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Mixture Cure Survival Models with
Dependent Censoring

Yi Li, Ram C. Tiwari, and Subharup Guha

Abstract

A number of authors have studies the mixture survival model to analyze survival
data with nonnegligible cure fractions. A key assumption made by these authors
is the independence between the survival time and the censoring time. To our
knowledge, no one has studies the mixture cure model in the presence of de-
pendent censoring. To account for such dependence, we propose a more general
cure model which allows for dependent censoring. In particular, we derive the
cure models from the perspective of competing risks and model the dependence
between the censoring time and the survival time using a class of Archimedean
copula models. Within this framework, we consider the parameter estimation,
the cure detection, and the two-sample comparison of latency distribution in the
presence of dependent censoring when a proportion of patients is deemed cured.
Large sample results using the martingale theory are obtained. We applied the
proposed methodologies to the SEER prostate cancer data.
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1 Introduction

Survival models incorporating a cure fraction, often termed as cure rate models, have emerged as

a powerful statistical tool for analyzing cancer studies. Applications have been found in modeling

time-to-event data for a variety of cancers, including prostate cancer, breast cancer, non-Hodgkins

lymphoma, leukemia, melanoma, and head and neck cancer, where for these diseases, a signi�cant

proportion of patients are \cured" after therapies. By cure it is meant that an individual will have

little or no risk of experiencing the event of interest, e.g. death from breast cancer. Recent years

have seen a spurt in statistical literature that deals with survival data with a nonnegligible cure

fraction; see e.g. Kuk and Chen (1992), Maller and Zhou (1996), Peng and Dear (2000), Sy and

Taylor (2000), among others. Most of the current work stems from the mixture model originally

proposed by Boag (1949) and Berkson and Gage (1952), which is formulated as follows.

Suppose T is the survival time, e.g. time from the diagnosis of prostate cancer, and U is the

potential random censoring time, e.g. study duration or cardiac failure, with only X = min(T;U)

and censoring indicator Æ = I(X = T ) observed in practice. Denote by FT (t) = P (T � t); FU (t) =

P (U � t) the cumulative distribution functions, and ST (t) = P (T > t); SU(t) = P (U > t); the

survival functions, for T and U , respectively. The scienti�c research often centers on discerning

FT (t) while treating FU (t) as nuisance.

The mixture cure model assumes FT to be an improper distribution over the entire real line

and speci�es

FT (t) = pF0(t); (1)

or, equivalently,

ST (t) = 1� p+ pS0(t); (2)

where 0 < p < 1, S0(t) = 1�F0(t), and F0(t) is a proper distribution such that limt!1 F0(t) = 1.

Models (1) and (2) consider the study population as an unobservable mixture of patients deemed

susceptible (non-cured) and non-susceptible (cured) . Note that (1�p) corresponds to the fraction
of cured, that is, the point mass that T puts on 1 and F0(t) is the distribution for the non-cured

patients, often termed as the latency distribution.
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A key assumption made by the current literature is the independence between the survival time

T and the censoring time U . To our knowledge, none has studied the mixture cure model in the

presence of dependent censoring, which are commonly observed in biological studies. For example,

in the prostate cancer data set of the NIH Surveillance Epidemiology and End Results (SEER) pro-

gram, a proportion of patients diagnosed with this type of cancer died from heart/cardiovascular

diseases. A recent study (see http://www.thewbalchannel.com/healtharchive/4161401/detail.html)

has revealed that the prostate cancer and the cardiovascular disease may be linked through a com-

mon risk factor, high cholesterol. Therefore, it would seem implausible to assume independence

between the main endpoint (e.g. deaths from prostate cancer) and the censoring causes (e.g.

deaths from heart diseases). In this paper, we propose a more general cure model which allows

for dependent censoring. In particular we derive the mixture cure model from perspectives of com-

peting risks and model the dependence between the censoring time and the survival time using a

class of Archimedean copula models. Within this framework, we focus on the cure detection, and

the comparison of latency distributions in the presence of dependent censoring when a proportion

of patients is deemed cured.

The rest of the article is structured as follows. In Section 2 we introduce a mixture cure model

with the dependence of the censoring and survival times modeled by a class of Archimedean copula

models. We also derive an estimator for estimating the survival function and the cure fraction

with dependent censoring. In Section 3 we show the consistency of the estimator, and in Section 4

we test for suÆcient follow up, a suÆcient condition for consistently estimating the cure fraction.

We prove the asymptotic normality in Section 5 and conduct the hypothesis testing in Section 6.

We conclude this article with discussion and future work in Section 7. We defer all the proofs to

the Appendix.

2 Mixture Cure Model with Archimedean Dependence

Throughout we assume that the survival time T follows the mixture model (1), or, equivalently,

(2). Denote the joint survival of the failure and censoring times by C(t; u) = P (T > t; U > u).

2
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An Archimedean copula model links the marginal survivals of T and U through

C(t; u) = ��1[�fST (t)g+ �fSU (u)g]; (3)

where a nonincreasing function � : [0; 1] ! [0;1] is speci�ed such that �(1) = 0 and �(0) = 1.

Examples include �(t) = � log t, corresponding to independent censoring, the family of Clay-

ton's models with �(t) = (t�a � 1)=a (for a > 0), and the Frank family with �(t) = � log((1 �
exp(�at))=(1� exp(�a)) (for a > 0). We adopt the Archimedean copula formulation to empha-

size the functional independence of the parameterizations of the marginal distribution functions,

governed by ST and SU , and the dependence structure, governed by a class of copula functions

�. This formulation also facilitates a derivation of the estimator for ST , our main interest.

Suppose that we observe n i.i.d data, (Xi; Æi); i = 1; : : : ; n and consider the counting processes

Ni(t) = I(Xi � t; Æi = 1) and the at-risk processes Yi(t) = I(Xi � t). Denote by N(t) =
P
Ni(t)

and Y (t) =
P
Yi(t). Introduce the �ltration

Fn
t = �fNi(s); Yi(s+); 0 � s � t; i = 1; : : : ; ng;

which contains the survival information up to time t for all n subjects and to which all the ensuing

martingales and stopping times adapt. We denote the survival function for the observed times Xi

by �(t) = P (Xi > t) = C(t; t).

The following heuristically discusses an estimator based on (3), whose large sample properties

will be considered in the next section. Denote by ŜT and ŜU the estimates for ST and SU respec-

tively, which are right continuous and piecewise constant functions with jumps only occurring at

the observed failures and censorings, respectively. Denote by �̂(t) the empirical estimate of �(t),

which is

�̂(t) =
X
i

I(Xi > t)=n = Y (t+)=n:

By (3), at each observed time points Xi, i=1, . . . , n,

�fŜT (Xi)g+ �fŜU (Xi)g = �f�̂(Xi)g:

Assume that P (T = U) = 0 (i.e. the censoring and failure cannot occur at the same time almost

surely). Then at each observed failure time point Xi (such that Æi = 1), we have ŜU (Xi�) =

3

http://biostats.bepress.com/harvardbiostat/paper26



ŜU (Xi) and

�(ŜT (Xi))� �(ŜT (Xi�)) = �(�̂(Xi))� �(�̂(Xi�))

= �

�
Y (Xi)

n
� 1

n

�
� �

�
Y (Xi)

n

�
: (4)

Applying (4) recursively, we write the estimate ŜT in the form of counting process as follows

ŜT (t) = ��1
�Z t

0

I(Y (s) > 0)

�
�

�
Y (s)

n
� 1

n

�
� �

�
Y (s)

n

��
dN(s)

�
; (5)

which corresponds to the estimator derived by Rivest and Wells (2001) in the absence of cure

fraction. When computing (5), we invoke the convention of 0=0 = 0 if necessary.

It is obvious that ŜT (t) is nonincreasing and is a constant when t � maxÆi=1fXig = Xn�, the

largest observed failure time. In addition this constant is nonzero when the largest value among

all the observed times (X1; : : : ;Xn), denoted by Xn = suptft : Y (t) > 0g, is censored. Under

some regularity conditions, we will explore using this constant to estimate the cure fraction and

to study the asymptotic properties.

Before proceeding further, introduce the right extremes �F0 = suptft : F0(t) < 1g, �U =

suptft : FU (t) < 1g and �X = suptft : �(t) > 0g. From (1), it follows that �F0 = suptft : FT (t) <
pg = suptft : ST (t) > 1� pg. Throughout, denote by a ^ b = min(a; b) and a _ b = max(a; b) for

two real numbers a and b.

Our main results are as follows: under some regularity conditions (listed in Appendix A.0)

� The cure fraction can be consistently estimated based on ŜT . Speci�cally, ŜT (X
n)

pr:! 1� p,
or, equivalently, F̂T (X

n)
pr:! p.

� The estimate of the cure fraction is asymptotically normally distributed. That is,
p
nfF̂T (Xn)�

pg or equivalently, pnfŜT (Xn)� (1� p)g converges in distribution to a mean zero normal

random variable with a �nite variance.

� The estimate of the latency distribution is uniformly consistent and asymptotically nor-

mal. More speci�cally, supt2[0;�X ]

��� F̂T (t)

F̂T (Xn)
� F0(t)

��� pr:! 0; and
p
n
n
F̂T (t^X

n)

F̂T (Xn)
� F0(t ^Xn)

o
converges weakly to a tight Gaussian process on the Skorohod space D[0; �X ].

