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A Theory of Sufficient Cause Interactions

Tyler J. VanderWeele and James M. Robins

Abstract

Sufficient-component causes are discussed within the potential outcome frame-
work so as to formalize notions of sufficient causes, synergism and sufficient cause
interactions. Doing so allows for the derivation of counterfactual conditions and
statistical tests for detecting the presence of sufficient cause interactions. Under
the assumption of monotonic effects, more powerful statistical tests for sufficient
cause interactions can be derived. The statistical tests derived for sufficient cause
interactions are compared with and contrasted to interaction terms in standard sta-
tistical models.



1. Introduction

It is often of interest to researchers whether two variables in some way interact in the e¤ect they
produce on a particular outcome. Interaction terms in statistical models are frequently used to assess
whether e¤ects are interdependent. However, whether two variables have a statistical interaction
may depend on which statistical model is being used (Mantel et al., 1977). Two variables that
have an interaction under one statistical model and may not have an interaction under a di¤erent
statistical model. When the causes and the outcome under consideration are binary, it has been
argued that there is a natural way in which to assess interdependent e¤ects based on a su¢ cient-
component cause framework (Rothman, 1976; Koopman, 1981). This su¢ cient-component cause
framework makes reference to the actual causal mechanisms involved in bringing about the outcome;
when two or more binary causes participate in the same causal mechanism it becomes proper to
speak of biologic interactions or synergism. In this paper we develop a theory of su¢ cient cause
interactions and derive various conditions to statistically test for the presence of fully general n-way
su¢ cient cause interactions.
In section 2, we give an overview of the su¢ cient-component cause framework and demonstrate

that in the case of a binary outcome and an arbitrary number of binary causes, given any potential
outcome response pattern it is always possible to construct su¢ cient causes for the outcome such
that the su¢ cient causes replicate the potential outcome responses. In section 3, we formally de�ne
su¢ cient-cause interactions and show that there exist certain conditions which, if met, necessarily
entail that any su¢ cient cause representation for the outcome must have an interaction within the
su¢ cient-component cause framework. In section 4, we develop weaker conditions in the setting
where the direction of the e¤ect of the causes on the outcome is known. In section 5 we relate the
conditions derived in sections 3 and 4 to interaction terms in statistical models. Section 6 concludes
with some closing remarks.

2. Su¢ cient Causes

Two broad conceptualizations of causality can be discerned in the literature, both within philosophy
and within statistics and epidemiology. The �rst conceptualization of causality may be characterized
as giving an account of the e¤ects of particular causes or interventions. In both philosophy and
statistics the work is associated with counterfactuals or potential outcomes (Hume, 1748; Neyman,
1923; Lewis, 1973a, 1973b; Rubin, 1974, 1978; Robins, 1986, 1987). The counterfactual or potential
outcome framework has been used extensively in statistics both in the development of theory and in
application. In contrast, the second conceptualization of causality has received comparatively little
attention. This second conceptualization may be characterized as giving an account of the causes
of particular e¤ects; this approach attempts to address the question, "Given a particular e¤ect,
what are the various events which might have been its cause?" In the contemporary philosophical
literature this approach is most notably associated with Mackie�s work on insu¢ cient but necessary
components of unnecessary but su¢ cient conditions (INUS conditions) for an e¤ect (Mackie, 1965).
In the epidemiologic literature this approach is most closely associated with Rothman�s work on
su¢ cient-component causes (Rothman, 1976).
Rothman conceived of a su¢ cient cause as a minimal set of actions, events or states of nature

which together inevitably initiated a set of events resulting in the outcome under consideration. For
a particular outcome there would likely be many di¤erent su¢ cient causes. Each su¢ cient cause
involved various component causes. Whenever all components of a particular su¢ cient cause were
present, the outcome would inevitably occur; within every su¢ cient cause, each component would be
necessary for that su¢ cient cause to lead to the outcome. For example, a su¢ cient cause for some
outcomeD might consist of the concurrence of conditions A; B; and C; another su¢ cient cause might
be the concurrence of conditions A; F and Q; and third su¢ cient cause might be the concurrence
of conditions Q and W where Q denotes the complement of Q. These series of conditions, A;B;C
and A;F;Q and Q;W may each represent di¤erent causal mechanisms for the outcome D. When
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every component of a particular series is present, the outcome D will occur but each component is
necessary for the mechanism to be set in motion; thus A;B;C together are su¢ cient for outcome
D but A;B together, without C, is not. Rothman (1976) de�ned synergism between two causes,
A and B say, as the co-participation of A and B in the same su¢ cient cause. Thus in the example
above, it would be said that A and B exhibit synergism but that F and W do not.
In this section we make formal these notions of su¢ cient causes. First, we will de�ne a su¢ cient

cause and give also a number of related de�nitions and second we will show in Theorem 1 that for
binary variables any counterfactual response pattern in the potential outcomes framework can be
replicated by a set of su¢ cient causes. Throughout this paper, we will use the following notation.
An event is a binary variable taking values in f0; 1g. The complement of some event X we will
denote by X. A conjunction or product of events X1; :::; Xn will be written as X1:::Xn. The
disjunctive or OR operator,

W
, is de�ned by A

W
B = A+B �AB so that A

W
B = 1 if and only if

either A = 1 or B = 1. We will use the notation 1(A) to denote the indicator function for condition
A.
Consider a potential outcomes framework with s binary factors, X1; :::; Xs, which represent hy-

pothetical interventions or causes and let D denote some binary outcome of interest. Let Dx1:::xs(!)
to denote the counterfactual value of D for individual ! if the causes Xj were set to the value xj
for j = 1; :::; s. We will use Dx1:::xs(!) and DX1=x1;:::;Xs=xs(!) interchangeably. In this setting
there will be 2s potential outcomes for each individual ! in the population, one potential outcome
for each possible value of (X1; :::; Xs). The actual value of D for individual ! will be denoted
by D(!) and the actual value of X1; :::; Xs for individual ! will be denoted by X1(!); :::; Xs(!).
Mathematically, it could be that DX1(!):::Xs(!)(!) 6= D(!); however we will require the "consis-
tency" assumption that DX1(!):::Xs(!)(!) = D(!) i.e. that the value of D which would have been
observed if X1; :::; Xs had been set to what they in fact were is equal to the value of D which was
in fact observed. Thus the only potential outcome for individual ! that is observed is the potential
outcome DX1(!):::Xs(!)(!), the value of D which would have been observed if X1; :::; Xs had been
set to what they in fact were. All of the potential outcomes for an individual ! can be listed in a
vector with 2s components and this vector we will denote by D(!).
We now begin with the de�nitions of a su¢ cient cause and a minimal su¢ cient cause for some

subset X1; :::; Xn of the causes X1; :::; Xs.

Definition 1 (Sufficient Cause). A set of binary causes X1; :::; Xn for D is said to constitute
a su¢ cient cause for D if for all values x1; :::; xs such that x1:::xn = 1 we have that Dx1:::xs(!) = 1
for all ! 2 
.

Definition 2 (Minimal Sufficient Cause). A set of binary causes X1; :::; Xn is said to
constitute a minimal su¢ cient cause for D if X1; :::; Xn constitute a su¢ cient cause for D and no
proper subset Xi1 ; :::; Xik of X1; :::; Xn also constitutes a su¢ cient cause for D.

When a complete set of su¢ cient causes for some outcome is known, then not only is it the case
that the realization of each su¢ cient cause necessarily entails the outcome but it is also the case
the presence of the outcome necessarily entails the realization of at least one of the su¢ cient causes.
Such a complete set of su¢ cient causes will be said to be a determinative set of su¢ cient causes;
when all the su¢ cient causes of a particular set are needed for the set to be determinative then the
set is said to be non-redundant.

