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Variable Selection for Nonparametric
Varying-Coefficient Models for Analysis of

Repeated Measurements

Lifeng Wang and Hongzhe Li

Abstract

Nonparametric varying-coefficient models are commonly used for analysis of
data measured repeatedly over time, including longitudinal and functional re-
sponses data. While many procedures have been developed for estimating the
varying-coefficients, the problem of variable selection for such models has not
been addressed. In this article, we present a regularized estimation procedure
for variable selection for such nonparametric varying-coefficient models using
basis function approximations and a group smoothly clipped absolute deviation
penalty (gSCAD). This gSCAD procedure simultaneously selects significant vari-
ables with time-varying effects and estimates unknown smooth functions using
basis function approximations. With appropriate selection of the tuning parame-
ters, we have established the oracle property of the procedure and the consistency
of the function estimation. The methods are illustrated with simulations and an
application to analysis of microarray time-course gene expression data to in order
to identify the transcription factors that are related to yeast cell cycle process.
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SUMMARY:

Nonparametric varying-coefficient models are commonly used for analysis of data measured re-

peatedly over time, including longitudinal and functional responses data. While many procedures

have been developed for estimating the varying-coefficients, the problem of variable selection for

such models has not been addressed. In this article, we present a regularized estimation proce-

dure for variable selection for such nonparametric varying-coefficient models using basis function

approximations and a group smoothly clipped absolute deviation penalty (gSCAD). This gSCAD

procedure simultaneously selects significant variables with time-varying effects and estimates un-

known smooth functions using basis function approximations. With appropriate selection of the

tuning parameters, we have established the oracle property of the procedure and the consistency

of the function estimation. The methods are illustrated with simulations and an application to

analysis of microarray time-course gene expression data to in order to identify the transcription

factors that are related to yeast cell cycle process.

Key words and phrases: Regularized estimation, Functional response, Longitudinal data, Time

course gene expression data.

1. Introduction

Varying-coefficient models (Hastie and Tibshirani, 1993) are commonly used for studying

the time-dependent effects of covariates on responses measured repeatedly. Such models can

be used for longitudinal data where subjects are often measured repeatedly over a given period

of time, so that the measurements within each subject are possibly correlated with each other

(Diggle et al., 1994; Rice, 2004). Another setting is the functional response models (Rice, 2004),

where the ith response is a smooth real function yi(t), i = 1, · · · , n, t ∈ T = [0, T ], although

in practice only yi(tij), j = 1, · · · , Ji are observed. For both settings, the response Y (t) is a

random process and the predictor X(t) = (X(1)(t), . . . ,X(p)(t))T is a p-dimensional vector of

random processes. In applications, observations for n randomly selected subjects are obtained

as (yi(tij),xi(tij)) for the ith subject at discrete time point tij , i = 1, . . . , n and j = 1, . . . , Ji.

The linear varying-coefficient model can be written as

yi(tij) = xi(tij)
T β(tij) + εi(tij), (1.1)

where β(t) = (β1(t), . . . , βp(t)) is a p-dimensional vector of smooth functions of t, and εi(t), i =

1, . . . , n are independently identically distributed random processes, independent of xi(t). When

http://biostats.bepress.com/upennbiostat/art20
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the number of covariates is small, depending on the designs of the studies, many methods have

been developed for estimating the coefficients in Model (1.1), using parametric models (Diggle

et al., 1994) and nonparametric or semiparametric approaches (Zeger and Diggle, 1994; Lin and

Carroll, 2000; Rice and Wu, 2001; Huang et al., 2002). However, when the number of covariates

in Model (1.1) is large, one important problem is to select the important variables in such models.

The goal of this paper is to estimate β(t) nonparametrically and select relevant predictors

xk(t) with non-zero functional coefficient βk(t), based on observations {(yi(tij),xi(tij)), i =

1, . . . , n, j = 1, . . . , Ji}.

Regularized estimation has received much attention as a way of performing variable se-

lection for parametric regression models (see Bickel and Li, 2006 for a review). Important

regularization procedures for variable selection include LASSO (Tibshirani, 1996) and smoothly

clipped absolute deviation (SCAD) (Fan and Li, 2001) and their recent extensions (Zou, 2006;

Yuan and Lin, 2005; Zou and Hastie, 2005). However, these regularized estimation procedures

were developed only for the parametric regression models where the model parameters belong to

high-dimensional parametric space and cannot be applied directly to the nonparametric varying-

coefficients models where the parameters are nonparametric smooth functions. Fan and Li (2004)

proposed to use the SCAD penalty for model selection in longitudinal data analysis when β(t)

are assumed to be time-independent. Wang et al. (2007) proposed a group SCAD (gSCAD) pro-

cedure for model selection for varying-coefficient models with time-independent covariates and

demonstrated its application in analysis of microarray time course gene expression data. The

goal of this paper is to further develop the gSCAD procedure for general nonparametric varying

coefficients models with possible time-dependent covariate processes and to provide theoretical

justification for the gSCAD procedure for variable selection and estimation. This procedure

simultaneously selects significant variables and estimates unknown smooth coefficient functions.