4
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We will further consider cure detection and propose a class of tests for testing the equality

of the latency distribution F0 in a two-sample comparison setting along the lines of Li and Feng

(2005).

3 Consistency

Introduce the crude hazard function de�ned by

d~�(t) = ~�(t)dt = P (t < T � t+ dtjT > t; U > t);

along with the martingale processes

Mi(t) = Ni(t)�
Z t

0

Yi(s)d~�(t):

Our later development relies heavily on the fact thatMi(t) are square integrable martingales with

respect to �ltration Fn
t even when the survival time T and the censoring time U are dependent

(Fleming and Harrington, 1991, Theorem 1.3.1). Note that when T and U are dependent the

crude hazard ~�(t) may not be equal to the conventional hazard de�ned by �(t) = 1
dtP (t < T �

t + dtjT > t). For example, consider a Clayton joint survival C(t; u) = (ea�1t + ea�2u � 1)�
1

a ,

which corresponds to the Archimedean copula model with �(t) = (t�a � 1)=a and ST (t) = e��1t

and SU (u) = e��2u, where a � 0; �1 > 0 and �2 > 0. It follows that the crude hazard

~�(t) = �1
ea�1t

ea�1t + ea�2t � 1
;

which di�ers from the conventional hazard �1 when a 6= 0. Other counter-examples can be found

in Example 1.3.1 of Fleming and Harrington (1991).

Under the regularity conditions ( (c.1)-(c.5) listed in Appendix A.0) on ST (t) (or FT (t)), �(t)

and the copula function �, the following proposition states that ŜT (t) is a uniformly consistent

estimator to ST (t).

Proposition 1 �(ŜT (t)) converges to �(ST (t)) uniformly on [0; �X ]. Moreover, ŜT (t) converges

to ST (t) uniformly on [0; �X ] and the Nelson-Aalen estimator
R t
0
I(Y (s) > 0)dN(s)

Y (s)
converges to

~�(t) in probability uniformly on [0; �X ].

5
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Note that in this proposition we allow �(�X) = 0. That is, we consider the convergence over

the entire support of the distribution of X, a useful result for the cure detection in our later

development and a stronger result than Theorem 1 of Rivest and Wells (2001) in the absence of

cure.

In addition, a byproduct of this proposition is the feasibility of consistently estimating an

important parameter P (T � U), which is the probability of observing death from a particular

cancer prior to censoring. Indeed,

P (T � U) =

Z 1

0

P (T 2 (t; t+ dt]; U > t)

=

Z 1

0

�(t)P (T 2 (t; t+ dt]; U > tjT > t; U > t)

=

Z 1

0

�(t)d~�(t):

Proposition 1 indicates that the Nelson-Aalen estimator
R t
0
I(Y (u) > 0)dN=Y consistently

estimates ~�(t). Hence a natural `plug-in' estimator for P (T � U)
def
= P is

P̂ =

Z 1

0

Y (u)

n
I(Y (u) > 0)

dN

Y
=

Z 1

0

I(Y (u) > 0)
1

n
dN �

Z 1

0

1

n
dN =

1

n

nX
i

Æi:

A simple martingale argument shows that P̂ consistently estimates P . Since Æi are independent

Bernouli random variables, the central limit theorem leads to

p
n(P̂ � P )

d! N(0; P (1� P ));

and one simply approximates the variance of P̂ by P̂ (1� P̂ )=n.

It is natural to use the plateau of the estimated survival curve ŜT (X
n) to estimate the cure

fraction (1� p). The following two propositions indicate this approach is proper if and only if the

support of the latency distribution is covered by that of the censoring distribution.

Proposition 2 ŜT (X
n)

pr:! (1� p) if and only if �F0 � �X :

As �X characterizes the support ofX = T^U , we can further show that �X = �U in the presence

of cure under model (3). That is, the supports of X and U coincide under an Archimedean model

when the cure fraction is non zero.

Proposition 3 When 0 < p < 1, �X = �U under (3).

6
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4 Testing SuÆcient Follow-up

Propositions 2 and 3 indicate that when p < 1, it will be consistently estimated by 1� ŜT (Xn) if

�F0 < �U , that is, if the right extreme of the censoring distribution SU exceeds that of the latency

distribution F0. Even when p = 1, similar proofs will show that 1� ŜT (Xn) consistently estimates

p = 1 provided �F0 < �U . Thus even in the absence of cure fraction, (5) provides a consistent

estimate for p and we will not be misled by using (5) as long as �F0 < �U , reecting a suÆcient

follow-up.

Therefore it is crucial to test the hypothesis �F0 < �U for consistently estimating (1 � p) by

using (5). Applying the Borel-Cantelli lemma, we can show Xn�, the largest observed failure

time, ! �F0 ^ �U almost surely, while Xn, the largest observed time (which may be censored), is

arbitrarily close to �U , that is, X
n ! �U almost surely. Hence, if �F0 ^ �U < 1, Xn � Xn� !

�U � �F0 almost surely if �F0 < �U , and converges to 0 almost surely if �F0 � �U . Thus a large

value of Xn � Xn� gives evidence to Ha : �F0 < �U while a small value of Xn � Xn� points to

H0 : �F0 � �U . Based on Xn �Xn� and following Maller and Zhou (1992, 1994) we consider the

test statistic

�n = (1�Nn=n)
n

where Nn is the number of failures observed in [2Xn� � Xn;Xn�]. One accepts Ha when �n

is suÆciently small, e.g. �n < 0:05 (or Nn is suÆciently large), while accepting H0 when �n is

suÆciently large, e.g. �n > 0:05 (or Nn is suÆciently small). The heuristics, along with a detailed

derivation, of this test when T and U are independent is given in Maller and Zhou (1994).

Denote by �� = �F0 ^ �U and de�ne an increasing function h(a) =
R ��
���a

�(t)d~�(t). We impose

more regularity conditions on function h. Speci�cally, we suppose that there exists a small �0 > 0

(if �F0 < �U , we require �0 < �U � �F0) such that

(d.1) h(a) is continuous on [0; �0].

(d.2) (dominated variation) there exists an M > 0 such that 0 < h(2a) < Mh(a) for any a 2

7
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(0; �0]; or, equivalently,

lim sup
a!0+

h(�a)

h(a)
<1 (6)

for all � > 0 (see, e.g. Bingham et al. (1987)).

We �rst comment on the condition (d.2), which characterizes the behavior of h near 0, and show

that it holds under general circumstances. In fact, when �F0 < �U , we have �(�
�) = �(�F0^�U ) > 0.

Hence, (6) reduces to

lim sup
a!0+

~�(��)� ~�(�� � �a)
~�(��)� ~�(�� � a)

<1;

which would be true, if we assume ~�(k)(���) 6= 0 for some positive integer k, by a Taylor expan-

sion. When �F0 � �U , we can apply L'Hopital's rule on (6). Then (6) reduces to

lim sup
a!0+

�(�� � �a)~�0(�� � �a)

�(�� � a)~�0(�� � a)
<1;

which again holds widely if both �(t) and ~� have �nite nonzero derivatives of some order at ���.

Hence, (6) essentially requires that �(t) and ~� have `mild' changes near �� and thus is expected

to hold for most commonly assumed distributions.

We now show such a test is consistent when T and U are dependent through model (3) and

under the regularity conditions (d.1) and (d.2). The proof is along the line of Maller and Zhou

(1994) and can be found in Appendix A.4.

Proposition 4 That �n ! 0 in probability if and only if �F0 < �U .

One would expect that the type of test developed above in the spirit of Maller and Zhou

(1994) would display a monotonic behavior. That is, the longer the duration of study, the more

likely suÆcient it is for making inferences about the cure rates. Klebanov and Yakovlev (2005),

however, have shown that with the �nite samples Maller and Zhou's test may behave unstably and

non-monotonically even when the duration increases. They were less concerned with estimating

the cure proportion consistently and proposed to forgo the test of �F0 < �U . Instead, they focused

solely on testing the existence of cure fraction, which, to us, is of interest in its own merit. We

will pursue this idea in the presence of dependent censoring in Section 6.

8
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5 Asymptotic Normality

So far we have established the consistency of the estimator when the support of the latency

distribution is fully covered by the censoring. To avoid technicality, we assume that �F0 < �U in the

ensuing developments and show that the proposed estimator for cure fraction is also asymptotically

normal.

De�ne the stopped process

Zn(t) =
p
nf�(ŜT (t ^Xn))� �(ST (t ^Xn))g: (7)

and the covariance function

C(t1; t2) =

Z t1^t2

0

�(s)(�0(�(s)))2d~�(s) + 2

Z t1^t2

0

Z s

0

�(s)(1� �(u)) 0(�(u)) 0(�(s))d~�(u)d~�(s)

+2

Z t1^t2

0

Z s

0

�0(�(u))�(s) 0(�(s))d~�(u)d~�(s)

+

Z t1_t2

t1^t2

�(s) 0(�(s))d~�(s)

Z t1^t2

0

�f1� �(u)g 0f�(u)g+ �0f�(u)g�d~�(u) (8)

for 0 � t1; t2; < �X , where  (s)
def
= �s�0(s). From Proposition 1, this covariance function can

be consistently estimated by replacing �(s) and d~�(u) with their empirical counterparts, �̂(s)

andI(Y (u) > 0)dN(u)=Y (u) respectively. Denote the variance function v0(t) = C(t; t), which
coincides with the variance function obtained by Rivest and Wells (note there are two typographic

errors in their formula). Assume that limt!�X v0(t) = v10 <1 and C1(t) def= limv!�X C(v; t) <1
for every t 2 [0; �X).