Definition 3 (Determinative Sufficient Causes). A set of su¢ cient causes forD,M1; :::;Mn,
each of which may be some product of binary causes of D, is said to be determinative for D if for
all ! 2 
, Dx1:::xs(!) = 1 if and only if x1; :::; xs are such that M1

W
M2

W
:::
W
Mn = 1.

Definition 4 (Non-redundant Sufficient Causes). IfM1; :::;Mn is a determinative set of
(minimal) su¢ cient causes for D such that there is no proper subset Mi1 ; :::;Mik of M1; :::;Mn that
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is also a determinative set of (minimal) su¢ cient causes for D then M1; :::;Mn is said to constitute
a non-redundant determinative set of (minimal) su¢ cient causes for D.

Corresponding to the de�nition of a su¢ cient cause is the more philosophical notion of a causal
mechanism. A causal mechanism can be conceived of as a set of events or conditions which, if all
present, inevitably bring about the outcome under consideration in a particular manner. A causal
mechanism thus provides a particular description of how the outcome comes about. We will make
reference to the concept of a causal mechanism in some of the discussion of this paper. However all
de�nitions and theorems are given in terms of su¢ cient causes for which we have a precise de�nition.
For a su¢ cient cause to correspond to a particular causal mechanism it is not necessary that the
su¢ cient cause be a minimal su¢ cient cause nor that it be part of a set of su¢ cient causes that is
non-redundant. This is illustrated in Example 1.

Example 1. Suppose that an individual were exposed to two poisons, X1 and X2, such that
in the absence of X2, the poison X1 would lead to heart failure resulting in death; and that in the
absence of X1, the poison X2 would lead to respiratory failure resulting in death; but such that
when X1 and X2 were both present, they would interact and lead to a failure of the nervous system
once again resulting in death. Here there are three distinct causal mechanisms for death: X1X2,
X1X2, and X1X2. Each of these mechanisms is a su¢ cient cause for death but none of them is
minimally su¢ cient since either X1 or X2 alone is su¢ cient for death.

Although the concepts of minimality of su¢ cient causes and of non-redundancy are not essential
for a su¢ cient cause to correspond to a causal mechanism, it will be seen in the following section
that these concepts are useful in the development of the theory of su¢ cient cause interactions.
The relation between the su¢ cient-component cause framework and the potential outcomes

framework has received some attention in the literature. Greenland and Poole relate the two (1988)
in the case of two binary causes. Rothman and Greenland (1998), Greenland and Brumback (2002)
and Flanders (2006) provide some further discussion. VanderWeele and Robins (2006a) relate the
su¢ cient-component cause framework to the directed acyclic graph causal framework and develop
theory concerning the graphical representation of su¢ cient causes on directed acyclic graphs. For
the development of a theory of su¢ cient cause interactions we will need only one result concerning
the relation between the su¢ cient-component cause framework and potential outcomes. We show
in Theorem 1 that in the case of a binary outcome and an arbitrary number of binary causes, given
any potential outcome response pattern it is always possible to construct su¢ cient causes for the
outcome such that the su¢ cient causes replicate the potential outcome responses.

Theorem 1. Suppose that X1; :::; Xs are binary causes of some binary outcome D. Let 

be the sample space of the individuals in the population and let Dx1:::xs(!) be the counterfactual
value of D for ! 2 
 if Xj were set to xj . For each possible conjunction Gi = F i1:::F

i
ni , where

each F ik is either a is either a member of the set fX1; :::; Xsg or is the complement of such a
member, there exists a binary variable Ai(!) which are functions of the potential outcome vector
D(!) such that D(!) =

W
i

Ai(!)F
i
1(!):::F

i
ni(!) and such that Dx1:::xs(!) =

W
i

Ai(!)gi(x1; :::; xs)

where gi(x1; :::; xs) = 1 if F i1:::F
i
ni = 1 when (X1; :::; Xs) = (x1; :::; xs) and 0 otherwise.

Theorem 1 allows for the construction of variables Ai such that the Ai variables along with
X1; :::; Xs and their complements can be used to form a determinative set of su¢ cient causes for D
which replicate a given set of potential outcomes. The conjunctions AiF i1:::F

i
ni are su¢ cient for D

and the disjunction of these conjunctions is determinative for D. Each F ik in these conjunctions
is a cause of D since each F ik is either a member of the set fX1; :::; Xsg or is the complement of
such a member. The variable Ai is a logical construct and may or may not allow for interpretation;
it may not be possible to intervene on this logical construct Ai. Although it may not be possible
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to intervene on Ai, we will still refer to conjunctions of the form AiF
i
1:::F

i
ni as su¢ cient causes for

D. Note that the logical constructs Ai, being functions of the potential outcomes themselves, are
not a¤ected by any of the causes or interventions X1; :::; Xs. If the counterfactual response pattern
for every individual in the population is identical, i.e. if the causes X1; :::; Xs completely determine
the outcome D then no additional variables Ai are needed to form a determinative set of su¢ cient
causes for D. A determinative set of su¢ cient causes for D can be constructed simply from the set
of binary causes X1; :::; Xs and their complements.
The construction in the proof of Theorem 1 of the binary variables Ai is not in fact the only pos-

sible construction such that the disjunction
W
i

AiF
i
1:::F

i
ni replicates the potential outcome response

patterns D(!). A determinative set of su¢ cient causes will not in general be unique. For example,
in the case of one binary cause, X1, if D = A0

W
A1X then it is also the case that D = B0

W
B1X

where B0 = A0 and B1 = A0A1. Any set of binary variables Ai(!) constructed from the potential
outcomes D(!) such that the disjunction

W
i

AiF
i
1:::F

i
ni replicates the potential outcome response

patterns for the entire population we will call a su¢ cient cause representation for D.

Definition 5 (Sufficient Cause Representation). Suppose that X1; :::; Xs are binary
causes of some binary outcome D. Let 
 be the sample space of the individuals in the population
and let Dx1:::xs(!) be the counterfactual value of D for ! 2 
 if Xj were set to xj . For each possible
conjunction Gi = F i1:::F

i
ni , where each F

i
k is either a is either a member of the set fX1; :::; Xsg or is

the complement of such a member let Ai(!) be any binary variable constructed from the potential
outcomes D(!). If Dx1:::xs(!) =

W
i

Ai(!)gi(x1; :::; xs) where gi(x1; :::; xs) = 1 if F i1:::F
i
ni = 1 when

(X1; :::; Xs) = (x1; :::; xs) and 0 otherwise then the disjunction
W
i

AiF
i
1:::F

i
ni is said to be a su¢ cient

cause representation for D.

For any su¢ cient cause representation,
W
i

AiF
i
1:::F

i
ni , each conjunction AiF

i
1:::F

i
ni is a su¢ cient

cause for the outcome D and the collection of conjunctions of the form AiF
i
1:::F

i
ni constitutes a

determinative set of su¢ cient causes for D. If the conjunctions in a particular su¢ cient cause
representation are minimal su¢ cient causes then we will refer to the representation as a minimal
su¢ cient cause representation. If the conjunctions in a particular su¢ cient cause representation
are non-redundant then we will refer to the representation as a non-redundant su¢ cient cause
representation. With these de�nitions in place we can now derive conditions which imply the
existence of su¢ cient cause interactions.