The rest of the paper is organized as follows. We first describe the general group SCAD

regularized estimation procedure and the algorithm in Section 2. We then present theoretical

properties of our estimators in Section 3, including the oracle property and the consistency of

the estimates. Finally we present simulation results in Section 4 and application to analysis

of microarray time-course gene expression data in Section 5. Proofs of the main results are

presented in the Appendix.
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2. Regularized Estimation Using gSCAD and Basis Function Ex-

pansion

In order to select the relevant covariates in Model (1.1), we propose a new method based on

basis expansion of β(t) and penalized estimation using a grouped version of the SCAD penalty.

In what follows, we assume βk(t) =
∑∞

l=1 γklBkl(t) ∈ Fk, where {Bkl(t)}
∞
l=1 are orthonormal

basis functions of function space Fk. Then βk(t) can be approximated by a truncated series

βk(t) ≈
∑Lk

l=1 γklBkl(t), and Model (1.1) becomes

yi(tij) ≈

p
∑

k=1

Lk
∑

l=1

γklx
(k)
i (tij)Bkl(tij) + εi(tij), (2.1)

where Lk is the number of basis functions in approximating the function βk(t).

When the number of covariate p is small, Huang, Wu and Zhou (2002) proposed to estimate

Model (2.1) via a weighted least square regression. In this article, we propose using penalized

least square regression for the sake of variable selection. Note that under the truncated series

approximations, each function βk(t) in Model (1.1) is characterized by a set of parameters γk =

(γk1, · · · , γkLk
)T in Model (2.1). Instead of selecting nonzero γkl in this model, we should select

nonzero γk. This motivates the following group version of the SCAD regularized estimation; we

estimate γ = (γT
1 , . . . ,γT

p )T by by minimizing

l(γ) = N−1
n
∑

i=1

Ji
∑

j=1

(

yi(tij) −

p
∑

k=1

Lk
∑

l=1

γklx
(k)
i (tij)Bkl(tij)

)2

+

p
∑

k=1

pλ(‖γk‖2), (2.2)

where N =
∑n

i=1 Ji, γ = (γT
1 , . . . ,γT

p )T , γk = (γk1, . . . , γkLk
)T , k = 1, . . . , p, ‖γk‖2 = (

∑Lk

l=1 γ2
kl)

1/2

is the l2-norm of γk, and pλ(·) is the SCAD penalty function with λ as a tuning parameter, which

is defined as

pλ(|w|) =



















λ|w| if |w| ≤ λ, ,

− (|w|2−2aλ|w|+λ2)
2(a−1) if λ < |w| < aλ,

(a+1)λ2

2 if |w| > aλ.

(2.3)

The penalty function (2.3) is a quadratic spline function with two knots at λ and aλ, where a

is another tuning parameter. Fan and Li (2001) showed that the Bayes risks are not sensitive

to the choice of a and suggested using a = 3.7, which was also used in this paper. Through γ̂

which minimizes the objective function (2.2), an estimate of βk(t) can be obtained by β̂k(t) =
∑Lk

l=1 γ̂klBkl(t).

http://biostats.bepress.com/upennbiostat/art20
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To simply the expression of the objective function (2.2), we define

B(t) =











B11(t) . . . B1L1(t) 0 . . . 0 0 . . . 0
...

...
... 0

0 . . . 0 0 . . . 0 Bp1(t) . . . BpLp(t)











,

Ui(tij) = (xi(tij)
T B(tij))

T , Ui = (Ui(ti1), . . . ,Ui(tiJi
))T , and U = (U1, . . . , Un). We also define

y = (y1(t11), . . . , yn(tnJn))T . The objective function (2.2) can then be written as

l(γ) = N−1
n
∑

i=1

(yi − Uiγ)T (yi − Uiγ) +

p
∑

k=1

pλ(‖γk‖2). (2.4)

Remark 1. The requirement of the orthonormality of the basis {Bkl(t)}
∞
l=1 is not essential. When

non-orthonormal basis {Bkl(t)}
∞
l=1 is used, the penalty

∑p
k=1 pλ(‖γk‖2) in (2.2) and (2.4) should

be substituted accordingly by
∑p

k=1 pλ((γT
k Hkγ)1/2), where Hk = (hij)Lk×Lk

is a matrix with

hij =
∫

T Bki(t)Bkj(t)dt. The oracle property and convergence results in Section 3 still hold and

the proofs just need slight modification.