Proposition 5 Zn(t) converges weakly to I[0; �X)Z(t) + If�XgZ1 on D[0; �X ], where Z(t) is a

tight Gaussian process with the covariance function C(t1; t2) and Z1 is a normal random variable

with the variance v10 and covfZ1; Z(t)g = C1(t).

Denote by p̂ = 1 � ŜT (X
n). We are now ready to show the asymptotic normality of p̂, the

estimator for the cure fraction.

Proposition 6 Assume that 0 < p < 1 and

lim
t!�F0

1� F0(t)

�(t)
< 1: (9)

9
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Then we have

p
nf�(1� p̂)� �(1� p)g d! Z1; (10)

where Z1 is a mean 0 normal random variable with variance v10 = limt!�X v0(t). Furthermore,

p
n(p̂� p)

d! Z1

��0(1� p)
: (11)

Once we have identi�ed the cure proportion we shall be able to compute the estimate for the

latency distribution as follows

F̂0(t) =
F̂T (t)

p̂
=

1� ŜT (t)

p̂
:

The following two propositions concerns the large sample results for this estimator.

Proposition 7 For 0 < p < 1,

sup
[0;�X ]

jF̂0(t)� F0(t)j pr:! 0:

Proposition 8 Let �X = supft : �(t) > 0g. Then

p
nfF̂0(t ^Xn)� F0(t ^Xn)g w! G(t)

on a Skorohod space D[0; �X ], where G(t) = � Z(t)
p�0(ST (t))

+Z1f1�ST (t)g

p2�0(1�p)
and Z(t) and Z1 are de�ned

as in Proposition 5.

Note that if we replace the largest observed time Xn by the largest observed failure time

Xn�, in the estimator (1 � p̂) = ŜT (X
n), all the large sample results hold. This follows as

PfŜT (Xn) = ŜT (X
n�)g = 1 by the de�nition of ŜT .

6 Hypothesis Testing

6.1 Testing the Existence of Cure Fraction

A natural question arising from cure modeling is whether the cure fraction exists. Hence, testing

p < 1 is of substantial interest. In the following we derive a test for testing H0 : p = 1 against

Ha : p < 1 by extending Klebanov and Yakovlev's test to the situation of dependent censoring.

The derivations come at a small price by assuming the underlying hazard for non-cured patients

10
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is a monotone function of time, a plausible assumption in most biological studies, as opposed to

the restrictive non-decreasing hazard assumption made by Klebanov and Yakovlev (2005).

Under the mixture model (2), H0 is equivalent to H
0
0 : max0<t<�XfST (t)� S0(t)g = 0. For a

given data, our idea is to compute the 1�� con�dence interval for the di�erence � = maxtfST (t)�
S0(t)g and to reject H 0

0 at the � level. Klebanov and Yakovlev considered H
00

0 : S(t1)�S0(t1) = 0,

where t1 is a prespeci�ed constant. Though H 0
0 and H

00

0 are essentially equivalent, a data driven

choice of t1, which magni�es the di�erence between these two survival functions, allows us to

increase the power of the proposed test while controlling the signi�cance level.

We �rst assume that the hazard �0(t) = �d=dt logS0(t) is a non-decreasing function in t,

implying that � log S0(t)=t is a non-decreasing function. Hence, for any t1 � t0 > 0,

� log S0(t1)

t1
� � logS0(t0)

t0

or,

S0(t1) � (S0(t0))
t1=t0 � (ST (t0))

t1=t0 (12)

and from (2),

ST (t1) � 1� p+ p(ST (t0))
t1=t0 :

Therefore, we obtain an upper bound for p

p � 1� ST (t1)

1� ST (t0))t1=t0
:

Since t0 and t1 is arbitrary,

p � min
0<t0<t1<�X

1� ST (t1)

1� fST (t0)gt1=t0
def
= ~p

Because of the uniform consistency of ŜT (Proposition 1) and the almost sure convergence of Xn

to �X , ~p can be consistently estimated by the statistic

b~p = minf min
0<t0<t1<Xn

1� ŜT (t1)

1� fŜT (t0)gt1=t0
; 1g: (13)

From (12), we have

ST (t1)� S0(t1) � ST (t1)� (ST (t0))
t1=t0 def= �(t0; t1);
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for any �xed 0 < t0 < t1. Our goal is to construct an asymptotic (1 � �) con�dence interval for

�(t0; t1) based on Proposition 5 and leave aside the question of choosing t0; t1 for now.

To apply proposition 5, we consider the truncated version of ST and its estimator ŜT . Since

Xn ! �X almost surely, the following inequality holds with probability 1 for any 0 < t0 < t1 < �X

ST (t1 ^Xn)� S0(t1 ^Xn) � ST (t1 ^Xn)� (ST (t0 ^Xn))t1=t0
def
= �̂(t0; t1);

and �̂(t0; t1)! �(t0; t1) almost surely.

Consider

�̂(t0; t1) = ŜT (t1 ^Xn)� (ŜT (t0 ^Xn))t1=t0

+fST (t1 ^Xn)� ŜT (t1 ^Xn)g � f(ST (t0 ^Xn))t1=t0 � ŜT (t0 ^Xn))t1=t0g:

Using a Taylor expansion, we have

j(ŜT (t0 ^Xn))t1=t0 � (ST (t0 ^Xn))t1=t0 j = t1

t0
�t1=t0�1n jŜT (t0 ^Xn)� ST (t0 ^Xn)j;

where �n is between ŜT (t0 ^Xn) and ST (t0 ^Xn). Proposition 1 then immediately implies that

�n
p! ST (t0). Hence with a probability going to 1,

j(ŜT (t1^Xn))t1=t0�(ST (t1^Xn))t1=t0 j � (1+�0)
t1

t0
ST (t0)

t1=t0�1jŜT (t1^Xn)�ST (t1^Xn)j; (14)

where �0 is any �xed positive number.

Also, the weak convergence of
p
nfŜT (� ^ Xn) � ST (� ^ Xn)g, coupled with the continuous

mapping theorem, gives

P (
p
n sup

t
j(ŜT (t ^Xn)� ST (t ^Xn)j � D�)! 1� �; (15)

where D� is the upper � � 100 percentile of supt jZ(t)=�0(ST (t))j (based on Proposition 5).

Then, we have the following asymptotic lower con�dence limit for �(t0; t1), and hence, for

� = sup0<t<�XfST (t)� S0(t)g (which is larger than �̂(t0; t1)) almost surely). More speci�cally,

some basic probabilistic arguments lead to (when n is suÆciently large)

P (� � Ln) = P (�̂(t0; t1) � Ln) � 1� �; (16)

12
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where

Ln = ŜT (t1 ^Xn)� (ŜT (t0 ^Xn))t1=t0 � (1 +
t1

t0
(1 + �0)(ST (t0))

t1=t0�1)D�=2=
p
n (17)

Since (16) holds true for any �0 > 0, we may let �0 ! 0 in (17). In practice, the lower bound would

be obtained by replacing the unknown ST (t0) in (17) with its consistent estimate ŜT (t0 ^Xn).

If the hazard �0(t) = �d=dt logS0(t) is a non-increasing function of t, similar arguments lead

to S0(t0) � (ST (t1))
t0=t1 for any t0 � t1 and that the upper bound for p is

~p
def
= min

0<t0<t1<�X

1� ST (t0)

1� fST (t1)gt0=t1

which can be consistently estimated by the statistic

b~p = minf min
0<t0<t1<Xn

1� ŜT (t0)

1� fŜT (t1)gt0=t1
; 1g: (18)

In view of ST (t0)� S0(t0) � ST (t0)� (ST (t1))
t0=t1 , we rede�ne �(t0; t1) such that

�(t0; t1)
def
= ST (t0)� (ST (t1))

t0=t1

and rede�ne

�̂(t0; t1)
def
= ST (t0 ^Xn)� (ST (t1 ^Xn))t0=t1 ;

which can be written

�̂(t0; t1) = ŜT (t0 ^Xn)� (ŜT (t1 ^Xn))t0=t1

+fST (t0 ^Xn)� ŜT (t0 ^Xn)g � f(ST (t1 ^Xn))t0=t1 � ŜT (t1 ^Xn))t0=t1g:

Using the Taylor expansion, we have (ST (t1^Xn))t0=t1�ŜT (t1^Xn))t0=t1 = t0
t1
�
t0=t1�1
n (ST (t1^

Xn)� ŜT (t1^Xn)), where �n is between ŜT (t1^Xn) and ST (t1^Xn). Proposition 1 then directly

implies that �n
p! ST (t1). Hence with a probability going to 1,

j(ŜT (t1^Xn))t0=t1�(ST (t1^Xn))t0=t1 j < (1+�0)
t0

t1
ST (t1)

t0=t1�1jŜT (t1^Xn)�ST (t1^Xn)j; (19)

where �0 is any �xed positive number.