3. Su¢ cient Cause Interactions

In this section we de�ne and develop conditions for testing for the presence of su¢ cient cause
interactions. The central result of this section is essentially that if we have some subset, X1; :::; Xm,
of the binary causes X1; :::; Xs such that there exists an individual for whom intervening to set all
of X1; :::; Xm to 1 ensures that the outcome D is 1 but for whom having all but one of X1; :::; Xm
set to 1 forces the outcome D to be 0 then every su¢ cient cause representation for D will have
some su¢ cient cause in which all of X1; :::; Xm are present in the su¢ cient cause�s conjunction.
In such cases, since any su¢ cient cause representation must have the conjunction X1:::Xm in its
representation, it makes sense to speak of a su¢ cient cause interaction between X1; :::; Xm.
We begin formally by de�ning the concepts of a su¢ cient cause interaction and a minimal su¢ -

cient cause interaction and showing how they are related.

Definition 6 (Minimal Sufficient Cause Interaction). Suppose that F1; :::; Fm are such
that each Fk is either a member of the set of binary causes fX1; :::; Xsg or is the complement of
such a member then F1; :::; Fm is said to exhibit a minimal su¢ cient cause interaction if in every
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non-redundant minimal su¢ cient cause representation for D there exists within the representation
a su¢ cient cause which contains F1; :::; Fm within its conjunction.

De�nition 6 requires there to exist within every non-redundant minimal su¢ cient cause represen-
tation for D a su¢ cient cause which has F1; :::; Fm in its conjunction. Example 2 below makes clear
that it does not su¢ ce to merely require that there exists some non-redundant minimal su¢ cient
cause representation for D within which a su¢ cient cause has F1; :::; Fm in its conjunction.

Example 2. Suppose that the sample space 
 of individuals in the population is given by


D = f!1; !2; !3; !4; !5; !6; !7g

and that

D = A1X1X2
_
A2X1X2

_
A3X1X3

_
A4X2X3

_
A5X1X3

_
A6X2X3

whereA1 = 1(! 2 f!1; !2g); A2 = 1(! 2 f!1; !3g); A3 = 1(! 2 f!2; !4g); A4 = 1(! 2 f!2; !5g); A5 =
1(! 2 f!3; !6g) and A6 = 1(! 2 f!3; !7g). It can be veri�ed that the representation given above
is a non-redundant minimal su¢ cient cause representation for D. Clearly in this non-redundant
minimal su¢ cient cause representation for D, there is a su¢ cient cause that contains both X1 and
X2. If however we let A7 = 1(! = !1); then

D = A7X1
_
A3X1X3

_
A4X2X3

_
A5X1X3

_
A6X2X3

is also a non-redundant minimal su¢ cient cause representation for D and this representation has no
su¢ cient cause with both X1 and X2 in its conjunction.

Corresponding to the de�nition of a minimal su¢ cient cause interaction is that of a su¢ cient
cause interaction.

Definition 7 (Sufficient Cause Interaction). A conjunction of F1; :::; Fm, where each
Fk is either a member of the set of binary causes fX1; :::; Xsg or is the complement of such a
member, is said exhibit a su¢ cient cause interaction (or to be irreducible) if within every su¢ cient
cause representation for D there exists some su¢ cient cause which contains F1; :::; Fm within its
conjunction.

Theorem 2. The conjunction of F1; :::; Fm is irreducible if and only if F1; :::; Fm exhibits a
minimal su¢ cient cause interaction.

We will say that there is a biologic interaction or synergism between the e¤ects of F1; :::; Fm
on D if there exists a su¢ cient cause for D with F1; :::; Fm in its conjunction which represents a
particular causal mechanism for D. Examples 1 and 2 above suggest that some knowledge of the
causal mechanisms beyond that which is available by a complete knowledge of the counterfactual
outcomes may be required to determine whether a biologic interaction between F1; :::; Fm is present.
In Example 2, it is not possible to distinguish merely from the counterfactual outcomes whether

A1X1X2
_
A2X1X2

_
A3X1X3

_
A4X2X3

_
A5X1X3

_
A6X2X3

or
A7X1

_
A3X1X3

_
A4X2X3

_
A5X1X3

_
A6X2X3

or some other su¢ cient cause representation constitutes the proper description of the causal mecha-
nisms for D. It is thus not possible to determine in this example from the counterfactual outcomes
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alone whether there is a biologic interaction between X1 and X2. The presence of biologic interac-
tions will sometimes be unidenti�ed even when the counterfactual outcomes for all individuals are
known.
As was the case with the concept of a causal mechanism, statements about biologic interactions

will in general require some knowledge of the subject matter in question. The results we give below
will be stated in terms of the well-de�ned concept of a su¢ cient cause interaction. However, it is
the more philosophical notions of biologic interaction and causal mechanisms that provide much of
the motivation for these results.
We will, in the interpretation of our results, assume that there always exists some set of true causal

mechanisms which forms a determinative set of su¢ cient causes for the outcome. Although the
presence of biologic interactions are sometimes unidenti�ed from the complete set of counterfactual
outcomes, they are not always unidenti�ed. If the conjunction of F1; :::; Fm is irreducible then
within every su¢ cient cause representation for D there exists some su¢ cient cause which contains
F1; :::; Fm within its conjunction and so there must be some causal mechanism for which F1; :::; Fm are
required; a biologic interaction must be present. The class of conjunctions which are irreducible,
or equivalently the components of which exhibit a minimal su¢ cient cause interaction, are the
class for which biologic interactions must be present. Theorem 3 relates this class explicitly to
counterfactual outcomes. Theorem 4 demonstrates that in certain cases one can conclude from data
that a particular conjunction is irreducible and thus that a biologic interaction must be present.
Before we state these two theorems we will need one additional concept. Some cause I of

D is said to be an intermediate variable of other causes of D, X1; :::; Xm if Ix1:::xm , the coun-
terfactual value of I intervening to set X1; :::; Xm to x1; :::; xm, is not independent of the values
of x1; :::; xm. We will also need an additional "consistency" assumption: if I is some set of
variables such that no variable in I is an intermediate variable between X1; :::; Xm and D then
DX1=x1;:::;Xm=xm;I=I(!)(!) = DX1=x1;:::;Xm=xm(!).

Theorem 3. Let X1; :::; Xm, be some subset (with the subscripts relabeled if necessary) of
X1; :::; Xs and suppose that none of Xm+1; :::; Xs are intermediate variables between X1; :::; Xm and
D. Let 
 denote the sample space for the population and let Dx1:::xm(!) be the counterfactual value
ofD for ! 2 
 ifXi were set to xi for i = 1; :::;m then the following two implications hold: (i) if there
exists ! 2 
 such that Dx1:::xm(!) = 1 when x1 = ::: = xm = 1 but Dx1:::xm(!) = 0 for all x1; :::; xm
such that

Xm

i=1
xi = m � 1 then X1; :::; Xm have a su¢ cient cause interaction; (ii) if X1; :::; Xm

have a su¢ cient cause interaction then there exists !� 2 
 and values x�m+1; :::; x�s of Xm+1; :::; Xs
such that Dx1:::xmx�m+1:::x

�
s
(!�) = 1 when x1 = ::: = xm = 1 but such that Dx1:::xmx�m+1:::x

�
s
(!�) = 0

for any x1; :::; xm such that
Xm

i=1
xi = m� 1.

The conditions provided in Theorem 3 have obvious analogues if one or more of X1; :::; Xm are
replaced with their complements. Part (i) of Theorem 3 is of primary interest in this paper; it
gives a su¢ cient condition for a su¢ cient cause interaction and it will be used below to derive an
empirical test for the presence of a su¢ cient cause interaction.