2.1. Algorithm

Because of non-differentiability of the penalized loss l(β), the commonly used gradient

method is not applicable. In this section, we develop an iterative algorithm based on local

quadratic approximation of the non-convex penalty pλ(‖γk‖2). Following Fan and Li (2001), in

a neighborhood of a given positive w0 ∈ R
+,

pλ(w) ≈ pλ(w0) + 1/2{p′λ(w0)/w0}(w
2 − w2

0).

In our algorithm, a similar quadratic approximation is used by substituting γ with ‖γk‖2,

k = 1, . . . , p. Given an initial value of γ0
k with ‖γ0

k‖2 > 0, pλ(‖γ‖2) can be approximated by a

quadratic form

pλ(‖γ0
k‖2) + 1/2{p′λ(‖γ0

k‖2)/‖γ
0
k‖2}(γ

T
k γk − (γ0

k)T γ0
k).

As a consequence, equation (2.4) becomes

l(γ) = N−1(y − Uγ)T (y − Uγ) + γTΣλ(γ0)γ, (2.5)

where Σλ(γ0) = diag{(p′λ(‖γ0
1‖2)/‖γ

0
1‖2)IL1 , . . . , (p

′
λ(‖γ0

K‖2)/‖γ
0
K‖2)ILp} with ILk

an Lk di-

mensional identity matrix. This is a quadratic form, and can be solved by

(N−1UT U + 1/2Σλ(γ0))γ = Uy. (2.6)

Hosted by The Berkeley Electronic Press
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We outline the algorithm as follows:

Step 1: Initialize γ(1).

Step 2: Set γ0 = γ(m), and solve γ(m+1) by equation (2.6).

Step 3: Iterate Step 2 until convergence of γ.

In the initialization step, we obtain an initial estimation of γ using a ridge regression, which

substitutes pλ(‖γk‖2) in equation (2.2) with a quadratic function ‖γk‖
2
2, and can be solved by

matrix operations. At any iteration of step 2, if some ‖γ
(m)
k ‖2 is smaller than a cutoff value

ǫ1 > 0, we set γ̂k = 0 and treat x(k)(t) as irrelevant. If any matrix is singular when solving

equation (2.6), a small perturbation ǫ2 is added to the diagonal entry of the matrix. In our

algorithm both ǫ1 and ǫ2 are set to 10−3.

2.2. Selection of tuning parameters

To implement the proposed method, we need to choose the tuning parameters: Lk, k =

1, . . . , p and λ, where Lk controls the smoothness of β̂(t), while λ determines the sparsity. In

section 3, we show that the oracle property holds, when these tuning parameters grow or decay at

a proper rate with n. In practice, however, we need data-driven procedures to select the tuning

parameters. In this paper, we only consider the situation when Lk = L for all βk(t), k = 1, . . . , p.

To facilitate adaptive selection of L and λ, we propose using a closed form estimation of the

generalized cross-validation error (GCV) or the “leave-one-subject-out” cross-validation (SJCV)

for two different situations: independent or correlated errors.

If the errors εi(tij) are independent for different tij , j = 1, . . . , Ji, an approximate GCV

is applicable. Note that in the last step of our algorithm, due to the convergence of γk, the

nonzero components are estimated as γ̂ = (UT U + N/2Σλ(γ̂))−1UY , which can be considered

as the solution of a ridge regression as follows

‖y − Uγ‖2
2 + N/2γT Σλ(γ̂)γ. (2.7)

Consequently, the optimal (L, λ) can be approximately selected by minimizing the GCV error

for (2.7), which can be efficiently computed as

GCV (L, λ) =
1

N

‖y − M(L, λ)y‖2
2

(1 − tr[M(L, λ)]/N)2
,

where M(L, λ) = U(UT U + N/2Σλ(γ̂))−1UT .

http://biostats.bepress.com/upennbiostat/art20
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If the correlation structure of ε(t) is unknown, the GCV is unsuitable. In such a situation,

we choose SJCV in the spirit of Rice and Silverman (1991), Hoover et al. (1998) and Huang et

al. (2002). Let γ̂(−i) be the solution of (2.2) after deleting the ith subject. The commonly used

cross-validation error is then defined as

CV (L, λ) =

n
∑

i=1

Ji
∑

j=1

(yi(tij) − U (−i)(tij)γ̂
(−i))2.

CV (L, λ) is a good estimate of the true prediction error. However, its computation is very

intensive, since it requires solving equation (2.2) n times. To overcome this difficulty, we propose

using the following approximate cross-validation error

ACV (L, λ) =
n
∑

i=1

Ji
∑

j=1

(yi(tij) − U (−i)(tij)γ̂
⋆(−i))2 =

N
∑

i=1

‖yi − Uiγ̂
⋆(−i)‖2

2,

where γ̂⋆(−i) is obtained by solving (2.7) instead of (2.2), deleting the ith subject. We have the

following “leave-one-subject-out” lemma (see Appendix A for the proof), which greatly facilitates

the computation.

