (D = 1jE1 = 1; E2 = 1; C = c) � P (D = 1jE1 = 0; E2 = 1; C =
c) � P (D = 1jE1 = 1; E2 = 0; C = c) � P (D = 1jE1 = 0; E2 = 0; C = c) for a particular
sample, tests of the null hypothesis can be constructed using critical regions of the following form:

f (
d11
n11

� d01
n01

)�( d10n10
� d00
n00

)r
d11(n11�d11)

n311
+
d01(n01�d01)

n301
+
d10(n10�d10)

n310
++

d00(n00�d00)
n300

> Z1��g.

The general condition of Theorem 1 for detecting the presence of a biologic interaction between E1
and E2, P (D = 1jE1 = 1; E2 = 1; C = c)�P (D = 1jE1 = 0; E2 = 1; C = c)�P (D = 1jE1 = 1; E2 =
0; C = c) > 0, is clearly stronger than the condition, P (D = 1jE1 = 1; E2 = 1; C = c) � P (D =
1jE1 = 0; E2 = 1; C = c)� P (D = 1jE1 = 1; E2 = 0; C = c) + P (D = 1jE1 = 0; E2 = 0; C = c) > 0,
required in the setting of monotonic e¤ects. Indeed the former clearly implies the latter. The
statistical tests based on this condition in the setting of monotonic e¤ects will thus be more powerful
than the equivalent tests in the general setting.

5. Examples and Discussion

Theorem 2 suggests the risk di¤erence scale as the means by which to test for a biologic interaction in
the presence of monotonic e¤ects. Theorem 2 can be interpreted as stating that if the risk di¤erence
for E1 in the strata E2 = 1 is greater than the risk di¤erence for E1 in the strata E2 = 0 then E1
and E2 have a biologic interaction. The condition can also be re-written as P (D = 1jE1 = 1; E2 =
1; C = c) � P (D = 1jE1 = 0; E2 = 0; C = c) > fP (D = 1jE1 = 0; E2 = 1; C = c) � P (D = 1jE1 =
0; E2 = 0; C = c)g+ fP (D = 1jE1 = 1; E2 = 0; C = c)� P (D = 1jE1 = 0; E2 = 0; C = c)g i.e. the
e¤ect of E1 and E2 is greater than the sum of the e¤ects of E1 and E2 separately. The result is in
many ways intuitive and not at all surprising. Several distinctions between the categories of e¤ect
modi�cation on the risk di¤erence scale and that of de�nite interdependence or biologic interaction
must be kept in mind however as the following examples make clear. First, Example 1 demonstrates
that it is possible to have e¤ect modi�cation on the risk di¤erence scale with no biologic interaction.
This may arise when the e¤ect modi�cation is in the opposite direction of that required by Theorem
2.

Example 1. Suppose thatD, E1 and E2 are binary and thatD = A0
W
A1E1

W
A2E2 so that E1

and E2 have a positive monotonic e¤ect onD and E1 and E2 do not have a biologic interaction. Sup-
pose further that the causal e¤ects of E1 and E2 on D are unconfounded. Let P (A0) = a0; P (A1) =
a1; P (A2) = a2; P (A0A1) = a01; P (A0A2) = a02; P (A1A2) = a12; P (A0A1A2) = a012. We then have
P (D = 1jE1 = 0; E2 = 0) = P (A0) = a0; P (D = 1jE1 = 1; E2 = 0) = P (A0

W
A1) = a0 + a1 � a01;

P (D = 1jE1 = 0; E2 = 1) = P (A0
W
A2) = a0 + a2 � a02; and P (D = 1jE1 = 1; E2 = 1) =

P (A0
W
A1
W
A2) = a0+a1+a2�a01�a02�a12+a012. Conditional on E2 = 0, the risk di¤erence for