13
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If ST (t1) is close to 0, ST (t1)
t0=t1�1 may not be well bounded. However, notice, for any

constants 0 � x; y; a � 1, it is easy to show that jxa � yaj � jx� yja. It follows that

j(ŜT (t1 ^Xn))t0=t1 � (ST (t1 ^Xn))t0=t1 j � jŜT (t1 ^Xn)� ST (t1 ^Xn)jt0=t1 ; (20)

as 0 < t0=t1 < 1. Therefore, combining (19) and (20)gives

j(ŜT (t1 ^Xn))t0=t1 � (ST (t1 ^Xn))t0=t1 j � minf(1 + �0)
t0

t1
ST (t1)

t0=t1�1On; O
t0=t1
n g;

where On = sup jŜT (t ^Xn)� ST (t ^Xn)j.
Hence, using (15) and let �0 ! 0, we obtain that

P (� � Ln) � P (�̂(t0; t1) � Ln) � 1� � (21)

where

Ln = ŜT (t0^Xn)�fŜT (t1^Xn)g
t0
t1�fD�=2=

p
n+min(

t0

t1
ŜT (t1^Xn)t0=t1�1D�=2=

p
n; (D�=2=

p
n)

t0
t1 )g:

If the lower end of the (1� �) con�dence interval in (16) or (21) (depending on whether �0(�) is
non-decreasing or non-increasing) is greater than 0, thenH0 would be rejected at a signi�cant level

of less than �. To increase the power, the choice of t0 and t1 can be data driven. In particular, they

can be chosen based on (13) or (18) (again depending on the monotonicity of �0(�)) to minimize

the upper bound of p. Indeed, that t0 and t1 in (16) or (21) are chosen by minizing the lower

bound of p (c.f. (13) or (18) ) does not a�ect the probabilistic arguments leading to (16) or (21)

because the latter limit is based on the Kolmogorov distance
p
n sup jŜT (� ^Xn) � ST (� ^Xn)j,

which is uniformly valid for all times t1; t0. Thus, the data driven t1; t0 will allow us to increase

power while maintaining the proper signi�cant level.

6.2 Comparisons of Cure Fractions and Latency Distributions

If the presense of cure fraction is veri�ed, it would also be of interest to compare the cure fractions

and study the latency distributions, for example, when evaluating the eÆcacy of treatments. We

consider below a two-treatment comparison scenario and adopt the notation used in the general

cure model, except that we use an additional subscript i to indicate the treatments. Speci�cally,
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we denote the time-to-event variables and censoring times by Tij ; Uij , i = 1; 2; j = 1; : : : ; ni; where,

for example, i = 1 corresponds to the control arm and i = 2 to the experimental arm, and j refers

to the j-th patient in his respective treatment arm. Let n = n1 + n2. We assume that n1=n! 

where  is a �xed constant and 0 <  < 1. We further assume that the fTij ; Uij : i = 1; 2; j =

1; : : : ; nig are all independent, but Tij ; Uij can be dependent. Because of censoring, we only observe
Xij = Tij ^ Uij and Æij = I(Tij � Uij). We assume that the joint survival of Tij ; Uij follows an

Archimedean model. De�ne the right extremes �F0;1 ; �F0;2 ; �X;1; �X;2. To apply the obtained large

sample results in the previous section, we assume that �F0;1 _ �F0;2 � �X;1 ^ �X;2 def
= � . That is,

[0; � ] fully covers the supports of both latency distributions.

We �rst focus on the comparison of the cure fractions between the two treatment arms and

formulate the following hypotheses

H0 : p1 = p2(= p) vs H1 : p1 6= p2: (22)

Denote by p̂i the estimate of pi in arm i; i = 1; 2. Then under the null hypothesis in (22), from

Proposition 6, we have

p
n(p̂1 � p̂2)

d! 1

��0(1� p)

�
Z11p

� Z12p

1� 

�
;

where Z11 and Z12 are independent and are as de�ned in Proposition 5 (with an added subscript

for each treatment arm). Hence a Wald-type test statistic

(p̂1 � p̂2)=

s
(1� )v̂10;1 + v̂10;2

n(1� )f�0(1� p̂)g2 (23)

will approximately follow a standard normal distribution. Here v̂10;i are the consistent estimates of

v10;i as de�ned in Proposition 4 (with an added subscript for each treatment arm) and the pooled

estimate p̂ = (n1p̂1 + n2p̂2)=n.

Our next interest lies in comparing two latency distributions F0;i(t) = P (Tij � tjTij <1); i =

1; 2. For a two-sample comparison, the statistical test is formulated as

H0 : F0;1 = F0;2 vs H1 : F0;1 6= F0;2: (24)

15
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Based on (Xij; Æij); j = 1; : : : ; n, we may estimate F0;i by

F̂0;i(t) = p̂i
�1F̂i(t);

where F̂i(t) is the estimator for the Fi based on (5) and p̂i = F̂i(X
ni�) is the consistent estimator

for pi, the estimated non-cure fraction in the i-th arm.

Denote the pooled conditional distribution by

F̂0;pool =
n1p̂1F̂0;1 + n2p̂2F̂0;2

n1p̂1 + n2p̂2
:

To test H0 in (24), we de�ne a class of test statistics to gauge the discrepancy between the two

empirical distributions F̂0;1(�) and F̂0;2 as follows

Wn =
p
n

�Z 1

0

jF̂0;1(t)� F̂0;2(t)jrdF̂0;pool(t)

� 1

r

; (25)

for r � 1, where r = 2 corresponds to the Cram�er-von Mises statistic proposed by Li and Feng

(2005) and r =1 corresponds to the Kolmogorov-Smirnov testWn = supt2[0;� ]
p
njF̂0;1(t)� F̂0;2(t)j.

The following proposition gives the asymptotic distribution of Wn, under H0 : F0;1 = F0;2(=

F0):

Proposition 9 Assume that n1=n! . Then under the null hypothesis in (24),

W r
n ) X def

=

Z 1

0

j ~G(t)jrdF0(t);

if r <1, and

Wn ) X def
= sup

t2[0;� ]

j ~G(t)j

if r =1, where the Gaussian process G is (distributionally) uniquely de�ned by

~G(t) =
1p

G1(t)� 1p

1� 
G2(t)

and where Gi(�); i = 1; 2 are independent Gaussian processes as de�ned in (39) (with an added

subscript).
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For gaining additional insight into the limiting distribution of X , we take the case of r = 2,

and consider a Lo�eve type expansion in terms of principal components under H0. Speci�cally, we

represent the distribution of the random variable X in Proposition 9 as a mixture of noncentral

chi-squares, which would facilitate the numerical realizations.

By exploiting the independence of G1(�) and G2(�), we can compute the covariance function

K(s; t) of the Gaussian process G(�). Speci�cally,

K(s; t) = EfG(s)G(t)g = �1fa1(s; t)C1(s; t) + b1(s; t)v
1
0;1 � d1(s; t)C11 (t)� d1(t; s)C11 (s)g

+(1� )�1fa2(s; t)C2(s; t) + b2(s; t)v
1
0;2 � d2(s; t)C12 (t)� d2(t; s)C12 (s)g; (26)

where

ai(s; t) = p�2i f�0(1� piF0(t))�
0(1� piF0(s))g�1;

bi(s; t) = (pi�
0(1� pi))

�2F0(t)F0(s);

di(s; t) = �(p2i�0(1� piF0(t)�
0(1� pi))

�1F0(s);

and Ci(s; t), C1i (s) are as de�ned in Proposition 5 (with an added subscript) for i = 1; 2. The

following proposition presents the result of the Lo�eve principal component decomposition of X .

Proposition 10 The distribution for the limiting random variable X can be represented as the

following mixture of noncentral chi-squares

X D
=

1X
k=1

�kZ
2
k ; (27)

where Zk are i.i.d. standard normal random variables and �k are the eigenvalues of a symmetric

compact positive linear operator T on Hilbert space
�
L2([0;1]); (�; �)

�
with inner product (f; g) =R �

0
f(s)g(s)F �(ds),

(T f)(t) =
Z 1

0

K(s; t)f(s)F �(ds):

Again, without loss of generality, we may assume that the �k are decreasing in k to zero.

The proof is similar to Li and Feng (2005), which was derived when T and U are independent

(i.e. �(t) = � log(t)) and is thus omitted.
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7 Numerical Studies

7.1 Real Data Example

We applied the developed methods to analyze the prostate cancer data in SEER Cancer Incidence

Public-Use Database, released on April 2004 based on the November 2003 submission. We focused

on prostate cancer cases in Connecticut and Detroit Metropolitan area diagnosed between year

1973 and 2001 and during the early stages of the disease, where the tumor was still in situ,

localized or regional, excluding cases where the cancer had spread to remote parts of the body.

There were 91,873 such cases, of which 75,615 people were white. The analysis consisted of

estimating the survival fractions, survival curves and latency distributions for the white and non-

white subpopulations, targeting on health disparities. Using the theoretical results of the previous

sections, we tested whether or not the two subpopulations were di�erent in these respects.

About 37% of the censored observations were due to death from other causes, with cardiovas-

cular disease (CVD) being the major cause of these deaths. As prostate cancer and CVD share

common risk factor, e.g. high intake of fat, we assumed various strengths of correlation between

time to prostate cancer death and the censoring time. For illustration, we considered both Frank's

and Clayton's families of Archimedean copulas, with the correlation parameter chosen such that

the Kendall's tau ranged from 0 to 0.47. As expected, the point estimates of the cure fraction

varied as the strength of the dependence varied - the weaker the dependence is, the larger the

estimate of the cure fraction is. This indeed has some important implications in evaluation of

the progress made in cancer. With the mortality rate for CVD having a decreasing trend, fewer

censorings would be due to CVD. Assuming a positive dependence between the CVD and the

prostate cancer, we might see that the overall dependence among the prostate cancer death and

the censoring would become weaker as fewer censorings are due to CVD. Hence, the data would

yield a trend of higher cancer cure rates, indicating overall progress against cancer. On the other

hand, if the dependence increases, more deaths that could have resulted from CVD are trans-

ferred to cancer. As a result, we would see a faster decrease in the cure fraction estimates, thus

arti�cially indicating that we are not making decent progress in cancer; though in reality there
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might be a higher true cure rate. Theoretical justi�cations for this phenomenon will be given in

Proposition 11 in the discussion section.