Lemma 1. Define ỹ(i) = (yT
1 , . . . ,yT

i−1,Uiγ̂
⋆(−i),yT

i+1, . . . ,y
T
n ), and let γ̃(i) be the solution of

(2.7) with y substituted by ỹ(i). Then, Uiγ̂
⋆(−i) = Uiγ̃

(i).

Note that γ̂ = Ay and γ̃(i) = Aỹ(i). As a consequence of Lemma 1,

Uiγ̂
⋆(−i) = UiAỹ(i) = Ui(

∑

k 6=i

Akyk + AiUiγ̂
⋆(−i)) = Ui(γ̂ − Aiyi + AiUiγ̂

⋆(−i)).

By some standard calculation, we have

yi − Uiγ̂
⋆(−i) = (I − UiAi)

−1(yi − Uiγ̂) = (I − Mii(L, λ))−1(yi − Uiγ̂).

Therefore,

ACV (L, λ) =
N
∑

i=1

‖(I − Mii(L, λ))−1(yi − Uiγ̂)‖2
2,

in which we only need to solve the inverse of the Ji-dimensional matrices I −Mii. Then, we can

choose the optimal (L, λ) by minimizing ACV (L, λ).

3. Large-sample Properties

Hosted by The Berkeley Electronic Press
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For the standard parametric linear regression models, Fan and Li (2001) established the or-

acle property of the SCAD penalized estimates, which indicates that the SCAD penalty enables

consistent variable selection and parameter estimation simultaneously, as if the subset of rele-

vant variables is already known. We show that this oracle property also holds for our proposed

gSCAD method for varying coefficients models. In addition, we also establish the consistency

and the convergence rate of our estimates of the smooth functions. Assume that only s predictors

are relevant in the Model (1.1). Without loss of generality, let βk(t), k = 1, . . . , s be the non-zero

coefficients, and βk(t) = 0, k = s + 1, . . . , p. We made the following technical assumptions:

Assumption 1: The subjects (yi(t),xi(t)), i = 1, . . . , n, are i.i.d., and the observation time

points tij are i.i.d. from an unknown density f(t) on [0, T ], where f(t) are uniformly bounded

away from infinity and zero.

Assumption 2: The eigenvalues of the matrix E{X(t)XT (t)} are uniformly bound away

from infinity and zero for all t.

Assumption 3: There exists a positive constant M1 such that |xik(t)| ≤ M1 for all t.

Assumption 4: There exists a positive constant M2 such that Eε2(t) ≤ M2 for all t.

Define Gk(Lk) = {g(t) =
∑Lk

l=1 γklBkl(t)}, ρn =
∑p

k=1 infg∈Gk
‖βk−g‖L∞

, Ln = max1≤k≤p Lk.

Here ρn is an approximation error of Gk(Lk) to βk(t), k = 1, . . . , p, which approaches zero as Lk

grows to infinity at a proper rate with sample size n. Furthermore, define

Ak(Lk) = sup
g∈Gk(Lk),‖g‖L2

6=0
||g||L∞

/‖g‖L2 , An = max
k

Ak(Lk),

where ‖g‖L∞
= supt∈[0,T ] |g(t)|, and ‖g‖L2 = (

∫

[0,T ] g(t)2 dt)1/2. The following theorem, the

proof of which is given in the Appendix B, shows the oracle property, the consistency and the

convergence rates of the estimates.

Theorem 1. Suppose the assumptions 1-4 listed above are satisfied, limn→∞ ρn = 0 and

lim
n→∞

A2
nLn max{N−1 max

1≤i≤n
(Ji), N

−2
∑

i

J2
i } = 0. (3.1)

Then, with a choice of λn such that λn → 0 and λn/max{rn, ρn} → ∞, we have

(a.) β̂k = 0, k = s + 1, . . . , p, with probability approaching 1.

(b.) ‖β̂k − βk‖L2 = Op(max(rn, ρn)), k = 1, . . . , s, with rn = (N−2Ln
∑n

i=1 J2
i )1/2.

http://biostats.bepress.com/upennbiostat/art20
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Note that Theorem 1 gives the oracle property (1(a)) and the consistency (1(b)) for gen-

eral basis choices for basis function approximations. The following corollary gives a specific

convergence rates for a class of spline estimators (see Appendix C for the proof).

Corollary 1. Suppose that the assumptions in Theorem 1 hold, Ji = J , i = 1, . . . , n, and that

βk(t) have bounded second derivatives, k = 1, . . . , s, βk(t) = 0, k = s + 1, . . . , p. Let λn → 0,

n2/5λn → ∞, and let {Bkl(t)}
Lk+4
l=1 be the cubic spline basis with Lk equally spaced interior knots,

where Lk = O(n1/5), k = 1, . . . , p. Then,

(a.) β̂k = 0, k = s + 1, . . . , p, with probability approaching 1.

(b.) ‖β̂k − βk‖L2 = Op(n
−2/5), k = 1, . . . , s.