E1 is given by: P (D = 1jE1 = 1; E2 = 0)�P (D = 1jE1 = 0; E2 = 0) = a0+a1�a01�a0 = a1�a01.
Conditional on E2 = 1, the risk di¤erence for E1 is given by: P (D = 1jE1 = 1; E2 = 1) � P (D =
1jE1 = 0; E2 = 1) = a0+a1+a2�a01�a02�a12+a012� (a0+a2�a02) = (a1�a01)� (a12�a012).
In this example, P (D = 1jE1 = 1; E2 = 1)�P (D = 1jE1 = 0; E2 = 1) = (a1� a01)� (a12� a012) 6=
a1 � a01 = P (D = 1jE1 = 1; E2 = 0) � P (D = 1jE1 = 0; E2 = 0). We see then from this ex-
ample that we can have e¤ect modi�cation on the risk di¤erence scale ("statistical interaction")
even when no biologic interaction is present. This will occur whenever (a12 � a012) 6= 0 i.e. when
P (A1A2) 6= P (A0A1A2) or equivalently P (A0 = 1jA1 = 1; A2 = 1) < 1. This example is consider
further in the Appendix to relate biologic interactions to the multiplicative survival model.
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Example 2 below demonstrates that the absence of e¤ect modi�cation on the risk di¤erence scale
does not imply the absence of a biologic interaction. In other words, if P (D = 1jE1 = 1; E2 =
1; C = c) � P (D = 1jE1 = 0; E2 = 1; C = c) > P (D = 1jE1 = 1; E2 = 0; C = c) � P (D = 1jE1 =
0; E2 = 0; C = c) then there must be a biologic interaction but even if P (D = 1jE1 = 1; E2 = 1; C =
c) � P (D = 1jE1 = 0; E2 = 1; C = c) � P (D = 1jE1 = 1; E2 = 0; C = c) � P (D = 1jE1 = 0; E2 =
0; C = c) there may yet be a biologic interaction. Theorem 2 gives a condition (in terms of e¤ect
modi�cation on the risk di¤erence scale) which, in the setting of monotonic e¤ects, is su¢ cient for
a biologic interaction but not necessary.

Example 2. Suppose that D, E1 and E2 are binary, that E1 and E2 are independent and that
D = A0

W
A1E1

W
A2E2

W
A3E1E2 so that E1 and E2 have a positive monotonic e¤ect on D and E1

and E2 do have a biologic interaction. Suppose further that the causal e¤ects of E1 and E2 on D are
unconfounded. Let P (A0) = a0; P (A1) = a1; P (A2) = a2; P (A3) = a3; P (A0A1) = a01; P (A0A2) =
a02; :::; P (A0A1A2A3) = a0123. We then have P (D = 1jE1 = 0; E2 = 0) = P (A0) = a0; P (D =
1jE1 = 1; E2 = 0) = P (A0

W
A1) = a0 + a1 � a01; P (D = 1jE1 = 0; E2 = 1) = P (A0

W
A2) =

a0 + a2 � a02; and P (D = 1jE1 = 1; E2 = 1) = P (A0
W
A1
W
A2) = (a0 + a1 + a2 + a3) � (a01 +

a02 + a03 + a12 + a13 + a23) + (a012 + a013 + a023 + a123) � a0123. Thus P (D = 1jE1 = 1; E2 =
1) � P (D = 1jE1 = 0; E2 = 1) � P (D = 1jE1 = 1; E2 = 0) + P (D = 1jE1 = 0; E2 = 0) =
(a012�a12)+a3� (a03+a13+a23)+(a013+a023+a123)�a0123. Suppose now that with probability
0:5, A0 = 0; A1 = 0; A2 = 0; A3 = 1 and with probability 0:5, A0 = 0; A1 = 1; A2 = 1; A3 = 0
so that a3 = 0:5 and a12 = 0:5 and a012 = a03 = a13 = a23 = a013 = a023 = a123 = a0123 = 0
then P (D = 1jE1 = 1; E2 = 1) � P (D = 1jE1 = 0; E2 = 1) � P (D = 1jE1 = 1; E2 = 0) + P (D =
1jE1 = 0; E2 = 0) = a3 � a12 = 0:5 � 0:5 = 0 and so although a biologic interaction is present
the inequality P (D = 1jE1 = 1; E2 = 1) � P (D = 1jE1 = 0; E2 = 1) > P (D = 1jE1 = 1; E2 =
0) � P (D = 1jE1 = 0; E2 = 0) fails to hold. The example demonstrates that although the
inequality is a su¢ cient condition for a biologic interaction under the setting of monotonic e¤ects,
it is not necessary. It is also interesting to note that in this example P (D = 1jE1 = 1; E2 =
1) � P (D = 1jE1 = 0; E2 = 1) � P (D = 1jE1 = 1; E2 = 0) + P (D = 1jE1 = 0; E2 = 0) =
fa3 � (a03 + a13 + a23) + (a013 + a023 + a123) � a0123g � (a12 � a012) and this �nal expression can
be rewritten as P (A3A0A1A2) � P (A1A2A0) suggesting that the more likely that A3 occurs when
A0; A1; A2 are absent, the more power the test implied by Theorem 2 will have to detect the biologic
interaction; on the other hand the more likely that A1 and A2 occur together when A0 is absent,
the less power the test implied by Theorem 2 will have to detect the biologic interaction.