Figure 1 and Table 1 present the estimated cure fractions for the two subpopulations for

an analysis based on Frank's family. Assuming that the censoring mechanisms correspond to

approximately equal values of Kendall's � , the cure fractions for whites are uniformly higher than

those for non-whites. Figure 2 plots the survival curves and the latency distributions for the two

subpopulations. The graphs indicate that the prostate cancer survival rates are higher for whites,

irrespective of the degree of dependence in the censoring mechanism.

Table 2 displays the results for dependent censoring under Frank's family for di�erent Kendall's

tau. The �rst four columns test the null hypothesis (24) that the latency distribution for whites

(F0;1) equals that for non-whites (F0;2). Columns 1 and 2 display the Cramer-von Mises test

statistics de�ned in (25) with the p-values estimated using Proposition 9. The third and fourth

columns present the results for the Kolmogorov-Smirnov test. For tau � 0:19, there is no strong

evidence at the 1% signi�cance level that the latency distributions of whites and non-whites are

di�erent. On the other hand, there is strong evidence of a di�erence in the latency distributions

if the dependence between the survival time and the censoring is large (e.g. when tau � 0:32).

The �fth and sixth columns present the results for testing whether whites and non-whites

have the same cure fractions. The theory is developed in section 6.2 and the test statistics

is de�ned in (23). There is strong evidence that the cure fractions are di�erent for the two

subpopulations. Using the theoretical results derived in Section 6.1, we tested whether or not a

cure fraction exists for the entire population. For this, we computed a 95% one-sided con�dence

interval for � = maxtfST (t)� S0(t)g using all 91,873 cases in the data set. Expression (16) was

used to compute the bounds since the estimated hazard �̂0(�) was found to be non-decreasing.

Expression (13) was used to �nd suitable choices for t0 < t1 by a stochastic search. These

intervals are speci�ed in the last column of Table 1. The lower bounds of the intervals are all

positive implying that there is signi�cant evidence at the 5% level that a cure fraction exists for

the entire population. Analysis assuming dependent censoring under Clayton's family of copulas

were similar to those obtained under Frank's family and lead to the same conclusions.
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7.2 Simulation Study

We investigated by simulation the �nite-sample behavior of the cure fraction estimator, i.e. p̂ =

1 � ŜT (X
n). Proposition 6 proves that this estimator is consistent and asymptotically normal,

with (11) specifying its asymptotic variance.

We simulated the survival data by generating independent censoring times Ui, where i =

1; : : : ; n, from the exponential distribution with hazard rate r (mean 1=r). Conditional on the

censoring times, the failure times Xi were generated for dependent censoring under Frank's copula

model with various correlation parameter a = 0; 2:1; 5:7, corresponding roughly to Kendal's tau

0; 0:2; 0:47. The latency distribution of the failure times was exponential with mean one and

truncated at �F0 = 2. The true cure fraction of the failures was p = 0:3. The rate r in the

censoring distribution was chosen to be 1; 0:5; 0:2, resulting roughly 60%, 40% and 20% censoring

among `non-cured' patients. For each simulated data, the estimate p̂ = 1 � ŜT (X
n) was then

computed and its asymptotic variance was computed using (11).

The above steps were repeated for 3,000 replications to obtain estimates of p based on the

3,000 di�erent data sets. The empirical variance of p̂ was computed and compared with the

average asymptotic variance. Table 3 presents the results for various combination of sample size,

Frank family parameter a and censoring rate r.

For any given (a; r) pair, estimate p̂ is found to approach the true value as the sample size

n increases. Additionally, the di�erence between the empirical and asymptotic standard errors

tend to zero, and the empirical coverage probabilities of the 95% con�dence intervals approach the

nominal value of the con�dence level. These results verify the validity of Proposition 6. For a given

value of dependence parameter a and sample size n, the standard errors decrease with censoring

rate r. This is reasonable because a smaller censoring rate implies stochastically greater censoring

times and a smaller proportion of censored observations, resulting in a more precise estimate of

the cure fraction.

Simulations were also performed to verify the covariance structure derived in (8). In particular,

Table 4 uses the simulated data to verify expression (8) for the covariance between survival
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function estimates at t1 = 1 and t2 = 2. For any given (a; r) pair, the empirical covariance

matches well the asymptotic value, especially as n grows.

8 Discussion and Future Work

This paper proposes a mixture cure model which allows dependent censoring. In particular, we

have considered the parameter estimation, the cure detection, and the comparison of latency

distributions in the presence of dependent censoring when a proportion of patients is deemed

cured. The dependence between the survival time and its potential censoring time is modeled

using a class of Archimedean copula models with a known � function. In practice, however,

selecting a right � function in the copula is often hampered by the fact that with the current data

on (X; Æ), the copula model is not identi�able (Tsiatis, 1978). In some applications where both

the censoring and failure times were observed for a sub-sample (Bartholomew, 1957), a suitable

copula function could be identi�ed with this additional information. Hence, the estimation of cure

models incorporating, in the framework outlined in this article, an assessment of the dependence

between the censoring and failure times appears to be a promising research area; some related

work can be found in Lin et al. (1996) and Wang (2003).

Additionally, based on the analytical framework we have set up it would be feasible to con-

duct bias analysis when the dependence structure between survival and censoring times are mis-

speci�ed. In particular, we can quantify the biases in the estimates of cure fractions for such

misspeci�cations.

Using the same argument in Proposition 1, we can show that for any � function (which satis�es

the regularity conditions (c.1)-(c.5)), the estimate based on (5) converges uniformly to

S�T (t) = ��1
�
�
Z t

0

�0f�(s)g�(s)d~�(s)
�
:

When � is misspeci�ed, S�T may not be equal to ST , the true survival function. Hence the estimate

of cure converges to (1 � p�) = limt!�X S
�
T (t), which may not be equal to the true cure fraction

1� p = limt!�X ST (t). Analogous to Corollary 6.1 of Zheng and Kelin (1996) and Proposition 2

of Rivest and Wells (2001), the following proposition concerns the asymptotic impact of changing
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the level of dependency between T and U on estimating the cure fractions.

Proposition 11 Let �1 and �2 be two functions used in (5). If �01(t)=�
0
2(t) increases in t then

the asymptotic limit of cure fraction 1� p�1 � 1� p�2.

Indeed Proposition 11 follows from Proposition 2 of Rivest and Wells (2001) by taking t !
�X . Genest and MacKay (1986) showed that �01(t)=�

0
2(t) " t implies that �1 corresponds to

less dependence between T and U than �2 under (3). Thus Proposition 11 reveals that, under

undetected positive dependence between T and U , failing to account for such dependence (e.g.

the Kaplan Meier estimate of cure fraction proposed by Maller and Zhou (1992)) will tend to over-

estimate the true cure fraction. On the other hand, if there exists negative dependence between

T and U , a naive Kaplan-Meier estimate will under-estimate the true cure fraction.
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Appendix: Technical Details

A.0: Regularity Conditions

We impose the following regularity conditions on ST (t) (or FT (t)), �(t) and the copula function

�.

(c.1) � is strictly decreasing on (0; 1] and is suÆciently smooth. Further assume that the �rst two

derivatives of �(s) and  (s)
def
= �s�0(s) are bounded for s 2 [�; 1] where � > 0 is arbitrary.

In addition, the �rst derivative of �(s) is bounded away from 0 on [0; 1].

(c.2) 0 <
R �X
0
f (�(s))gkd~�(s) <1 for k = 0; 1; 2

(c.3)
R �X
0

j( 0(�(s))jd~�(s) <1

(c.4) lim supt!�X

R �X
t

( (�(s))2

�(s)
d~�(s) = 0

(c.5) ST (t) and S0(t) are continuous over [0; �X ] if �X < 1. Otherwise, de�ne ST (1) =

limt!1 ST (t).
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A.1: Proof of Proposition 1

First show that for any �xed t0 such that �(t0) > 0;

sup
t2[0;t0]

j�(ŜT (t))� �(ST (t))j pr:! 0:

A Taylor expansion and the regularity condition (c.1) on � gives, on [0; t0],

�(ŜT (t)) = �
Z t

0

1

n
�0
�
Y (s)

n

�
dN(s) + en;

where en = op(1) uniformly over [0; t0]. Some algebra yields

�(ST (t)) = �
Z t

0

�0(�(s))�(s)d~�(s):

Hence,

�(ŜT (t))� �(ST (t))

= � 1

n

Z t

0

I(Y (s) > 0)�0
�
Y (s)

n

�
dM(s) +

Z t

0

I(Y (s) > 0)

�
 

�
Y (s)

n

�
�  (�(s))

�
d~�(s)

�
Z t

0

I(Y (s) = 0)�0(�(s))�(s)d~�(s) + en

= Z1(t) + Z2(t) + Z3(t) + en;

where M(s) =
Pn

i=1Mi(s) is a martingale.