Note that the rate of convergence is the optimal rate for nonparametric regression with in-

dependent, identically distributed data under the same smoothness assumptions (Stone, 1982).

4. Monte Carlo Simulation

We conducted simulation studies to assess the performance of the proposed procedure. In

each simulation run, we generated a simple random sample of 200 subjects according to the

model used in Huang et al. (2002), which assumes

Y (tij) = β0(tij) +
23
∑

k=1

βk(tij)xk(tij) + ε(tij), i = 1, . . . , 200, j = 1, . . . , Ji.

The first three variables xi(t), i = 1, . . . , 3, are the true relevant covariates, which are simulated

the same way as in Huang et al. (2002): x1(t) is sampled uniformly from [t/10, 2 + t/10] at

any given time point t; x2(t), conditioning on x1(t), is gaussian with mean zero and variance

(1+x1(t))/(2+x1(t)); x3(t), independent of x1 and x2, is a Bernoulli random variable with success

rate 0.6. In addition to xk, k = 1, 2, 3, 20 redundant variables xk(t), k = 4, . . . , 23, are simulated

to demonstrate the performance of variable selection, where each xk(t), independent of each

other, is a random realization of a gaussian process with covariance structure cov(xk(t), xk(s)) =

4 exp(−|t − s|). The random error ε(t) is given by Z(t) + E(t), where Z(t) has the same

distribution as xk(t), k = 4, . . . , 23, and E(t) are independent measurement errors from N(0, 4)

distribution at each time t. The coefficients βk(t), k = 0, . . . , 3, corresponding to the constant

Hosted by The Berkeley Electronic Press
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Figure 4.1: True (solid lines) and average of estimated (dashed lines) time-varying coeffi-

cients β0(t) (a), β1(t) (b), β2(t) (c) and β3(t) (+/- 1 point-wise SE) over 100 replications.
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term and the first three variables, are given by

β0(t) = 15 + 20 sin(
πt

60
), β1(t) = 2 − 3 cos(

π(t − 25)

15
),

β2(t) = 6 − 0.2t, β3(t) = −4 +
(20 − t)3

2000
,

(see solid lines of Figure 4.1) while the remaining coefficients, corresponding to the irrelevant

variables, are given by βk(t) = 0, k = 4, . . . , 23. The observation time points tij are gener-

ated following the same scheme as in Huang et al. (2002), where each subject has a set of

“scheduled” time points {1, . . . , 30}, and each scheduled time has a probability of 60% of being

skipped. Then, the actual observation time tij is obtained by adding a random perturbation

from Uniform(−0.5, 0.5) to the nonskipped scheduled time.

We repeated the simulations 100 times. Out of these 100 replications, the variables 1-3 were

selected in each of the runs. Figure 4.1 shows the estimates of the time-varying coefficients of

βk(t), k = 0, 1, 2, 3, indicating that the estimates fit the true function very well. As a compari-

son, among the 20 irrelevant variables, 10 were selected 1 time, 3 were selected 2 times, 5 were

selected three times and 2 were selected 5 times. The simulations indicate that the proposed

procedure indeed provides an effective method for selecting variables with time-varying coeffi-

cients and for estimating the coefficient functions.

5. Application to Yeast Cell Cycle Gene Expression Data

We present results from our analysis of the yeast cell cycle microarray gene expression

data set of Spellman et al. (1998). They monitored genome-wide mRNA levels for 6178 yeast

ORFs simultaneously using several different methods of synchronization including an α-factor-

mediated G1 arrest, which covers approximately two cell-cycle periods with measurements at

7-min intervals for 119 mins with a total of 18 time points. Using a model-based approach, Luan

and Li (2003) identified 297 cell-cycle regulated genes based on the α-factor synchronization

experiments. In addition, we applied the mixture model approach (Chen et al., 2007) using

the ChIP data of Lee et al. (2002) to derive the binding probabilities xik for these 297 cell-

cycle-regulated genes for a total of 96 transcriptional factors with at least one nonzero binding

probability in the 297 genes. Our goal is to identify the transcriptional factors that might

be related to the expression patterns of these 297 cell-cycle-regulated genes. Since different

transcriptional factors may regulate the gene expression at different time points during the

cell-cycle process, their effects on gene expression are expected to be time-dependent.
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Figure 5.2: Estimated time-varying coefficients for selected transcription factors (TFs):

(a)-(c): TFs that regulate genes expressed at the G1 phase; (d)-(f): TFs that regulate

genes expressed at the G2 phase; (g)-(i) TFs that regulate genes expressed at the M phase.
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We applied the gSCAD procedure using the GCV for selecting the tuning parameter in

order to identify the TFs that affect the expression changes over time for these 297 cell-cycle-

regulated genes in the α-factor synchronization experiment. The gSCAD procedure identified a

total of 71 TFs that are related to yeast cell-cycle processes, including 19 of the 21 known and

experimentally verified cell-cycle related TFs, all showing time-dependent effects of these TFs on

gene expression levels. In addition, the effects followed similar trends between the two cell-cycle

periods. The other two TFs, CBF1 and GCN4 were not selected by the gSCAD procedure; it

was not clear why CBF1 and GCN4 were not selected by the gSCAD. The minimum p-values

over 18 time points from simple linear regressions are 0.06 and 0.14, respectively, also indicating

that CBF1 and GCN4 were not related to expression variation over time. Overall, the model

can explain 43% of the total variations of the gene expression levels.