The contrast between Examples 1 and 2 is interesting. Example 1 demonstrated that e¤ect
modi�cation could be present without a biologic interaction. In Example 1, e¤ect modi�cation
on the risk di¤erence scale would be present whenever P (A1A2) 6= P (A0A1A2) suggesting that,
in general, e¤ective modi�cation on the risk di¤erence scale may be present without a biologic
interaction if the various background causes A0, A1 and A2 can occur simultaneously i.e. when
multiple causal mechanisms may be simultaneously operative. It is, of course, also possible to have
e¤ect modi�cation that is attributable solely to biologic interactions rather than to the background
causes. Example 2 considered the general case of a biologic interaction between E1 and E2 under
the setting of monotonic e¤ects. The expression for fP (D = 1jE1 = 1; E2 = 1) � P (D = 1jE1 =
0; E2 = 1)g � fP (D = 1jE1 = 1; E2 = 0) � P (D = 1jE1 = 0; E2 = 0)g could be rewritten as
(a012�a12)+(a3�a03�a13�a23+a013+a023+a123�a0123). For no e¤ect modi�cation on the risk
di¤erence scale to be present in Example 2 the sum of these two terms would have to be zero. Note
that each part of the second term involves the subscript 3. The second term can thus be seen as the
synergistic component; it will be zero when A3 = 0. We saw in Example 1 that the �rst term being
zero, (a012 � a12) = 0, was the condition for no e¤ect modi�cation in the case of A3 = 0. Suppose
that (a012� a12) = 0 but A3 6= 0 and (a3� a03� a13� a23+ a013+ a023+ a123� a0123) 6= 0 then the
e¤ect modi�cation in Example 2 would be attributable solely to the biologic interaction (i.e. no e¤ect
modi�cation would be present if A3 = 0). Thus in Example 1, the e¤ect modi�cation was wholly
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attributable to the possibility of the background causes A0, A1 and A2 occurring simultaneously
and in Example 2, if (a012 � a12) = 0, the e¤ect modi�cation would be wholly attributable to the
presence of a biologic interaction. In general, e¤ect modi�cation may arise either due to background
causes or due to the presence of biologic interactions or due to both.
Example 3 demonstrates that if it is not the case that both E1 and E2 have a monotonic e¤ect

on D then we may have P (D = 1jE1 = 1; E2 = 1) � P (D = 1jE1 = 0; E2 = 1) > P (D = 1jE1 =
1; E2 = 0) � P (D = 1jE1 = 0; E2 = 0) even when there is no biologic interaction and that in such
cases we can also have E2 acting as a qualitative e¤ect modi�er for the risk di¤erence of E1 on D
without E1 and E2 having a biologic interaction.

Example 3. Suppose that D, E1 and E2 are binary, that E1 and E2 are independent and
that D = A1E1

W
A2E1

W
A3E2 so that E1 and E2 do not have a biologic interaction. Suppose

further that the causal e¤ects of E1 and E2 on D are unconfounded. Finally, suppose that with
probability 0:3, A1 = 1; A2 = 0; A3 = 1; with probability 0:3, A1 = 1; A2 = 0; A3 = 0; and
with probability 0:4, A1 = 0; A2 = 1; A3 = 0 so that a1 = 0:6, a2 = 0:4, a3 = 0:3, a13 = 0:3
and a23 = 0. We then have P (D = 1jE1 = 0; E2 = 0) = P (A2