When t 2 [0; t0],

0 < Z3(t) � I(Y (t) = 0)

Z t

0

 (�(s))d~�(s)

< I(Y (t0) = 0)

Z �X

0

 (�(s))�(s)d~�(s):

By the strong law of large numbers Y (t0)=n ! �(t0)(> 0) almost surely. Hence Y (t0) !
1 almost surely. From this, coupled with the regularity condition (c.2), we have the uniform

convergence of Z3(t) over [0; t0]. It remains to demonstrate the convergence of Z1(t) and Z2(t).

Consider the variation process of Z1(t),

< Z1; Z1 > (t) =

Z t

0

I(Y (s) > 0)

�
�0
�
Y (s)

n

��2
Y (s)

n2
d~�(s)

=

Z t

0

I(Y (s) > 0)

Y (s)

�
 

�
Y (s)

n

��2
d~�(s):
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Then it follows that Z2
1(t)� < Z1; Z1 > (t) is a martingale. By Lenglart's inequality ( see, e.g.,

Fleming and Harrington (1991))

P ( sup
t2[0;t0]

jZ1(t)j > �)

<
�

�2
+ P (

Z t0

0

I(Y (s) > 0)

Y (s)
( (

Y (s)

n
))2d~�(s) > �)

<
�

�2
+ P

�
1

Y (t0)

Z t0

0

( (
Y (s)

n
))2d~�(s) > �

�
:

Since the empirical process Y (s)
n

! �(s) in probability uniformly on [0;1) and because of the

boundness regularity conditions on  (�) and  0(�) on [�(t0); 1],  
2(Y (s)

n
) converges to  2(�(s))

unformly on [0; t0].

Hence
R t0
0
( (Y (s)

n
))2d~�(s) ! R t0

0
( (�(s))2d~�(s) <1 (by the regularity condition (c.2) ). So

1
Y (t0)

R t0
0
( (Y (s)

n
))2d~�(s)

pr! 0 as Y (t0)
pr!1. Hence, P (sup0�t�t0 jZ1(t)j > �)! 0 for any � > 0.

Now consider

Z2(t) =

Z t

0

I(Y (s) > 0) 0(�(s))

�
Y (s)

n
� �(s)

�
d~�(s) + en

where en = op(1=n) uniformly on [0; t0]. Further note that

sup jZ2(t)j � sup jenj+
�Z t0

0

j 0(�(s))jd~�(s)
�

sup
0�s�t0

jY (s)
n

� �(s))j;

which implies (under the regularity condition (c.3)) that

sup
0�t�t0

jZ2(t)j pr:! 0:

Thus we have proved that

sup0�t�t0 j�(ŜT (t))� �(ST (t))j pr:! 0

for any t0 such that �(t0) > 0.

Now we show that

sup0�t��X j�(ŜT (t))� �(ST (t))j pr:! 0:

We only consider the situation when �X <1 as the proof follows similarly when �X =1. Fix a

small � > 0 and consider any t 2 [�X � �; �X ]. With monotonicity of ST and �, it follows that

j�(ŜT (t))� �(ST (t))j
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< j�(ŜT (�X))� �(ŜT (�X � �))j+ j�(ŜT (� � �))� �(ST (�X � �))j

+j�(ST (�X � �))� �(ST (�X))j:

Also note that

sup
0�t��X

j�(ŜT (t))� �(ST (t))j

� sup
0�t��X��

j�(ŜT (t))� �(ST (t))j+ sup
�X���t��X

j�(ŜT (t))� �(ST (t))j

� sup
0�t��X��

j�(ŜT (t))� �(ST (t))j+ j�(ŜT (�X))� �(ŜT (�X � �))j+ j�(ŜT (� � �))� �(ST (�X � �))j

+j�(ST (�X � �))� �(ST (�X))j:

Using the uniform convergence of ŜT (t) on [0; �X � �] and letting �! 0+ yields

sup
0�t��X

j�(ŜT (t))� �(ST (t))j pr:! 0:

As �0(�) is bounded away from 0 on [0; 1] (condition c.1), a Taylor expansion immediately yields

sup0�t��X jŜT (t)� ST (t)j pr:! 0:

Applying a similar argument, we may demonstrate the uniform convergence of
R t
0
I(Y (s) >

0)dN
Y

to ~�(t) on [0; �X ] by observing that

Z t

0

I(Y (s) > 0)
dN

Y
�
Z t

0

d~�(s) =

Z t

0

I(Y (s) > 0)
dM

Y
�
Z t

0

I(Y (s) = 0)d~�(s):

A.2: Proof of Proposition 2

By the de�nition of �X , Xn ! �X almost surely. Consider

j�(ŜT (Xn))� �(ST (�X))j

� j�(ŜT (Xn))� �(ST (X
n))j+ j�(ST (Xn))� �(ST (�X))j

� sup
0�t��X

j�(ŜT (t))� �(ST (t))j+ j�(ST (Xn))� �(ST (�X))j

Hence by the uniform convergence of �(ŜT (t)) and continuity of ST (t) at �X , we have ŜT (X
n)

pr:!
ST (�X). So ŜT (X

n)
pr:! (1�p) if and only if ST (�X) = (1�p). Since �F0 = supft : ST (t) > 1�pg,

it then follows that ST (�X) = (1� p) if and only if �F0 � �X .
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A.3: Proof of Proposition 3

Since �(t) � SU (t), hence ft : �(t) > 0g � ft : SU (t) > 0g, yielding �X � �U .

On the other hand, we can also show that �U � �X . Indeed we only need to consider the case

when �X <1. Otherwise the inequality holds trivially. Speci�cally, when �X � 1, �(�X+) = 0

and therefore �(�(�X+)) =1. Under (3),

�(ST (�X+)) + �(SU (�X+)) = �(�(�X+));

and as p < 1, ST (�X+) � ST (1) = 1 � p > 0. So �(ST (�X+)) < 1. Hence �(SU (�X+)) = 1,

which implies that SU (�X+) = 0. By the de�nition of �U = supft : SU (t) > 0g, it follows �U � �X .

A.4: Proof of Proposition 4

We �rst show by contradiction that if �n ! 0 in probability (or equivalently Nn !1 in proba-

bility), then �F0 < �U . Otherwise, if we assume �U � �F0 , we show that Nn does not converge to

1 in probability, which induces a contradiction.

Choose a constant b > 0 such that 1
b
+ e�b=M < 1

2
. De�ne an = inffa : h(2a) � b

n
g. By

the condition (d.1), an is well de�ned (or at least for large n), an # 0 and h(2an) =
b
n by the

continuity of h. De�ne an event An = fXn� > �� � ang. The key idea of the proof is to show An

happens with a large probability, while on An, Nn is bounded with a large probability, resulting

in a contradiction.

Indeed

P (An) = P (Xn� > �� � an) = Pf[ni=1(Ui � Ti > �� � an)g:

By independence across the subjects

P (Acn) =
Y

Pf(Ui � Ti > �� � an)
cg = (1� h(an))

n � (1� h(2an)=M)b � e�b=M :

By assumption �U � �F0 , we have X
n� � Xn � ��

def
= �U ^ �F0 = �U almost surely. Further-

more, on An we have �� � an � Xn� � Xn � � , whence,

[2Xn� �Xn;Xn�] � [�� � 2an; �
�]:
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De�ne indicator Yin = I(�� � 2an � Xi � ��; Æi = 1). As Nn is the number of uncensored

observations on [2Xn� �Xn;Xn�], it follows that if An happens, then Nn �
P

i Yin. Thus

E(Yin) = P (�� � 2an � T1 � U1 � ��) = h(2an) =
b

n
:

and var(Yin) � E(Y 2
in) = E(Yin) =

b
n
.

Therefore, by Chebyshev's inequality

P (Nn > 2b) � P (Nn > 2b;An) + P (Acn)

� P (
X

Yin > 2b;An) + P (Acn)

� P (
X

Yin > 2b) + e�b=M

� P (
X

(Yin � b=n) > b) + e�b=M

� nvar(Y1n)

b2
+ e�b=M

� 1

b
+ e�b=M < 1=2:

This contradicts with that Nn ! 1 in probability. Hence the assumption �U � �F0 must not

hold, and we must have �F0 < �U :

Now we show the converse is true. That is, �F0 < �U implies Nn !1 in probability. Indeed,

Xn� ! �F0 and X
n ! �U almost surely. Hence for any �xed � > 0

�F0 � � � Xn� � �F0 � �U � � � Xn � �U ;

with probability 1 when n is suÆciently large.

Therefore, with probability 1,

[�� � � + �; ��] � [2Xn� �Xn;Xn�];

where �� = �F0 ^ �U = �F0 and � = �U � �F0 . Let Zi = I(�� � � + � � Xi � ��; Æi = 1). Then

Nn �
P

i Zi almost surely.

But

E(Zi) =

Z ��

����+�

�(t)d~�(t) = h(� � �):
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So if we take � < � � �0, we have E(Zi) > h(�0) > 0 (by the condition (d.1)). Therefore the law

of large numbers gives
P

i Zi=n ! E(Zi) > 0 in probability. Hence
P

i Zi ! 1 in probability,

which indicates Nn !1 in probability.