Figure 5.2 shows that estimated time-dependent transcriptional effects of nine of the exper-

imentally verified TFs. The top panel shows the transcriptional effects of three TFs, Swi4, Swi6

and MBP1, that regulate gene expression at the G1 phase (Simon et al., 2001). The estimated

transcriptional effects of these three TFs are quite similar with peak effects obtained at the time

points corresponding to the G1 phase of the cell cycle process. The middle panel shows the

transcriptional effects of three TFs, Mcm1, Fkh2 and Ndd1, that regulate gene expression at the

G2 phase (Simon et al., 2001). Again, the estimated transcriptional effects of these three TFs

are quite similar with peak effects obtained at the time points corresponding to the G2 phase

of the cell cycle process. Finally, the bottom panel shows the transcriptional effects of three

TFs, Swi5, Ace2 and Mcm1, that regulate gene expression at the M phase (Simon et al., 2001),

indicating similar transcriptional effects of these three TFs with peak effects at the point points

corresponding to the M phase of the cell cycle.

The 52 additional TFs that were selected by the gSCAD procedure almost all showed esti-

mated periodic transcriptional effects. The identified TFs include many pairs of cooperative or

synergistic pairs of TFs involved in the yeast cell cycle process reported in the literature (Baner-

jee and Zhang, 2003; Tsai et al., 2005). Of these 52 TFs, 34 of them belong to the cooperative

pairs of the TFs identified by Banerjee and Zhang (2003).

Finally, to assess false identifications of the TFs that are related to a dynamic biological

procedure, we randomly permuted the gene expression values across genes and time points and

applied the gSCAD procedure again to the permuted data sets. We repeated this procedure 50
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times. Among the 50 runs, 5 runs selected 4 TFs, 1 run selected 3 TFs, 16 runs selected 2 TFs

and the rest of the 28 runs did not select any of the TFs, indicating that our procedure indeed

selects the relevant TFs with few false positives.

6. Discussion

We have proposed a regularized estimation procedure variable selection for nonparametric

varying-coefficient models. Such a procedure can simultaneously perform variable selection and

estimation of the smooth functions and can be applied to both the longitudinal setting and the

functional responses setting. The proposed gSCAD estimator have the oracle properties and is

easy to solve using a local quadratic approximation algorithm. Simulation studies indicated that

this procedure is very effective in selecting the relevant groups of variables and in estimating the

regression coefficients. Results from application to the yeast cell cycle data set indicate that the

procedure can be effective in selecting the transcriptional factors that potentially play important

roles in regulation of gene expressions during the cell cycle process.

This paper focuses on linear varying-coefficient models; however, the proposed estimation

procedure can be extended to more general regression models, such as the varying coefficients

Cox regression model or the generalized linear models (Hastie and Tibshirani, 1993). Another

possibility of extending the proposed work is to use smoothing splines for estimating the varying

coefficients, with nodes chosen at the observed time points and a smoothing parameter to control

the smoothness of the coefficients. We are currently pursuing these extensions.
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Appendix

Appendix A. Lemmas and proof

We first prove Lemma 1 that is related to leave-on-out cross-validation analysis. We then

present and prove the other lemmas used in the proof of Theorem 1.

Proof of Lemma 1: Use proof by contradiction. Suppose Uiγ̂
⋆(−i) 6= Uiγ̃

(i). Denote

(2.7) as lridge(γ,y). Then,

lridge(γ̃
(i), ỹ(i)) =

n
∑

k=1

‖ỹ
(i)
k − Ukγ̃

(i)
k ‖2

2 + N/2(γ̃(i))T Σλ(γ̂)γ̃(i)

>
∑

k 6=i

‖yk − Ukγ̃
(i)
k ‖2

2 + N/2(γ̃(i))T Σλ(γ̂)γ̃(i)

≥
∑

k 6=i

‖yk − Ukγ̂
⋆(−i)
k ‖2

2 + N/2(γ̂⋆(−i))T Σλ(γ̂)γ̂⋆(−i)

= lridge(γ̂
⋆(−i), ỹ(i)).

This contradicts the fact that γ̃(i) minimizes lridge(γ̃
(i), ỹ(i)), which proves the result. 2

Define ỹi = E(yi|xi), γ̃ = (
∑n

i=1 UT
i Ui)

−1(
∑n

i=1 UT
i ỹi), and β̃(t) = B(t)γ̃. Here β̃(t) can

be regarded as the conditional mean of β̂(t).