W
A3) = a2 + a3 � a23; P (D =

1jE1 = 1; E2 = 0) = P (A1
W
A3) = a1 + a3 � a13; P (D = 1jE1 = 0; E2 = 1) = P (A2) = a2; and

P (D = 1jE1 = 1; E2 = 1) = P (A1) = a1. Conditional on E2 = 0, the risk di¤erence for E1 is given
by: P (D = 1jE1 = 1; E2 = 0) � P (D = 1jE1 = 0; E2 = 0) = a1 + a3 � a13 � (a2 + a3 � a23) =
a1 � a2 � a13 + a23 = 0:6� 0:4� 0:3 = �0:1. Conditional on E2 = 1, the risk di¤erence for E1 is
given by: P (D = 1jE1 = 1; E2 = 1)�P (D = 1jE1 = 0; E2 = 1) = a1� a2 = 0:6� 0:4 = 0:2. In this
example, P (D = 1jE1 = 1; E2 = 1)�P (D = 1jE1 = 0; E2 = 1) > P (D = 1jE1 = 1; E2 = 0)�P (D =
1jE1 = 0; E2 = 0) but no biologic interaction was present. We see also from this example that we
can have qualitative e¤ect modi�cation even when no biologic interaction is present.

The three examples above clarify the conceptual distinction between e¤ect modi�cation on the
risk di¤erence scale and biologic interactions, even in the presence of monotonic e¤ects. There
can be e¤ect modi�cation on the risk di¤erence scale without the presence of a biologic interaction.
There can be a biologic interaction without the risk di¤erence condition P (D = 1jE1 = 1; E2 =
1; C = c) � P (D = 1jE1 = 0; E2 = 1; C = c) > P (D = 1jE1 = 1; E2 = 0; C = c) � P (D = 1jE1 =
0; E2 = 0; C = c) holding. And, �nally, outside the context of monotonic e¤ects, we may have
P (D = 1jE1 = 1; E2 = 1; C = c)�P (D = 1jE1 = 0; E2 = 1; C = c) > P (D = 1jE1 = 1; E2 = 0; C =
c)� P (D = 1jE1 = 0; E2 = 0; C = c) without the presence of a biologic interaction.
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Appendix.

Proof of Theorem 1.
Suppose that for some set of variables V , E[D11 �D01 �D10jV = v] > 0 then there must be some
individual ! for whom V = v and D11(!) = 1 but D01(!) = D10(!) = 0 for if one of D01(!); D10(!)
were always 1 whenever D11(!) = 1 then D11(!) � D01(!) � D10(!) would be less than or equal
to zero for all ! and so we would have that E[D11 �D01 �D10jV = v] � 0. Let V = C, de�nite
interdependence and thus a biologic interaction is implied by the condition E[D11 �D01 �D10jC =
c] > 0. Because C is a set of variables that su¢ ces to control for the confounding of the causal e¤ects
of E1 and E2 on D we have that the counterfactual variables Dij are conditionally independent of
(E1; E2) given C and so we have, E[D11 � D01 � D10jC = c] = E[D11jE1 = 1; E2 = 1; C =
c] � E[D01jE1 = 0; E2 = 1; C = c] � E[D10jE1 = 1; E2 = 0; C = c] = P (D = 1jE1 = 1; E2 = 1; C =
c) � P (D = 1jE1 = 0; E2 = 1; C = c) � P (D = 1jE1 = 1; E2 = 0; C = c). Thus if P (D = 1jE1 =
1; E2 = 1; C = c)� P (D = 1jE1 = 0; E2 = 1; C = c)� P (D = 1jE1 = 1; E2 = 0; C = c) > 0 then E1
and E2 have a biologic interaction.