Remark 1. Theorem 3 and Theorem 4 below require that none of Xm+1; :::; Xs be intermediate
variables between X1; :::; Xm and D. This condition is satis�ed trivially if X1; :::; Xm are all of the
causes of D under consideration i.e. X1; :::; Xs. The assumption is necessary because it might
otherwise be possible that one of the causes Xm+1; :::; Xs, say Xs, is in fact e¤ectively a conjunction
of X1; :::; Xm or some subset of these variables. In such a case Xs might serve as a proxy for
a minimal su¢ cient cause interaction term and thereby allow for a representation in which the
conjunction of X1; :::; Xm is not present in any su¢ cient cause. For example, consider three binary
causes, X1, X2 and X3, of some binary variable D such that DX1=x1;X2=x2;X3=x3(!) = x3 for all
! 2 
 and such that X3X1=x1;X2=x2(!) = x1x2 for all ! 2 
 so that X3 is an intermediate variable
between X1; X2 and D. In this example we have for any ! 2 
 that DX1=1;X2=1(!) = 1 and
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DX1=1;X2=0(!) = DX1=0;X2=1(!) = 0. However, there is no su¢ cient cause interaction between X1
and X2 since DX1=x1;X2=x2;X3=x3(!) = x3. Because an intermediate variable between X1; X2 and
D is being considered in the su¢ cient cause representations for D no su¢ cient cause interaction
is manifest. If X3 were not being considered in the su¢ cient cause representations we would
have that DX1=x1;X2=x2(!) = x1x2 and the counterfactual conditions DX1=1;X2=1(!) = 1 and
DX1=1;X2=0(!) = DX1=0;X2=1(!) = 0 would imply the presence of a su¢ cient cause interaction
between X1 and X2. It is evident from this example that intermediate variables can obscure the
presence of a su¢ cient cause interaction. When the causes X1; :::; Xs are such that none of these
variables is a cause of another, these di¢ culties do not arise.

Remark 2. Note that under De�nition 7, the presence of a su¢ cient cause interaction may
depend upon the context of which other causes Xm+1; :::; Xs are being considered in the su¢ cient
cause representations. However, the condition that there exists ! 2 
 such that Dx1:::xm(!) = 1

when x1 = ::: = xm = 1 but Dx1:::xm(!) = 0 for all x1; :::; xm such that
Xm

i=1
xi = m � 1 does

not make reference to Xm+1; :::; Xs and thus provides a condition for a su¢ cient cause interaction
that is not dependent on the context. If this condition holds then the conjunction X1:::Xm will be
present in any su¢ cient cause representation regardless of which other causes Xm+1; :::; Xs are being
considered in the su¢ cient cause representations so long as the these other causes ofD, Xm+1; :::; Xs,
are not themselves e¤ects of X1; :::; Xm.

Theorem 3 suggests a very natural empirical condition for detecting the presence of a su¢ cient
cause interaction. Some discussion with regard to constructing statistical tests related to this
condition is given following the statement of Theorem 3. In Section 5, the condition stated in
Theorem 3 is related explicitly to statistical tests arising from generalized linear models.

Theorem 4. Let X1; :::; Xm, be some subset (with the subscripts relabeled if necessary) of
X1; :::; Xs and suppose that none of Xm+1; :::; Xs are intermediate variables between X1; :::; Xm
and D. Let 
 denote the sample space for the population and let Dx1:::xm(!) be the counterfac-
tual value of D for ! 2 
 if Xi were set to xi for i = 1; :::;m. Let C be any set of variables
which su¢ ces to control for the confounding of the causal e¤ects of X1; :::; Xm on D i.e. such that
Dx1:::xm

`
fX1; :::; XmgjC then if for any value c of C we have that

E(DjX1 = 1; :::; Xm = 1; C = c)
� E(DjX1 = 0; X2 = 1; X3 = 1; :::; Xm�1 = 1; Xm = 1; C = c)
� E(DjX1 = 1; X2 = 0; X3 = 1; :::; Xm�1 = 1; Xm = 1; C = c)
� :::�
� E(DjX1 = 1; X2 = 1; X3 = 1; :::; Xm�1 = 1; Xm = 0; C = c) > 0

then X1; :::; Xm have a su¢ cient cause interaction.

As with Theorem 3, the condition provided in Theorem 4 has obvious analogues if one or more
of X1; :::; Xm are replaced with their complements. If the set of confounding variables C consists
of a small number of binary or categorical variables then it may be possible to use the t-test like
test statistics to test all strata of C. When C includes a continuous variable or many binary
and categorical variables such testing becomes di¢ cult because the data in certain strata of C will
be sparse. One might then model the conditional probabilities pr(D = 1jX1; :::; Xm; C) using a
binomial or Poisson regression model with a linear link (Greenland, 1991; Wacholder, 1986; Zou,
2004; Greenland, 2004; Spiegelman and Hertzmark, 2005). Such approaches are discussed in more
detail in Section 5. For case-control studies it will be necessary to use an adapted set of modeling
techniques (Wild, 1991; Wacholder, 1996; Greenland, 2004).
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Remark 3. Note that even if the condition of Theorem 4 is met it will in general be di¢ cult
to identify exactly which su¢ cient cause has X1; :::; Xm in its conjunction. If the causes of D in
the set fX1; :::; Xsg other than fX1; :::; Xmg su¢ ces to control for the confounding of the causal
e¤ect of X1; :::; Xm on D then some progress can be made. From the proof of Theorems 3 and 4 it
follows that if C can be chosen to be this set then at least one of the su¢ cient causes with X1; :::; Xm
in its conjunction will also have in its conjunction some subset of the restrictions imposed on this
confounding set by C = c. But it is important to note that in any particular non-redundant minimal
su¢ cient cause representation for D there may be multiple su¢ cient causes with X1; :::; Xm in their
conjunction; also di¤erent non-redundant minimal su¢ cient cause representations for D may have
X1; :::; Xm in the conjunctions of di¤erent su¢ cient causes. Finally, even if it is the case that the
conditions of Theorem 4 fail there might still be a su¢ cient cause with X1; :::; Xm in its conjunction
along with some subset of the restrictions imposed on the confounding set by C = c. The condition
provided in Theorem 4 is su¢ cient but not necessary for the presence of a su¢ cient cause interaction.

4. Su¢ cient Cause Interactions and Monotonic E¤ects

Sometimes it may be known that a certain cause has an e¤ect on an outcome that is always in
a particular direction, always positive or always negative. In the context of testing for su¢ cient
cause interactions, knowledge of the "monotonicity" of certain causes will allow for the construction
of more powerful statistical tests than those constructed from Theorem 4. We begin with the
de�nition of a monotonic e¤ect.

Definition 8 (Monotonic Effect). We will say that X1; :::; Xm have positive monotonic
e¤ects on D if for all individuals ! we have Dx1:::xm(!) � Dx01:::x0m(!) whenever xi � x0i for i =
1; :::;m. Similarly, we will say that say that X1; :::; Xm have negative monotonic e¤ects on D if for
all individuals ! we have Dx1:::xm(!) � Dx01:::x0m(!) whenever xi � x

0
i for i = 1; :::;m.