To prove Theorem 1, we use the scheme as follows. First, using Lemma 2-3, we quantify the

convergence rate of ‖β̂ − β̃‖L2 , which is established in Lemma 4. Then by Lemma 4, we prove

the consistency of variable selection in part (a) of Theorem 1. Finally, we improve the rate in

Lemma 4 to obtain the rate in part (b) of Theorem 1.

Lemma 2. Suppose that (3.1) holds. There exists an interval [M3,M4], 0 < M3 < M4 ≤ ∞,

such that all the eigenvalues of N−1
∑n

i=1 UT
i Ui fall in [M3,M4] with probability approaching 1

as n → ∞.

Lemma 3. Suppose that (3.1) holds. Then, ‖β̃ − β‖L2 = OP (ρn).
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Lemma 2 and 3 are from Lemma A2 and A3 in Huang et al. (2002), respectively. The

proofs are omitted.

Lemma 4. Suppose that (3.1) holds and that λ ≡ λn, rn and ρn approach 0 as n → ∞ satisfying

λn/max{rn, ρn} → ∞. Then, ‖β̂ − β̃‖L2 = OP (rn + (λnρn)1/2).

Proof of Lemma 4: Because of the orthonormality of the basis, ‖β̂− β̃‖2
L2

=
∑p

k=1 ‖γ̂k−

γ̃k‖
2
2 = (γ̂ − γ̃)T (γ̂ − γ̃). Let γ̂ − γ̃ = δu with δ a scaler and u a vector satisfying ‖u‖2 = 1.

We first prove that ‖γ̂ − γ̃‖2 = δ = Op(rn + λn).

Note that

l(γ̂) − l(γ̃) = N−1
n
∑

i=1

(‖yi − Ui(γ̃ + δu)‖2
2 − ‖yi − Uiγ̃‖

2
2)

+

p
∑

k=1

(pλ(‖γ̃k + δuk‖2) − pλ(‖γ̃k‖2))

= (−2N−1
n
∑

i=1

εi
T Uiu)δ + (N−1uT

n
∑

i=1

UT
i Uiu)δ2

+

p
∑

k=1

(pλ(‖γ̃k + δuk‖2) − pλ(‖γ̃k‖2)), (7.1)

where εi = (εi(ti1), . . . , εi(tiJi
))T . For the first term in (7.1), note that

Et(Bkl(t)
2) =

∫ T

0
Bkl(t)

2f(t)dt ≤ sup
t∈[0,T ]

f(t)

∫ T

0
Bkl(t)

2dt = sup
t∈[0,T ]

f(t),

Then,

E(εiUiu)2 = E(

Ji
∑

j=1

εi(tij)x
T
i (tij)B(tij)u)2 ≤ E[

∑

j

εi(tij)
2
∑

j

(xT
i (tij)B(tij)u)2]

≤ JiM2E[
∑

j

(xT
i (tij)B(tij)u)2]

≤ JiM2

∑

j

E[‖xi(tij)‖
2
2‖u‖

2
2tr{B(tij)B

T (tij)}]

≤ JiM2pM2
3

∑

j

Et(
∑

k

∑

l

Bkl(tij)
2) = O(J2

i Ln).

As a result,

N−1
n
∑

i=1

εi
T Uiu = OP (E[N−1

n
∑

i=1

εi
T Uiu]2)1/2 = OP (N−2Ln

n
∑

i=1

J2
i )1/2 = OP (rn). (7.2)
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For the second term in (7.1), by Lemma 2,

(N−1uT
n
∑

i=1

UT
i Uiu) ≥ M3 (7.3)

with probability approaching 1.

For the third term in (7.1), note that |pλ(a) − pλ(b)| ≤ λ|a − b|. Therefore,

p
∑

k=1

(pλ(‖γ̃k + δuk‖2) − pλ(‖γ̃k‖2) ≥ −λ‖γ̂ − γ̃‖2 = −λδ. (7.4)

Combining (7.2), (7.3), (7.4) and the fact that l(γ̂)−l(γ̃) ≤ 0, (7.1) becomes 0 ≥ −Op(rn)δ+

M3δ
2 − λδ with probability approaching 1, which implies ‖γ̂ − γ̃‖2 = δ = Op(rn + λn).

Now we proceed to improve the obtained rate and show that δ = OP (rn + (λnρn)1/2). Note

that |‖γ̂k‖2 − ‖γ̃k‖2| = op(1), and |‖γ̃k‖2 − ‖βk‖L2 | ≤ ‖β̃k − βk‖L2 = Op(ρn), k = 1, . . . , p. We

have ‖γ̂k‖2 → ‖βk‖L2 > aλn in probability, ‖γ̃k‖2 → ‖βk‖L2 > aλn in probability, k = 1, . . . , s,

and ‖γ̃k‖2 = Op(ρn) < λn in probability, k = s + 1, . . . , p, because λn → 0 and λn/ρn → ∞.

