








that membership in the high risk subgroup is rare and that the large number of subjects

outside of this group developed cancer by some other cause with probability 0.2 means that

there are a large number of cases who are not described by the logic tree. Consequently,

some of the stratum-specific sensitivities are very low (0% to 2%). The specificities are high,

a result of the rarity of the high risk subgroup (87% to 100%).

A logic regression model with one tree and eight leaves, including age and gender effects,

was fit to the simulated data (see Figure 8). By comparing Figures 7 and 8, we can see that

the fitted tree is not exactly the same as the tree used to generate the data, but the high

risk subgroups described are very similar. In fact, only 15 of the total 2000 subjects are dif-

ferentially classified by the two trees. It is possible that further model selection would result

in a model that is even more similar to the true model. For comparison, a stepwise logistic

regression model, also including age and gender, was fit to the data. The operating charac-

teristic of the logic and logistic models were assessed using a very large validation dataset

(N = 78, 000). The stratum-specific empirical ROC curves for the logistic model are shown

in Figure 9; sensitivities and specificities for the logic regression model are superimposed on

these plots. We see that in some strata, the stepwise logistic and logic models perform equally

well, while for others, the logic regression model has significantly better discrimination. In

each stratum, the fitted logic regression model performs as well or slightly better than the

tree used to generate the data.

This simulation illustrates the potential value of logic regression. In settings where the

high risk subpopulation is described by a complex combination of risk factors, a logic regres-

sion model yields a simple and interpretable characterization of the high risk subgroup. A

logic regression model can also result in a rule that has better discrimination between cases

and controls compared to the criterion that corresponds to a stepwise logistic regression
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model.

The operating characteristics of the tree used to generate the simulated data, shown in

Table 3, also have important implications. Recall that individuals falling into the subgroup

described by the tree were very likely to become cases in the simulated dataset (0.75 proba-

bility), while those not in this subgroup were much less likely to be cases (0.2 probability).

However, the fact that a small portion of the population (15%) fell into the high risk sub-

group meant that a large number of cases were generated outside of the high risk subgroup.

Thus, the stratum-specific sensitivities of the tree used to generate the data are low, but the

specificities are high. This is probably not an unlikely scenario; we would expect that, if an

extremely high risk subgroup existed for a particular disease, membership in the subgroup

would be rare. Hence, even a small likelihood of disease outside this subgroup would mean

that a rule which discriminates between cases and controls based on their subgroup member-

ship would have low sensitivity and high specificity. As a result, any model which attempts

to describe the high risk subgroup is limited by these operating characteristics.

7 Discussion

Risk factors have been established for many diseases. One potential use for such information

is for targeting interventions, such as screening, or for identifying groups where interventions

are not needed. Risk scores based on multiple risk factors have been developed. Examples

are the Framingham risk score for cardiovascular disease14 and the Gail et al. breast cancer

risk prediction (BCRP) model.15 Rockhill et al.16 have criticized the BCRP model because

it is not very discriminatory. Many subjects who do not get disease have high risk scores

while many breast cancer cases have low values prior to their disease onset. Similarly, the
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Framingham risk score does not discriminate well between those destined to become cases

and those destined to become controls.14 Better discriminators would clearly be more useful.

We sought to identify criteria that would be discriminatory for colon cancer, with either high

sensitivity or high specificity. Unfortunately, our data did not present such a criterion.

The technique that we used for extracting criteria from risk factor data is logic regres-

sion, a technique that is well suited to settings where the presence (or absence) of various

combinations of risk factors yields similar risk. In our opinion, the criteria that are generated

from logic regression are more intuitively appealing than those from linear logistic regression

that depend on weighted averages of covariate values.

The algorithm that we implemented used the deviance (−2 × log likelihood) as the

objective function for determining the Boolean predictor variables and their co-efficients.

This choice of objective function enabled us to naturally compare logic and stepwise logistic

regression. However, the deviance is not directly related to notions of accuracy associated

with model-based positivity criteria (i.e. FPF, TPF and predictive values). In addition,

the ratio of cases to controls in the sample will affect the models selected if deviance is the

objective function. It is possible that another objective function could yield better performing

criteria. One possibility is to restrict attention to predictor variables that yield FPF (or

TPF ) values within a desirable range and to maximize TPF (or minimize FPF ) within

that subset. Eguchi and Copas17 discuss such an objective function with FPF fixed at a

particular value. Maximizing the area under the ROC curve associated with the fitted model

has also been discussed.17,18 Etzioni et al.8 implemented logic regression using a weighted

misclassification rate, w(1 − TPF ) + (1 − w)FPF , as the objective function. They varied

w to yield corresponding single tree models whose FPF s varied from 0 at w = 0, to 1 at

w = 1. This approach might also be used in risk factor modeling to find Boolean criteria
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with desired levels of specificity (or sensitivity).

We chose thresholds or indicators corresponding to continuous covariates based on quan-

tiles of the control distribution. Defining thresholds a priori according to meaningful cutoffs

may have yielded different results. Another option would be to include several distinct sets

of threshold indicators and let the algorithm choose the most discriminating ones.

When statistical models are selected in an adaptive fashion, as is the case both for logic

regression and stepwise logistic regression, selection of the “right size” model can be quite

important. In this paper we avoided this problem for logic regression by selecting the model

size a priori. That is, we selected model sizes for logic regression that were easy to interpret.