The de�nition of a monotonic e¤ect essentially requires that some intervention or set of inter-
ventions either increase or decrease some outcome D not merely on average over the population
but rather for every individual in that population regardless of the other interventions taken. The
requirements for the attribution of a monotonic e¤ect are thus considerable. However whenever
a particular intervention is always bene�cial or neutral for all individuals, one will be able to at-
tribute a positive monotonic e¤ect; whenever the intervention is always harmful or neutral for all
individuals, one will be able to attribute a negative monotonic e¤ect. A more general de�nition
of monotonic e¤ects can be given as follows: the variables X1; :::; Xm are said to have positive
monotonic e¤ects on D relative to X1; :::; Xs if for all individuals ! and all values of xm+1; :::; xs we
have Dx1:::xmxm+1:::xs(!) � Dx01:::x0mxm+1:::xs(!) whenever xi � x0i for i = 1; :::;m; however, the less
general de�nition given in De�nition 8 su¢ ces for the purposes of this paper. VanderWeele and
Robins (2006b) provide further discussion of the idea of a monotonic e¤ect and relate the concept to
causal e¤ects, covariance, confounding and bias within the directed acyclic graph causal framework.
The main result in this section is an analogue, under the additional assumption of monotonic

e¤ects, to Theorem 4. Theorem 6 provides this analogue. Because of the assumption of monotonic
e¤ects, Theorem 6 gives a weaker condition to be tested than did Theorem 4 and thus yields more
powerful statistical tests. Theorem 6 is preceded by Theorem 5 which develops the counterfactual
condition upon which Theorem 6 is based. However, before stating Theorems 5 and 6 we intro-
duce one further concept, that of a subordinate set. Theorems 5 and 6 allow for more powerful
statistical tests essentially because, under the assumption of monotonic e¤ects, it is possible to add
to the conditions of Theorems 3 and 4 several terms corresponding to counterfactual outcomes for
combinations of causes �xed by a subordinate set.

Definition 9 (Subordinate Set). Let U(m) = f(x1; :::; xm) 2 f0; 1gm :
Xm

i=1
xi = m � 1g

and let Q(m) = f(x1; :::; xm) 2 f0; 1gm :
Xm

i=1
xi = m � 2g then we say that S is an subordinate
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set of order m if S consists of m� 1 members of Q such that for any m� 1 distinct members of U ,
u1; :::; um�1, the members of S can be ordered s1; :::; sm�1 so that si � ui for i = 1; :::;m� 1.

The set U(m) has m members and the set Q(m) has has
�
m
2

�
members. The requirement that

each member (x1; :::; xm) of the set Q(m) be such that
Xm

i=1
xi = m�2 is simply that each member

of Q(m) have m� 2 xi�s with the value 1 and two xi�s with the value of 0 and the requirement that
each member (x1; :::; xm) of the set U(m) be such that

Xm

i=1
xi = m� 1 is simply that for some j,

xj = 0 and for i 6= j we have that xi = 1. There will in general many possible subordinate sets S
of a particular order. Although there is only one subordinate set of order 2:

f(0; 0)g

it can be shown that there are three subordinate sets of order 3:

f(1; 0; 0); (0; 1; 0)g
f(1; 0; 0); (0; 0; 1)g
f(0; 1; 0); (0; 0; 1)g

and that there are sixteen subordinate sets of order 4:

f(1; 1; 0; 0); (1; 0; 1; 0); (0; 1; 1; 0)g
f(1; 1; 0; 0); (1; 0; 1; 0); (0; 1; 0; 1)g
f(1; 1; 0; 0); (1; 0; 1; 0); (0; 0; 1; 1)g
f(1; 1; 0; 0); (1; 0; 0; 1); (0; 1; 1; 0)g
f(1; 1; 0; 0); (1; 0; 0; 1); (0; 1; 0; 1)g
f(1; 1; 0; 0); (1; 0; 0; 1); (0; 0; 1; 1)g
f(1; 1; 0; 0); (0; 1; 1; 0); (0; 0; 1; 1)g
f(1; 1; 0; 0); (0; 1; 0; 1); (0; 0; 1; 1)g
f(1; 0; 1; 0); (1; 0; 0; 1); (0; 1; 1; 0)g
f(1; 0; 1; 0); (1; 0; 0; 1); (0; 1; 0; 1)g
f(1; 0; 1; 0); (1; 0; 0; 1); (0; 0; 1; 1)g
f(1; 0; 1; 0); (0; 1; 1; 0); (0; 1; 0; 1)g
f(1; 0; 1; 0); (0; 1; 0; 1); (0; 0; 1; 1)g
f(1; 0; 0; 1); (0; 1; 1; 0); (0; 1; 0; 1)g
f(1; 0; 0; 1); (0; 1; 1; 0); (0; 0; 1; 1)g
f(0; 1; 1; 0); (0; 1; 0; 1); (0; 0; 1; 1)g

For m = 4, an example of a set that it is not subordinate is S�=f(1; 1; 0; 0); (1; 0; 1; 0); (1; 0; 0; 1)g
because three distinct members of U(4) = f(x1; x2; x3; x4) :

X4

i=1
xi = 3g can be chosen as

f(0; 1; 1; 1); (1; 1; 1; 0); (1; 1; 0; 1)g but for no member s of S� is it true that s � (0; 1; 1; 1) since
every member of S� has value 1 in the �rst dimension of the vector (x1; x2; x3; x4). To keep the
exposition relatively simple, we will for the remainder of the paper restrict our examples to those
requiring only subordinate sets of order not more than 3. The de�nition of a subordinate set allows
us to state Theorem 5 which provides an analogue, under the assumption of monotonic e¤ects, to
Theorem 3.

Theorem 5. Let X1; :::; Xm be some subset (with the subscripts relabeled if necessary) of
X1; :::; Xs and suppose that X1; :::; Xm have monotonic e¤ects on D and that none of Xm+1; :::; Xs
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are intermediate variables between X1; :::; Xm and D. Let 
 denote the sample space for the
population, let Dx1:::xm(!) be the counterfactual value of D for ! 2 
 if Xi were set to xi for

i = 1; :::;m and let U = f(x1; :::; xm) 2 f0; 1gm :
Xm

i=1
xi = m� 1g. If there exists an ! such that

D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) +

X
(x1;:::;xm)2S

Dx1:::xm(!) > 0 for some subordinate set S
of order m then X1; :::; Xm have a su¢ cient cause interaction.

Remark 4. In the proof of Theorem 5 it was shown that under the assumption of monotonic
e¤ects, if for some choice of a subordinate set S we have that

D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) +

X
(x1;:::;xm)2S

Dx1:::xm(!) > 0 (1)

then we must also have that

D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) > 0: (2)

Clearly the converse is also true i.e. condition (2) implies condition (1) since the expressionX
(x1;:::;xm)2S

Dx1:::xm(!) is non-negative. Condition (2) is exactly equivalent to the condition

in part (i) of Theorem 3 that Dx1:::xm(!) = 1 when x1 = ::: = xm = 1 but Dx1:::xm(!) = 0 for any

x1:::xm such that
Xm

i=1
xi = m � 1. The proof of Theorem 5 thus demonstrates that, with the

assumption of monotonic e¤ects, condition (1) is exactly equivalent to the condition in part (i) of
Theorem 3. We will see below however that using condition (1) instead of condition (2) allows for
the construction of more powerful statistical tests for the presence of a su¢ cient cause interaction.

In the case of a two-way su¢ cient cause interaction, the counterfactual condition of Theorem 5
is simply:

D11(!)�D10(!)�D01(!) +D00(!) > 0:
For the case of m = 3, there are three choices for the subordinate set S and thus there exists a
three-way su¢ cient cause interaction if any of the following three conditions hold:

D111(!)�D110(!)�D101(!)�D011(!) +D100(!) +D010(!) > 0

D111(!)�D110(!)�D101(!)�D011(!) +D100(!) +D001(!) > 0

D111(!)�D110(!)�D101(!)�D011(!) +D010(!) +D001(!) > 0

Theorem 6 is an empirical test of the counterfactual conditions provided by Theorem 5. The form
of the proof of Theorem 6 is essentially equivalent to that of Theorem 4 and is therefore suppressed.