Proof of Theorem 2.
We �rst show that if for some set of variables V , E[(D11 � D01) � (D10 � D00)jV = v] > 0 for
some v then there must be a biologic interaction. For each individual ! de�ne B0(!), B1(!),
B2(!) and B3(!) as follows: B0(!) = 1 if D00(!) = 1 and 0 otherwise; B1(!) = 1 if D10(!) = 1
and 0 otherwise; B2(!) = 1 if D01(!) = 1 and 0 otherwise; and B3(!) = 1 if D11(!) = 1 and
D10(!) = D01(!) = 0 and 0 otherwise. Then D00 = B0, D10 = B0

W
B1, D01 = B0

W
B2, D11 =

B0
W
B1
W
B2
W
B3. Suppose there is no biologic interaction; then B3(!) = 0 for all ! 2 
 so

that D11 = B0
W
B1
W
B2. Let P (B0jV = v) = bv0, P (B1jV = v) = bv1, P (B2jV = v) = bv2,

P (B0B1jV = v) = bv01, P (B0B2jV = v) = bv02, P (B1B2jV = v) = bv12 and P (B0B1B2jV = v) = bv012.
Then P (B0jV = v) = bv0; P (B0

W
B1jV = v) = bv0 + b

v
1 � bv01; P (B0

W
B2jV = v) = bv0 + b

v
2 � bv02;

P (B0
W
B1
W
B2jV = v) = bv0 + bv1 + bv2 � (bv01+ bv02+ bv12) + bv012. E[(D11�D01)� (D10�D00)jV =

v] = fP (B0
W
B1
W
B2jV = v) � P (B0

W
B2jV = v)g � fP (B0

W
B1jV = v) � P (B0jV = v)g =

[fbv0 + bv1 + bv2 � (bv01 + bv02 + bv12) + bv012g � fbv0 + bv2 � bv02g] � [fbv0 + bv1 � bv01g � bv0] = (bv012 �
bv12 + b

v
1 � bv01) � (bv1 � bv01) = bv012 � bv12 < 0. Thus if E[(D11 � D01) � (D10 � D00)jV = v] > 0

we cannot have B3(!) = 0 for all ! and so there must be a biologic interaction of the e¤ect
of E1 and E2 on D. Now let V = C then we have that a biologic interaction is implied by
the condition E[(D11 � D01) � (D10 � D00)jC = c] > 0. Because C is a set of variables that
su¢ ces to control for the confounding of the causal e¤ects of E1 and E2 on D we have that the
counterfactual variables Dij are conditionally independent of (E1; E2) given C and so we have,
E[(D11�D01)� (D10�D00)jC = c] = fE[D11jC = c]�E[D01jC = c]g�fE[D10jC = c]�E[D00jC =
c])g = fE[D11jE1 = 1; E2 = 1; C = c] � E[D01jE1 = 0; E2 = 1; C = c]g � fE[D10jE1 = 1; E2 =
0; C = c] � E[D00jE1 = 0; E2 = 0; C = c])g = fP (D = 1jE1 = 1; E2 = 1; C = c) � P (D = 1jE1 =
0; E2 = 1; C = c)g � fP (D = 1jE1 = 1; E2 = 0; C = c)� P (D = 1jE1 = 0; E2 = 0; C = c)g. Thus if
P (D = 1jE1 = 1; E2 = 1; C = c)�P (D = 1jE1 = 0; E2 = 1; C = c) > P (D = 1jE1 = 1; E2 = 0; C =
c)� P (D = 1jE1 = 0; E2 = 0; C = c) then E1 and E2 must have a biologic interaction.