A.5: Proof of Proposition 5

Using the same argument as in Rivest and Wells (2001), up to an op(1) term, we have that

Zn(t) =
p
n

�
� 1

n

Z t^Xn

0

I(Y (s) > 0)�0
�
Y (s)

n

�
dM(s)

+

Z t^Xn

0

I(Y (s) > 0)

�
 

�
Y (s)

n

�
�  (�(s)

�
d~�(s)

�
= Zn;1(t) + Zn;2(t): (28)

Rivest and Wells (2001) showed, for any t0 such that �(t0) > 0, Zn(t) converges weakly to

Z(t) on D[0; t0]. To show the weak convergence of Zn(t) on D[0; �X ], it is suÆcient to show the

tightness of Zn(t) in a small (left) neighborhood of �X in view of Theorems 13.2 and 16.8 of

Billingsley (1999). That is, it suÆces to show for any � > 0

lim
t!�X

lim sup
n
P ( sup

s2(t;�X ]

jZn(s)� Zn(t)j > �) = 0; (29)

see, also, Gill (1980).

Fix a t. Then

sups2(t;�X ]jZn(s)� Zn(t)j � sups2(t;�X ]jZn;1(s)� Zn;1(t)j+ sups2(t;�X ]jZn;2(s)� Zn;2(t)j:

Since Xn is a stopping time, and by the optional sampling theorem,

Zn;1(s)� Zn;1(t) = � 1p
n

Z s^Xn

t^Xn

I(Y (s) > 0)�0
�
Y (s)

n

�
dM(s)

is a local martingale and its predictable variation process is given by

< Zn;1(s)� Zn;1(t); Zn;1(s)� Zn;1(t) >=

Z s^Xn

t^Xn

I(Y (s) > 0)

�
 

�
Y (s)

n

��2
n

Y (s)
d~�(s);

hence,

(Zn;1(s)� Zn;1(t))
2� < Zn;1(s)� Zn;1(t); Zn;1(s)� Zn;1(t) >

28
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is a martingale (again assume that t is �xed).

Therefore, by Lenglart's inequality we have

P ( sup
[t;�X ]

jZn;1(s)� Zn;1(t)j > �)

<
�

�2
+ P (

Z �X^X
n

t^Xn

I(Y (s) > 0)

�
 

�
Y (s)

n

��2
n

Y (s)
d~�(s) > �)

� �

�2
+ P (

Z �X

t

�
 

�
Y (s)

n

��2
n

Y (s)
d~�(s) > �): (30)

Because of the uniform convergence of Y (s)
n

to �(s) on [0; �X ],Z �X

t

�
 

�
Y (s)

n

��2
n

Y (s)
d~�(s)

pr:!
Z �X

t

( (�(s))2

�(s)
d~�(s);

for any t < �X . Hence by the regularity condition (c.4), the second term in (30) converges to 0

for any � > 0 as t! �X . Hence, we have

lim
t!�X

lim sup
n
P ( sup

[t;�X ]

jZn;1(s)� Zn;1(t)j > �) = 0: (31)

Now we turn to show that

lim
t!�X

lim sup
n
P ( sup

[t;�X ]

jZn;2(s)� Zn;2(t)j > �) = 0: (32)

As

Zn;2(s)� Zn;2(t) =

Z s^Xn

t^Xn

I(Y (s) > 0) 0(�(s))
p
n

�
Y (s)

n
� �(s)

�
d~�(s) + op(1);

it follows that (32) holds as
p
n(Y (s)

n
� �(s)) converges weakly to a tight Gaussian process over

[0;1). Combining (31) and (32) gives (29). Hence the proposition follows.

For completeness we compute below the covariance function for the limiting process Z(t),

which is needed in computing the asymptotic distribution of the test statistic derived later. The

derivation of this covariance function, which is not given in Rivest and Wells (2001), is involved

as Z(t) is not an independent increment process.

For any t < �X , as X
n ! �X almost surely and following Rivest and Wells (2001), we can

show that (28) is asymptotically equal to (up to an op(1) term)

Wn(t) =
1p
n

Z t

0

��0(�(u))dM(u) +

Z t

0

Xn(s) 
0(�(s))d~�(s) =Wn;1(t) +Wn;2(t);
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where Xn(s) =
p
n
n
Yn(s)
n

� �(s)
o
. Hence we only need to compute the limiting covariance

function for Wn(t).

Consider 0 � t1 � t2 � �X . Then

covfWn(t1);Wn(t2)g = EfWn;1(t1)Wn;1(t2)g+EfWn;2(t1)Wn;2(t2)g

+EfWn;1(t1)Wn;2(t2)g+EfWn;1(t2)Wn;2(t1)g:

Since Wn;1(�) is a square integrable martingale,

EfWn;1(t1)Wn;1(t2)g = 1

n
E

�Z t1

0

[�0f�(s)g]2Y (s)d~�(s)
�
=

Z t1

0

[�0f�(s)g]2�(s)d~�(s):

Also

EfWn;2(t1)Wn;2(t2)g

= E

Z t2

0

Z t1

0

(Y1(u)� �(u))(Y1(s)� �(s)) 0(�(u))d~�(u) 0(�(s))d~�(s)

= E

Z t1

0

Z t1

0

(Y1(u)� �(u))(Y1(s)� �(s)) 0(�(u))d~�(u) 0(�(s))d~�(s)

+E

Z t2

t1

Z t1

0

(Y1(u)� �(u))(Y1(s)� �(s)) 0(�(u))d~�(u) 0(�(s))d~�(s)

= 2

Z t1

0

Z s

0

�(s)(1� �(u)) 0(�(u))d~�(u) 0(�(s))d~�(s)

+

Z t2

t1

�(s) 0(�(s))d~�(s)

Z t1

0

(1� �(u)) 0(�(u))d~�(u);

where the calculation of E
R t1
0

R t1
0

comes from Rivest and Wells (2001) (after correcting a typo-

graphic error in their formula).

IntroduceA(s) = ��0(�(s)) andB(s)ds =  0(�(s))d~�(s). Applying the result E(M1(u)Y1(s)) =

��(s)~�(u ^ s) and integration by parts, we have

covfWn;2(t1);Wn;1(t2)g

= E

�Z t1

0

A(u)dM1(u)

Z t2

0

(Y1(s)� �(s))B(s)ds

�

= E

�Z t2

0

A(t1)M1(t1)Y1(s)B(s)ds

�
(33)

+E

�Z t2

0

Z t1

0

�M1(u)Y1(s)dA(u)B(s)ds

�
(34)
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Using
R t2
0

=
R t1
0
+
R t2
t1
, (33) is

�~�(t1)

Z t1

0

�(s)~�(s)B(s)ds� ~�(t1)A(t1)

Z t2

t1

�(s)B(s)ds (35)

while using
R t2
0

R t1
0

=
R t1
0

R t1
0
+
R t2
t1

R t1
0
, (34) is

Z t1

0

Z t1

0

�(s)~�(u ^ s)dA(u)B(s)ds+
Z t2

t1

Z t1

0

�(s)~�(u)dA(u)B(s)ds: (36)

Adding the �rst term of (35) and the �rst term of (36) gives � R t1
0

R s
0
A(u)d~�(u)�(s)B(s)ds

following Rivest and Wells (2001, though a minus sign is missing in their formulation). Integration

by parts with respect to dA(u) in the second term of (36) gives the summation of the second term

in (35) and the second term in (36) is

�
Z t2

t1

�(s)B(s)ds

Z t1

0

A(u)d~�(u)

So,

covfWn;1(t1);Wn;2(t2)g = �
Z t1

0

Z s

0

A(u)d~�(u)�(s)B(s)ds�
Z t2

t1

�(s)B(s)ds

Z t1

0

A(u)d~�(u):

(37)

Similarly we obtain

covfWn;1(t2);Wn;2(t1)g = �
Z t1

0

Z s

0

A(u)d~�(u)�(s)B(s)ds: (38)

Plugging back A(u) = ��0(�(s)) and B(s)ds =  0(�(s))d~�(s) in (37) and (38) and using the

weak convergence of a tight process Wn to Z(t), we have thus obtained the covariance function

C(t1; t2) as stated in the proposition.

A.6: Proof of Proposition 6

Note that

p
nf�(1� p̂)� �(1� p)g =

p
nf�(ŜT (Xn))� �(ST (X

n))g+p
nf�(ST (Xn))� �(1� p)g

= Zn(�X) +
p
nf�(ST (Xn))� �(1� p)g

where Zn(�X), as de�ned in (7), converges weakly to Z1 by Proposition (5).
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We only need to show
p
nf�(ST (Xn))��(1�p)g pr:! 0. For a �xed � > 0, consider an increasing

sequence an such that

F0(an�) � 1� �p
np

� F0(an):

It follows that an ! �F0 , where �F0 is the right extreme of F0. Thus

P (
p
njp� F (Xn)j > �) = P (

p
njp� pF0(X

n)j > �) = P (Xn � an):

Assume (9), which implies that the tail of the observed survival times is heavier than that

of the latency distribution. Indeed when �F0 < �X(= �U ) this assumption holds immediately as

limt!�F0

1�F0(t)
�(t)

= 0. Under assumption (9) we have �(t) � 1� F0(t) when t is suÆciently close

to �F0 . Hence when n is suÆciently large

P (Xn � an) = (1� �(an))
n � (1� �p

np
)n ! 0:

Thus,
p
njp� F (Xn)j converges to 0 in probability and so does

p
nj�(1� p)� �(ST (Xn))j to

0 by the boundedness condition on �0(�) (the regularity condition (c.1)). Therefore (10) holds,

which also implies (11) by the Slutsky theorem.