Theorem 6. Let X1; :::; Xm, be some subset (with the subscripts relabeled if necessary) of
X1; :::; Xs and suppose that X1; :::; Xm have monotonic e¤ects on D and that none of Xm+1; :::; Xs
are intermediate variables between X1; :::; Xm and D. Let 
 denote the sample space for the
population and let Dx1:::xm(!) be the counterfactual value of D for ! 2 
 if Xi were set to xi for
i = 1; :::;m. Let C be any set of variables which su¢ ce to control for the confounding of the causal
e¤ects of X1; :::; Xm on D i.e. such that Dx1:::xm

`
fX1; :::; XmgjC and let S be any subordinate set

of order m then if for any value c of C we have that

E(DjX1 = 1; :::; Xm = 1; C = c)
� E(DjX1 = 0; X2 = 1; X3 = 1; :::; Xm�1 = 1; Xm = 1; C = c)
� E(DjX1 = 1; X2 = 0; X3 = 1; :::; Xm�1 = 1; Xm = 1; C = c)
� :::�
� E(DjX1 = 1; X2 = 1; X3 = 1; :::; Xm�1 = 1; Xm = 0; C = c)
+
X

(x1;:::;xm)2S
E(DjX1 = x1; :::; Xm = xm; C = c) > 0

10

http://biostats.bepress.com/cobra/art13



then X1; :::; Xm have a su¢ cient cause interaction.

The result given in Theorem 6 in the special case of m = 2 with no confounding factors is
stated explicitly and proved by Rothman and Greenland (1998); this special case is also anticipated
elsewhere (Koopman, 1981; Darroch and Borkent, 1994). Like Theorems 3 and 4, Theorems 5 and 6
have analogues if one or more of X1; :::; Xm are replaced with their complements and if one or more
of X1; :::; Xm have negative rather than positive monotonic e¤ects on D. The condition of Theorem
6 is clearly weaker than that of Theorem 4 which did not assume monotonic e¤ects. This is evident
because of the addition of the term

X
(x1;:::;xm)2S

E(DjX1 = x1; :::; Xm = xm; C = c) � 0. As

with the condition of Theorem 4, the condition in Theorem 6 can be tested with t-test like test
statistics or using various statistical models. It is these statistical models and the relation between
su¢ cient cause interactions and interaction terms in standard statistical models that is the topic of
the following section.

5. Su¢ cient Cause Interactions and Interaction Terms in Statistical Models

Theorems 4 and 6 provide conditions which can be empirically tested to draw inferences about
the presence of su¢ cient cause interactions. If a su¢ cient cause interaction between X1; :::; Xm
is present, then in any su¢ cient cause representation for the outcome there must exist a su¢ cient
cause in which X1; :::; Xm are all present - the causal mechanisms for the outcome must be such
that X1; :::; Xm all participate in the same causal mechanism. If the set of confounding variables
C consists of a small number of binary or categorical variables then it may be possible to use t-test
like test statistics to test all strata of C. However, when C includes a continuous variable or many
binary and categorical variables such testing becomes di¢ cult because the data in certain strata of
C will be sparse. Other modeling approaches must be used. The conditions provided in Theorems
4 and 6 are given in terms of di¤erences between various probabilities. This suggests a Bernoulli
regression model with linear link as the natural choice to test the conditions of these two theorems.
Unfortunately, when continuous covariates are included in Bernoulli regressions with linear link,
the convergence properties of maximum likelihood estimates are generally poor (Wacholder, 1986).
If, however, all covariates in a Bernoulli regression with linear link are binary or categorical, it is
possible to use a saturated model for the outcome and maximum likelihood regression estimates
will always converge. We intend to address in future work more sophisticated modeling issues and
approaches with regard to testing for su¢ cient cause interactions. Here however we will simply
compare, within a regression framework, the tests arising from Theorems 4 and 6 with standard
tests for statistical interactions. For simplicity we will assume that the causal e¤ects of X1; :::; Xm
are unconfounded. The substance of the remarks below are not altered in the case of one or more
binary or categorical confounding variables.
We will begin with the case of two-way interactions. Consider a saturated Bernoulli regression

model with linear link

pr(D = 1jX1 = x1; X2 = x2) = �0 + �1x1 + �2x2 + �3x1x2:

We will use px1x2 as a shorthand for pr(D = 1jX1 = x1; X2 = x2). In this statistical model, one
would test for a statistical interaction by testing the hypothesis �3 = 0. We will consider �rst the
case of monotonic e¤ects. If X1 and X2 have monotonic e¤ects on D, then Theorem 6 states that if

p11 � p10 � p01 + p00 > 0

then there exists a su¢ cient cause interaction between X1 and X2. We may rewrite this condition
as

p11 � p10 � p01 + p00 = (�0 + �1 + �2 + �3)� (�0 + �1)� (�0 + �2) + �0 = �3 > 0:
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In the case of monotonic e¤ects, if the statistical interaction term �3 > 0 then a su¢ cient cause
interaction is necessarily present between X1 and X2. If it cannot be assumed that X1 and X2 have
monotonic e¤ects on D we may apply Theorem 4 which in this case states that a su¢ cient cause
interaction between X1 and X2 will be present if

p11 � p10 � p01 > 0

which can be rewritten as
�3 > �0:

We see then that the tests for statistical interaction only correspond to tests for su¢ cient cause
interactions in the case of monotonic e¤ects, not in general. Furthermore, even under monotonic
e¤ects, a statistical interaction only implies a su¢ cient cause interaction if the interaction coe¢ cient
�3 is positive; if �3 is non-zero but negative, we cannot draw conclusions about the presence of a
su¢ cient cause interaction.
Let us now consider the case of a three-way su¢ cient cause interaction. The saturated Bernoulli

regression with three binary variables and a linear link can be written as:

pr(D = 1jX1 = x1; X2 = x2; X3 = x3) = �0+�1x1+�2x2+�3x3+�4x1x2+�5x1x3+�6x2x3+�7x1x2x2:

Once again we will use the shorthand px1x2x3 = pr(D = 1jX1 = x1; X2 = x2; X3 = x3). The
presence of a three-way statistical interaction would be assessed by testing the hypothesis �7 = 0.
Under the assumption that X1, X2 and X3 have monotonic e¤ects on D, Theorem 6 states that X1,
X2 and X3 exhibit a su¢ cient cause interaction if any of the three conditions hold:

p111 � p110 � p101 � p011 + p100 + p010 > 0

p111 � p110 � p101 � p011 + p100 + p001 > 0

p111 � p110 � p101 � p011 + p010 + p001 > 0

These three conditions can be rewritten in terms of the regression coe¢ cients as follows:

�7 > �3

�7 > �2

�7 > �1:

If it cannot be assumed that X1, X2 and X3 have monotonic e¤ects on D we may apply Theorem
4 which in this case states that X1, X2 and X3 exhibit a su¢ cient cause interaction if

p111 � p110 � p101 � p011 > 0:

which is equivalent to
�7 > 2�0 + �1 + �2 + �3:

In the case of three-way su¢ cient cause interactions we thus see that neither the tests for a su¢ cient
cause interaction under the assumption of monotonic e¤ects nor the tests without the assumption
of monotonic e¤ects are equivalent to the standard hypothesis test for a three-way statistical inter-
action.

6. Concluding Remarks

In this paper we have derived various conditions which, if met, necessarily entail that two bi-
nary causes participate in a single causal mechanism. Under the assumption of no unmeasured
confounding variables, these conditions can, with data, be empirically tested. We have shown that
interaction terms in standard statistical models do not capture the form of interdependence which
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we have characterized as a su¢ cient cause interaction. This work will perhaps be of special interest
to statistical geneticists in identifying gene-gene and gene-environment interactions. The gene-gene
and gene-environment interdependence that is ultimately of interest to the geneticist will often not
be that of association but of mechanism. The tests we have derived are concerned with mechanistic
interaction.
Several limitations of the present work are worth noting. First, the tests derived here are

applicable only when the outcome and the causes under consideration are all binary. If causation is
fundamentally a phenomenon concerning events (Lewis, 1973a; Davidson, 1980; Lewis, 1986) then
the restriction to binary causes is not, in principal, a limitation. However, in practice, precluding
continuous variables will limit the settings in which the methods can be applied. A second limitation
of this method concerns the cases in which a biologic interaction is present but a su¢ cient cause
interaction is not. As noted in the text the conditions that entail a su¢ cient cause interaction are
su¢ cient but not necessary for two causes to participate in the same causal mechanism i.e. for a
biologic interaction to be present. A biologic interaction can be present even if the conditions of
Theorems 3-6 do not hold. Such biologic interactions cannot be identi�ed from data.
In future work we intend to �nd application for the empirical tests derived in this paper and we

intend also to pursue various modeling approaches to testing the conditions given in Theorems 4
and 6 in the presence of continuous confounding variables.