By the definition of pλ(·), it follows that P{pλn
(‖γ̃k‖2) = pλn

(‖γ̂k‖2)} → 1, k = 1, . . . , s,

and P{pλn
(‖γ̃k‖2) = λn‖γ̃k‖2} → 1, k = s + 1, . . . , p. Combining with (7.2) and (7.3), with

probability approaching 1, we have,

l(γ̂) − l(γ̃) ≥ N−1
n
∑

i=1

(‖yi − Ui(γ̃ + δu)‖2
2 − ‖yi − Uiγ̃‖

2
2)

+
s
∑

k=1

(pλ(‖γ̃k + δuk‖2) − pλ(‖γ̃k‖2)) −

p
∑

k=s+1

pλ(‖γ̃k‖2)

≥ −Op(rn)δ + M3δ
2 − Op(λnρn),

which implies ‖γ̂ − γ̃‖2 = δ = OP (rn + (λnρn)1/2). This proves the desired result. 2

Appendix B. Proof of Theorem 1

To prove part (a) of Theorem 1, we use proof by contradiction. Suppose that there exists

a constant δ > 0 such that with probability at least δ, there exist a large n and a k0 > s such

that β̂k0(t) 6= 0. Then ‖γ̂k0‖2 = ‖β̂k0(t)‖L2 > 0. Let γ∗ be a vector constructed by replacing γ̂k0

with 0 in γ̂. Note that λn/max(rn, ρn) → ∞. Then, λn > ‖γ̂k0‖2 = Op(rn + (λnρn)1/2) with
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probability approaching 1, and

l(γ̂) − l(γ∗) = N−1
n
∑

i=1

(‖yi − Uiγ̂‖
2
2 − ‖yi − Uiγ

∗‖2
2) + pλ(‖γ̂k0‖2)

= N−1
n
∑

i=1

(−2yT
i Ui(γ̂ − γ∗) + (γ̂ − γ∗)T UT

i Ui(γ̂ − γ∗)) + λ‖γ̂k0‖2

≥ −Op(rn)‖γ̂k0‖2 + M3‖γ̂k0‖
2
2 + λn‖γ̂k0‖2. (7.5)

Note that in (7.5), the third term dominates both the first term and the second term. This

contradicts the fact that l(γ̂) − l(γ∗) ≤ 0, which proves part (a).

To prove part (b), first write γ = ((γ(1))T , (γ(2))T )T , where γ(1) = (γT
1 , . . . ,γT

s )T and

γ(2) = (γT
s+1, . . . , γ

T
p )T . Similarly, write β(t) = (β(1)T ,β(2)T )T and Ui = (U

(1)
i ,U

(2)
i ). Then

define the oracle version of γ̃,

γ̃oracle = arg min
γ=(γ(1)T

,0T )T N−1
n
∑

i=1

(ỹi − Uiγ)T (ỹi − Uiγ)

=





(
∑

i U
(1)
i

T
U

(1)
i )−1(

∑

i U
(1)
i

T
ỹi)

0



 ,

which is obtained as if the information of the nonzero components were given. Note that the

true β(t) = (β(1)T ,0T )T . Then by Lemma 3, ‖β̃oracle − β‖L2 = OP (ρn). To quantify ‖β̂ −

β̃oracle‖L2 = ‖γ̂ − γ̃oracle‖2, note that by part (a) of Theorem 1, with probability approaching 1,

γ̂ = ((γ̂(1))T ,0T )T . Let γ̂ − γ̃oracle = δu with u = ((u(1))T ,0T )T and ‖u(1)‖2 = 1. Then, with

probability approaching 1,

l(γ̂) − l(γ̃oracle) = N−1
n
∑

i=1

(‖yi − Ui(γ̃oracle + δu)‖2
2 − ‖yi − Uiγ̃oracle‖

2
2)

= (−2N−1
n
∑

i=1

εi
T U

(1)
i u(1))δ + (N−1(u(1))T

n
∑

i=1

(U
(1)
i )T U

(1)
i u(1))δ2

≥ −Op(rn)δ + M3δ
2,

which implies ‖γ̂ − γ̃oracle‖2 = δ = Op(rn). By triangle inequality, ‖β̂ − β‖L2 = Op(ρn + rn),

and the result follows. 2

Appendix C. Proof of Corollary 1

By Theorem 6.27 in Schumaker (1981), infg∈Gk
‖βk−g‖L∞

= O(L−2
k ). Thus ρn = O(

∑p
k=1 L−2

k ),

and rn = (Ln/n)1/2 because Ji = J . Use Theorem 1 and solve ρn = rn. We obtain that

ρn = rn = n−2/5, when Lk = n1/5. This completes the proof. 2
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