A.7: Proof of Proposition 7

Note that

sup
[0;�X ]

jF̂0(t)� F0(t)j � 1

p̂
sup
[0;�X ]

jŜT (t)� ST (t)j+ 1

pp̂
jp̂� pj:

Hence the result follows as ŜT (t) converges to ST (t) uniformly on [0; �X ] coupled with p̂� p pr:! 0.

A.8: Proof of Proposition 8

First observe that

p
nfF̂0(t ^Xn)� F0(t ^Xn)g

=
p
n

(
F̂T (t ^Xn)

p̂
� FT (t ^Xn)

p

)

=
�pnf�(ŜT (t ^Xn)� �(ST (t ^Xn))g

p�0(ST (t ^Xn))
� 1� ST (t ^Xn)

p2

p
n(p̂� p) + op(1):
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Now since
p
nf�(ŜT (t^Xn)��(ST (t^Xn))g w! Z(t) on D[0; �X ] (Proposition 5) in conjunction

with
p
n(p̂�p) d! Z1

��0(1�p)
and Xn ! �X almost surely, it follows that

p
nfF̂0(t)�F0(t)g w! G(t)

on D[0; �X), where

G(t) = � Z(t)

p�0(ST (t))
+
f1� ST (t)gZ1
p2�0(1� p)

: (39)

A.9: Proof of Proposition 9

Denote by Xn = Xn1 ^Xn2 and de�ne residual processes �ni(t) =
p
nifF̂0;i(t^Xn)�F0(t^Xn)g.

The sample paths of stochastic processes �ni reside in the Skorohod spaceDR[0; � ]. Then it follows

by Proposition 8) �ni(t)
w:! Gi(t): Hence by the continuous mapping theorem, when r <1

W r
n =

Z �

0

���pnfF̂0;1(t ^Xn)� F̂0;2(t ^Xn)g
���rdF̂ �pool(t)

�
Z �

0

��� 1p

�n1(t)�

1p
1� 

�n2(t)
���rdF̂ �pool(t)

)
Z �

0

j ~G(t)jrdF0(t)] =

Z 1

0

j ~G(t)jrdF0(t):

When r =1,

Wn = sup
t2[0;Xn1�_Xn2�]

���pnfF̂0;1(t ^Xn)� F̂0;2(t ^Xn)g
���

= sup
t2[0;� ]

���pnfF̂0;1(t ^Xn)� F̂0;2(t ^Xn)g
���

� sup
t2[0;� ]

��� 1p

�n1(t)�

1p
1� 

�n2(t)
���

) sup
t2[0;� ]

j ~G(t)j:
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Figure 1: Estimated prostrate cancer cure fractions for whites (Æ) and non-whites (�) under
Frank's family of copulas. The lines represent margins of two standard errors.
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Figure 2: Summary of prostrate cancer results for Archimedean copulas based on Frank's family.
The unbroken lines correspond to whites and the dashed lines to non-whites. The top panels
graph the survival curves for Kendall's tau equal to 0 and 0.32. The bottom panels graph the
latency distributions.
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Whites Non-whites

� Estimate SE Estimate SE

0 0.55 0.015 0.49 0.039
0.01 0.55 0.015 0.48 0.039
0.03 0.50 0.015 0.43 0.039
0.09 0.50 0.015 0.43 0.039
0.12 0.44 0.015 0.37 0.038
0.16 0.39 0.015 0.32 0.035
0.19 0.39 0.015 0.32 0.035
0.32 0.30 0.013 0.25 0.030
0.42 0.22 0.010 0.18 0.023
0.47 0.20 0.010 0.16 0.021

Table 1: Cure fractions based on Frank's family of Archimedean copulas.

� CvM Test P-Value K-S Test P-Value Wald z P-Value 95% CI for �

0 27.79 0.26 15.97 0.06 -3.04 0.00 ( 0.195 ,1)
0.01 27.67 0.25 15.94 0.06 -3.04 0.00 ( 0.195 ,1)
0.03 23.18 0.26 14.28 0.07 -2.93 0.00 ( 0.198 ,1)
0.09 23.18 0.26 14.28 0.07 -2.93 0.00 ( 0.198 ,1)
0.12 24.51 0.19 12.53 0.08 -2.94 0.00 ( 0.198 ,1)
0.16 30.74 0.09 11.44 0.07 -3.05 0.00 ( 0.196 ,1)
0.19 30.74 0.10 11.44 0.09 -3.05 0.00 ( 0.194 ,1)
0.32 48.01 0.01 13.04 0.01 -3.47 0.00 ( 0.177 ,1)
0.42 66.24 0.00 13.47 0.00 -4.31 0.00 ( 0.148 ,1)
0.47 69.82 0.00 13.42 0.00 -4.59 0.00 ( 0.137 ,1)

Table 2: Results based on Frank's family of Archimedean copulas.
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a r n p̂ Empirical SE Asymptotic SE 95% C.I. Coverage

0 1 50 0.311792 0.1140858 0.0981302 0.865
0 1 100 0.3035328 0.08593271 0.07637336 0.903
0 1 500 0.3013318 0.03856888 0.03702753 0.936

2.1 1 50 0.3086511 0.1049240 0.09002797 0.878
2.1 1 100 0.3049256 0.07592004 0.06883757 0.908
2.1 1 500 0.3008560 0.03328404 0.0322699 0.939

5.7 1 50 0.3154014 0.1001547 0.08272287 0.882
5.7 1 100 0.309741 0.06823369 0.06206997 0.910
5.7 1 500 0.3025891 0.02880224 0.02869691 0.949

0 0.5 50 0.2999443 0.08688357 0.08017418 0.908
0 0.5 100 0.2985752 0.06125795 0.05896112 0.935
0 0.5 500 0.2998565 0.02743993 0.02707487 0.942

2.1 0.5 50 0.3032127 0.07910919 0.07369643 0.919
2.1 0.5 100 0.2989564 0.0569155 0.05332041 0.924
2.1 0.5 500 0.3007000 0.0242311 0.02439310 0.953

5.7 0.5 50 0.3027497 0.06907557 0.06668318 0.938
5.7 0.5 100 0.3011927 0.04985439 0.04809085 0.935
5.7 0.5 500 0.3003604 0.0215772 0.02184662 0.950

0 0.2 50 0.3001357 0.07285168 0.06916037 0.927
0 0.2 100 0.3006226 0.0506231 0.0501023 0.942
0 0.2 500 0.2998538 0.02258296 0.02277172 0.952

2.1 0.2 50 0.2996179 0.06919427 0.06588285 0.932
2.1 0.2 100 0.2985278 0.04925562 0.04750322 0.936
2.1 0.2 500 0.2995015 0.02154124 0.02160814 0.946

5.7 0.2 50 0.3028895 0.06584249 0.06286433 0.930
5.7 0.2 100 0.2988817 0.04722508 0.04532081 0.931
5.7 0.2 500 0.2993998 0.02109654 0.02064824 0.943

Table 3: Summary of simulation results investigating the asymptotic behavior of estimator p̂ =
1� ŜT (X

n). The true cure fraction was assumed to be p = 0:3.
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a r n ŜT (t1 = 1) ŜT (t2 = 2) Empirical Cov Asymptotic Cov

0 1 50 0.4970387 0.3155806 0.004653271 0.005108764
0 1 100 0.4872239 0.2907100 0.001973786 0.002541864
0 1 500 0.4904664 0.3000590 0.000481298 0.0005433187

2.1 1 50 0.4914768 0.2936169 0.004572677 0.004072854
2.1 1 100 0.4904447 0.3107039 0.001998270 0.002214692
2.1 1 500 0.4949633 0.3044195 0.0005302537 0.0004365148

5.7 1 50 0.5033339 0.3184996 0.002683341 0.003344544
5.7 1 100 0.4854107 0.3039750 0.002001305 0.001674436
5.7 1 500 0.4882282 0.3029674 0.0003851077 0.0003236679

0 0.5 50 0.4856533 0.2982809 0.003532756 0.003786317
0 0.5 100 0.4885342 0.3023957 0.001884913 0.001975122
0 0.5 500 0.4871333 0.3004378 0.0004329692 0.0004030368

2.1 0.5 50 0.4933665 0.3090195 0.003304896 0.003379181
2.1 0.5 100 0.4914137 0.2998028 0.001809866 0.001710108
2.1 0.5 500 0.4852423 0.3003169 0.0003670738 0.0003549008

5.7 0.5 50 0.4997257 0.3082358 0.003449204 0.002844627
5.7 0.5 100 0.4870287 0.3060905 0.001472245 0.001519335
5.7 0.5 500 0.5007257 0.3022358 0.0003249204 0.0002944627

0 0.2 50 0.4902883 0.3038794 0.003792067 0.003259159
0 0.2 100 0.4833 0.2938062 0.001939279 0.001637402
0 0.2 500 0.4873104 0.2995824 0.0002964434 0.0003404564

2.1 0.2 50 0.4880728 0.2976328 0.003246520 0.00301053
2.1 0.2 100 0.4860294 0.2979742 0.001349038 0.001563168
2.1 0.2 500 0.4853753 0.2998419 0.000429316 0.0003221655

5.1 0.2 50 0.4862388 0.2987405 0.003476443 0.002784509
5.1 0.2 100 0.4871271 0.3011671 0.001435091 0.001484796
5.1 0.2 500 0.4897375 0.3021698 0.0003097326 0.0003086277

Table 4: Summary of simulation results verifying the covariance expression (8) for
cov(ŜT (1); ŜT (2)). The true values ST (1) = 0:4882 and ST (2) = 0:3.
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