Appendix

Proof of Theorem 1.
For Gi = F i1:::F

i
ni we construct the corresponding binary variable Ai as follows. Recall that each

condition of the form F ik = 1 places a restriction on one of X1; :::; Xs, that it be either 1 or 0. Let
Ai(!) = 1 if Dx1:::xs(!) = 1 whenever x1; :::; xs are such that

F i1:::F
i
ni = 1

and if there does not exist a j such that Dx1:::xs(!) = 1 whenever x1; :::; xs are such that

F i1:::F
i
j�1F

i
j+1:::F

i
ni = 1:

Otherwise, let Ai(!) = 0. We will show that

Dx1:::xs(!) =
W
i

Ai(!)gi(x1; :::; xs):

Consider ! and x1; :::; xs such that W
i

Ai(!)gi(x1; :::; xs) = 1:

Then there exists an i such that Ai(!)gi(x1; :::; xs) = 1. Since Ai(!) = 1 we have that Dx1:::xs(!) =
1 whenever x1; :::; xs are such that F i1:::F

i
ni = 1; and since gi(x1; :::; xs) = 1 we have (X1; :::; Xs) =

(x1; :::; xs) implies that F i1:::F
i
ni = 1 and thus we have that Dx1:::xs(!) = 1. Now we must show

that if Dx1:::xs(!) = 1 then there exists an i such that Ai(!)gi(x1; :::; xs) = 1. The potential
outcome Dx1:::xs(!) is a function of (!; x1; :::; xs). Let (!

�; x�1; :::; x
�
s) be such that Dx�1 :::x�s (!

�) = 1.
Consider the ordered set (x�1; :::; x

�
s). If for any j,

x1 = x
�
1; :::; xj�1 = x

�
j�1; xj+1 = x

�
j+1; :::; xm = x

�
m ) Dx1:::xs(!

�) = 1

remove x�j from (x�1; :::; x
�
s). Continue to remove those x�j from this set which are not needed to

maintain the implication Dx1:::xs(!
�) = 1. Suppose the set that remains is (x�h1 ; :::; x

�
hu
). We then

have that
xh1 = x

�
h1 ; :::; xhu = x

�
hu ) Dx1:::xs(!

�) = 1 (3)
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and that for no j,

xh1 = x
�
h1 ; :::; xhj�1 = x

�
hj�1 ; xhj+1 = x

�
hj+1 ; :::; xhu = x

�
hu ) Dx1:::xs(!

�) = 1: (4)

De�ne Fj as the indicator Fj = 1(Xhj
=x�hj

), then for some i, Gi = F1:::Fu. Since (3) and (4) hold,

we must have that Dx1:::xs(!
�) = 1 whenever x1; :::; xs are such that

F1:::Fu = 1

and that for no j is it the case that Dx1:::xs(!
�) = 1 whenever x1; :::; xs are such that

F1:::Fj�1Fj+1:::Fu = 1:

Thus Ai(!�) = 1. Since (X1; :::; Xs) = (x�1; :::; x
�
s) ) Xh1 = x

�
h1
; :::; Xhu = x

�
hu
) F1:::Fu = 1 we

have that gi(x�1; :::; x
�
s) = 1 and so Ai(!

�)gi(x
�
1; :::; x

�
s) = 1 and so

W
i

Ai(!
�)gi(x

�
1; :::; x

�
s) = 1. We

have thus shown Dx1:::xs(!) =
W
i

Ai(!)gi(x1; :::; xs). From this it also immediately follows that

D(!) =
W
i

Ai(!)F
i
1(!):::F

i
ni(!) since

D(!) = DX1(!):::Xs(!)(!) =
W
i

Ai(!)gifX1(!); :::; Xs(!)g =
W
i

Ai(!)F
i
1(!):::F

i
ni(!):

Proof of Theorem 2.
If F1:::Fn is irreducible then within any su¢ cient cause representation

W
i

AiF
i
1:::F

i
ni there exists

some su¢ cient cause which contains within its conjunction F1; :::; Fn and so it immediately follows
that in every non-redundant minimal su¢ cient cause representation for D there will exist within
the representation a su¢ cient cause which contains F1; :::; Fn in its conjunction. If F1:::Fn is not
irreducible then there exists some representation

W
i

AiF
i
1:::F

i
ni such that no su¢ cient causeAiF

i
1:::F

i
ni

contains within its conjunction F1; :::; Fn. This representation
W
i

AiF
i
1:::F

i
ni can be made into a non-

redundant minimal su¢ cient cause representation by iteratively discarding the components of each
conjunction AiF i1:::F

i
ni which are not necessary to preserve the implication AiF

i
1:::F

i
ni ) D = 1

and then iteratively discarding any redundant minimal su¢ cient causes. Clearly no su¢ cient cause
of this resulting non-redundant minimal su¢ cient causation representation will contain F1; :::; Fn
within its conjunction.

Proof of Theorem 3.
Suppose that X1; :::; Xm do not have a minimal su¢ cient cause interaction then there exists a non-
redundant minimal su¢ cient cause representation

W
i

AiF
i
1:::F

i
ni such that there is no su¢ cient cause

within the representation which contains X1; :::; Xm in its conjunction. Note that Xm+1; :::; Xs are
the members of fX1; :::; Xsg other than X1; :::; Xm. Consider any ! 2 
 such that Dx1:::xm(!) = 0
whenever

Xm

i=1
xi = m � 1. Suppose Xm+1(!) = xm+1; :::; Xs(!) = xs. De�ne Jm+1; :::; Js by

Jm+1 = 1(Xm+1 = xm+1); :::; Js = 1(Xs = xs). For every Gi = F i1:::F
i
ni for which the F

i
k�s consist

only of some subset of the elements of X1; :::; Xj�1; Xj+1; :::Xm; Jm+1; :::; Js we must have Ai(!) = 0
since for each j, Dx1:::xm(!) = 0 when xj = 0 and xi = 1 for i 6= j. By assumption there was no su¢ -
cient causeGi within the representation which includedX1; :::; Xm in its conjunction. Thus for every
Gi = F

i
1:::F

i
ni for which the F

i
k�s consist only of some subset of the elements ofX1; :::; Xm; Jm+1; :::; Js

we must have Ai(!) = 0 and so we have that DX1=1;:::;Xm=1;Xm+1= xm+1;:::;Xs= xs(!) = 0. Fur-
thermore, since none of Xm+1; :::; Xs are intermediate variables between X1; :::; Xm and D we have
that

DX1=1;:::;Xm=1(!) = DX1=1;:::;Xm=1;Xm+1= xm+1;:::;Xs= xs(!) = 0:
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http://biostats.bepress.com/cobra/art13