De�nite Interdependence and Causal Interdependence
Greenland and Poole (1988) use "causal interdependence" to refer to the presence of an individual of
response type 2, 3, 5, 7, 8, 9, 10, 12, 14, or 15. We have not included response types 2, 3, 5 and 9 in
our de�nition of "de�nite interdependence." As noted above, response types 2, 3, 5 and 9 may arise
without the presence of a biologic interaction. Now suppose that E1 and E2 are gun shots from two
snipers who �re at a particular individual at times 1 and 2 respectively. If both snipers are perfectly
accurate and D is the outcome death then the counterfactual response pattern for the individual at
whom the shots are being �red is type 2. In this case there is no "biologic interaction" between
the gun shots of the two snipers; one might however say that the the two gun shots are "causally
interdependent" because if the individual is killed by bullet E1 he cannot be killed by bullet E2 and
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vice versa. However, although counterfactual response patterns of types 2, 3, 5 and 9 can arise from
two causes which are in some sense interdependent, these types can also arise in a context in which
the two causes cannot be conceived of as being interdependent. Consider for example the presence
in an individual of a certain dominant genetic trait denoted by phenotype D so that D denotes the
absence of this dominant trait. Let E1 denote the gene inherited from the mother and E2 the gene
inherited from the father. If either E1 or E2 or both E1 and E2 take values corresponding to the
dominant gene, the child will have the dominant trait. The presence of the dominant genetic trait
D is of counterfactual response type 2; but in this case the causes E1 and E2 cannot be conceived of
as being in any sense interdependent. If both E1 and E2 take values corresponding to the dominant
gene, the e¤ect of E1 on D does not in this example, unlike the sniper example, preclude E2 from
also having an e¤ect on D. We see then that individuals of counterfactual types 2, 3, 5 and 9
can arise with or without the presence of a biologic interaction and with or without interdependence
between the two causes E1 and E2. Counterfactual response types 7, 8, 10, 12, 14 and 15 necessarily
entail a biologic interaction and thus also a form of interdependence; we have thus de�ned the class
of response types 7, 8, 10, 12, 14 and 15 as those which exhibit "de�nite interdependence." With
regard to other response types, determining whether the two causes are in any way interdependent
will require some knowledge of the context and causal mechanisms involved.

Multiplicative Survival Model and Biologic Interactions
Example 1 also sheds light on the conditions under which a multiplicative survival model can be
used to test for biologic interactions. The multiplicative survival model is said to hold when
P (D = 0jE1 = 1; E2 = 1)P (D = 0jE1 = 0; E2 = 0) � P (D = 0jE1 = 1; E2 = 0)P (D = 0jE1 =
0; E2 = 1). In Example 1, the probabilities of survival are: P (D = 0jE1 = 0; E2 = 0) = 1 � a0;
P (D = 0jE1 = 0; E2 = 1) = 1 � a0 � a1 + a01; P (D = 0jE1 = 0; E2 = 1) = 1 � a0 � a2 + a02;
P (D = 0jE1 = 1; E2 = 1) = 1 � a0 � a1 � a2 + a01 + a02 + a12 � a012 and thus: P (D = 0jE1 =
1; E2 = 1)P (D = 0jE1 = 0; E2 = 0) = (1 � a0)(1 � a0 � a1 � a2 + a01 + a02 + a12 � a012) =
1 � a0 � a1 � a2 + a01 + a02 + a12 � a012 � a0(1 � a0 � a1 � a2 + a01 + a02 + a12 � a012); but
P (D = 0jE1 = 1; E2 = 0)P (D = 0jE1 = 0; E2 = 1) = (1 � a0 � a1 + a01)(1 � a0 � a2 + a02) =
1� a0� a1+ a01� a0� a2+ a02+ a20+ a0a2� a0a02+ a0a1+ a1a2� a1a02� a0a01� a2a01+ a01a02;.
Thus, P (D = 0jE1 = 1; E2 = 1)P (D = 0jE1 = 0; E2 = 0)�P (D = 0jE1 = 1; E2 = 0)P (D = 0jE1 =
0; E2 = 1) = (a12�a1a2)�(a012�a1a02)�(a0a12�a2a01)+(a0a012�a01a02) 6= 0 which will generally
be non-zero so the multiplicative survival model will fail to hold in this example. However, if A0,
A1 and A2 were independently distributed then the above expression is zero and the multiplicative
survival model holds. Somewhat more generally, if A1 and A2 were independent of one another
and also either A1 or A2 were independent of A0 then the expression would again be zero and the
multiplicative survival model would hold. Greenland and Poole (1988) proposed the multiplicative
survival model as a means to assess the interdependence versus the independence of causal e¤ects
under the setting that the "e¤ects of exposures are probabilistically independent of any background
causes, as well as of one another�s e¤ect." Example 1 underscores the necessity for the background
causes to also be independent of one another when using the multiplicative survival model to detect
biologic interactions. More precisely, we have shown that if E1 and E2 have a positive monotonic
e¤ect on D and if A1 and A2 are independent of one another and either A1 or A2 is independent of
A0 then the multiplicative survival model will hold when there is no biologic interaction. Therefore,
if, under these assumptions, the multiplicative survival model does not hold then one could include
that there was a biologic interaction present between E1 and E2.
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