There thus exists no ! 2 
 such that DX1=1;:::;Xm=1(!) = 1 but Dx1:::xm(!) = 0 wheneverXm

i=1
xi = m�1. We now prove the second proposition of the Theorem. Suppose that X1; :::; Xm

do have a minimal su¢ cient cause interaction. The representation for D given in the proof of The-
orem 1 may be reduced to a non-redundant minimal su¢ cient cause representation by iteratively
excluding any unnecessary components from su¢ cient causes that are not minimally su¢ cient and
then eliminating those minimal su¢ cient causes which are redundant. Let

W
i

AiF
i
1:::F

i
ni be the

resulting non-redundant minimal su¢ cient cause representation. Since X1; :::; Xm have a minimal
su¢ cient cause interaction there exists within this non-redundant minimal su¢ cient cause represen-
tation a su¢ cient cause which has X1; :::; Xm in its conjunction. Suppose Gl = X1:::XmH1:::Hu
where each of H1; :::;Hu are members of the set fXm+1; :::; Xsg or complements of such members.
Let K be the set of elements in fXm+1; :::; Xsg which are not or whose complements are not in the
conjunction Gl = X1:::XmH1:::Hu. Since the minimal su¢ cient cause representation

W
i

AiF
i
1:::F

i
ni

is non-redundant there exists !� 2 
 and some value K� of K such that ! = !� �xes Al(!�) = 1
and such that AlX1:::XmH1:::Hu is the only su¢ cient cause to take the value 1 in the representationW
i

AiF
i
1:::F

i
ni when ! = !

� and fX1; :::; Xsg take the values corresponding to X1; :::; Xm;H1; :::;Hu
and K�. Let x�m+1; :::; x

�
s be the values of xm+1; :::; xs which correspond to H1; :::;Hu and K

�. We
then have that D1:::1x�m+1:::x

�
s
(!�) = 1. We will show that Dx1:::xmx�m+1:::x

�
s
(!�) = 0 wheneverXm

i=1
xi = m� 1. Suppose that for some j, Dx1:::xmx�m+1:::x

�
s
(!�) = 1 when xj = 0 and xi = 1 for

i = 1; :::; j � 1; j + 1; :::m then by the consistency assumption we would have that Dx1:::xs(!
�) = 1

whenever x1; :::; xs are such that

X1:::Xj�1XjXj+1:::XmH1:::Hu = 1;K = K�

and that Dx1:::xs(!
�) = 1 whenever x1; :::; xs are such that

X1:::Xj�1XjXj+1:::XmH1:::Hu = 1;K = K�:

From this it follows that Dx1:::xs(!
�) = 1 whenever x1; :::; xs are such that

X1:::Xj�1Xj+1:::XmH1:::Hu = 1;K = K�

But since AlX1:::XmH1:::Hu is the only minimal su¢ cient cause to take the value 1 in the non-
redundant minimal su¢ cient causation representation

W
i

AiF
i
1:::F

i
ni when ! = !

�; X1:::XmH1:::Hu =

1;K = K� it would then also follow that Dx1:::xs(!
�) = 1 whenever x1; :::; xs are such that

X1:::Xj�1Xj+1:::XmH1:::Hu = 1

but this contradicts Al(!�) = 1 in the construction of the variables Ai�s given in Theorem 1 since
for the Ai corresponding to Gi = F i1:::F

i
ni we have that Ai(!

�) = 1 if and only if Dx1:::xs(!
�) = 1

whenever x1; :::; xs are such that
F i1:::F

i
ni = 1

and if there does not exist a j such that Dx1:::xs(!
�) = 1 whenever x1; :::; xs are such that

F i1:::F
i
j�1F

i
j+1:::F

i
ni = 1:

From this it follows that we must have that Dx1:::xmx�m+1:::x
�
s
(!�) = 0 whenever

Xm

i=1
xi = m� 1.

There thus exists an !� such that D1:::1x�m+1:::x
�
s
(!�) = 1 but such that Dx1:::xmx�m+1:::x

�
s
(!�) = 0

whenever
Xm

i=1
xi = m� 1.

Proof of Theorem 4.
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We prove the contrapositive. Suppose there were no su¢ cient cause interaction between X1; :::; Xm
then by Theorem 3 it would follow that there is no ! 2 
 such that D1:::1(!) = 1 but such that
Dx1:::xm(!) = 0 whenever

X
i
xi = m � 1. From this it follows that for all ! 2 
 we have

D1:::1(!)�D01:::1(!)� :::�D1:::10(!) � 0 and so EfD1:::1(!)�D01:::1(!)� :::�D1:::10(!)jCg � 0.
Since Dx1:::xm

`
fX1; :::; XmgjC we have that

E(DjX1 = 1; :::; Xm = 1; C = c)
� E(DjX1 = 0; X2 = 1; X3 = 1; :::; Xm�1 = 1; Xm = 1; C = c)
� E(DjX1 = 1; X2 = 0; X3 = 1; :::; Xm�1 = 1; Xm = 1; C = c)
� :::�
� E(DjX1 = 1; X2 = 1; X3 = 1; :::; Xm�1 = 1; Xm = 0; C = c)

= EfD1:::1(!)jX1 = 1; :::; Xm = 1; C = cg
� EfD011:::1(!)jX1 = 0; X2 = 1; X3 = 1; :::; Xm�1 = 1; Xm = 1; C = cg
� EfD101:::1(!)jX1 = 1; X2 = 0; X3 = 1; :::; Xm�1 = 1; Xm = 1; C = cg
� :::�
� EfD1:::10(!)jX1 = 1; X2 = 1; X3 = 1; :::; Xm�1 = 1; Xm = 0; C = cg

= EfD1:::1(!)�D01:::1(!)� :::�D1:::10(!)jCg � 0:

This completes the proof.

Proof of Theorem 5.
Suppose that for some ! 2 
 we have that

D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) � 0:

If D1:::1(!) = 0 then Dx1:::xm(!) = 0 for all x1; :::; xm since X1; :::; Xm have monotonic e¤ects on D
and so

D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) +

X
(x1;:::;xm)2S

Dx1:::xm(!) = 0:

IfD1:::1(!) 6= 0 then we must have thatD1:::1(!) = 1 and sinceD1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) �

0 there must exist some (x01; :::; x
0
m) 2 U such that Dx01:::x0m(!) = 1. Let U

0 = Un(x01; :::; x0m). For
any choice of the subordinate set S we have that

D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) +

X
(x1;:::;xm)2S

Dx1:::xm(!)

= D1:::1(!)�Dx01:::x0m(!)�
X

(x1;:::;xm)2U 0
Dx1:::xm(!) +

X
(x1;:::;xm)2S

Dx1:::xm(!):

Now D1:::1(!)�Dx01:::x0m(!) = 1� 1 = 0 and furthermore

�
X

(x1;:::;xm)2U 0
Dx1:::xm(!) +

X
(x1;:::;xm)2S

Dx1:::xm(!) � 0

since each of the two sums has m� 1 terms and since, because S is a subordinate set, each term in
the sum over U 0 can be matched with a term in the sum over S so that, because of the assumption
that X1; :::; Xm have monotonic e¤ects on D, the term in the sum over U 0 will be at least as large
as the term in the sum over S. Thus we have that

D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) +

X
(x1;:::;xm)2S

Dx1:::xm(!) � 0:

We have shown that if
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D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) � 0

then
D1:::1(!)�

X
(x1;:::;xm)2U

Dx1:::xm(!) +
X

(x1;:::;xm)2S
Dx1:::xm(!) � 0

for any choice of a subordinate set S. From this it follows that if for some choice of a subordinate
set S we have that

D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) +

X
(x1;:::;xm)2S

Dx1:::xm(!) > 0

then we must also have that

D1:::1(!)�
X

(x1;:::;xm)2U
Dx1:::xm(!) > 0

and so by Theorem 3, X1; :::; Xm have a su¢ cient cause interaction.
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