Ruczinski et al.6 argue for the use of cross-validation and randomization tests to select the

model that predicts best. (Software is available from: http://www.bear.fhcrc.org/∼ingor/logic.)

Some limited cross-validation that we carried out suggests that, for both the one and two

tree logic models for the colon cancer data and for the simulated data model, slightly smaller

models would produce at least equally good results.

For any statistical model, selected using cross-validation or a priori, honestly assessing

the prediction cannot be carried out on the same data that was used to fit the model. To

make such an assessment, we either need a second level of cross-validation, or we need to

use a separate test dataset. For this analysis, we chose to split our data, using one part for

training to identify predictors and estimate parameters, and the other for assessing operating

characteristics of the associated criteria. This is simple, though a somewhat inefficient use of

data.
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Figures

Figure 1 Example of a logic tree that evaluates to 1 if the Boolean expression illustrated is

true. White letters on black denote negation of the entry.

Figure 2 The single tree, L1, fitted to the colon cancer data. The risk factors included

are: family history (yes/no); less schooling (high school education or less); overweight (body

mass index > 26.6 kg/m2 for females, > 27.3 kg/m2 for males); p.m. hormones (women

post-menopause ever taking hormones for more than 6 months).

Figure 3 Contour plots for the odds ratio. (FPF, TPF) combinations that yield equal values

for the odds ratio are connected. Shown are contours for odds ratios of 1.0, 1.5, 2.0, 3.0, 9.0,

16.0.

Figure 4 The trees L1 (upper panel) and L2 (lower panel) fit to the colon cancer data. The

fitted age and gender adjusted model is β1L1 + β2L2 = 1.096L1 + 0.777L2. Variables in L1

are described in Figure 1. Variables in L2 are: low poultry consumption (≤ 2 servings per

week); screening sigmoidoscopy (> 1 year before study entry); NSAID use (> 0.25 months

using non-steroidal anti-inflammatory drugs); college education (some college education).

Figure 5 Operating characteristics for criteria based on the two-tree model. Each point

represents a stratum with numbers of cases and controls shown in Table 1b. Values for most

sensitive (◦) and most specific (P) criteria are displayed.

Figure 6 Operating characteristics associated with the linear logistic model. The average

ROC curve is shown, ROC(t) = Φ(a+ bΦ−1(t)) with a = .55 and b = 1.05. Estimated (FPF,

TPF) points for the single tree logic regression model are also shown.

Figure 7 The tree used to generate the simulated data. Subjects are at high risk of colon
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cancer if they are heavy (BMI > 25.7 kg/m2) males with a family history of colon cancer, or

if they are female smokers (pack-years > 0) who are not heavy (BMI ≤ 24.2 kg/m2).

Figure 8 The logic tree fitted to the simulated data. Risk factors include smoking (pack-

years > 0) and not being heavy (BMI ≤ 24.2 kg/m2) for females, and a family history of

colon cancer, not drinking sake (currently) and not having had a screening sigmoidoscopy (>

1 year before study entry) for males.

Figure 9 Operating characteristics for the stepwise logistic model fit to the simulated data.

The empirical ROC curve is shown for each of the ten strata. Estimated (FPF, TPF) points

for the fitted logic regression model (Figure 8) are also shown for comparison.

Tables

Table 1 Operating characteristics for the single tree model (Figure 2) for the colon cancer

data. (A) using the training dataset; (B) using the validation dataset.

Table 2 Results of a linear logistic regression model fit to the colon cancer data. Age and

gender were included in the model.

Table 3 Operating characteristics of the tree used to generate the data (shown in Figure 7).
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Table 1 

(A) Training Data 
 

 
Age 
(years) 

 
Gender 

 
Number 
of Cases 

 
Sensitivity % 

 
Number 
of 
Controls 

 
Specificity % 

 
Odds Ratio 

 
Criterion 
Positive 
% 

 
1 Year 
Positive PV  
% 

 
40-49  

 
female 

 
26 

 
46.15 (26.59, 66.63) 

 
29 

 
72.41 (52.76, 87.27) 

 
2.25 (0.73, 6.91) 

 
36.36 

 
0.03 

 
40-49  

 
male 

 
21 

 
47.62 (25.71, 70.22) 

 
26 

 
80.77 (60.65, 93.45) 

 
3.82 (1.04, 13.98) 

 
31.91 

 
0.05 

 
50-59 

 
female 

  
74 

 
43.24 (31.77, 55.28) 

 
86 

 
82.56 (72.87, 89.90) 

 
3.61 (1.75, 7.43) 

 
29.38 

 
0.14 

 
50-59 

 
male 

 
73 

 
41.10 (29.71, 53.23) 

 
45 

 
82.22 (67.95, 92.00) 

 
3.23 (1.32, 7.90) 

 
32.20 

 
0.20 

 
60-69 

 
female 

 
91 

 
45.05 (34.60, 55.84) 

 
89 

 
74.16 (63.79, 82.86) 

 
2.35 (1.25, 4.41) 

 
35.56 

 
0.24 

 
60-69 

 
male 

 
95 

 
45.26 (35.02, 55.81) 

 
45 

 
73.33 (58.05, 85.40) 

 
2.27 (1.05, 4.93) 

 
39.29 

 
0.34 

 
70-79 

 
female 

 
61 

 
59.02 (45.68, 71.45) 

 
66 

 
75.76 (63.64, 85.46) 

 
4.50 (2.10, 9.62) 

 
40.94 

 
0.64 

 
70-79 

 
male 

 
44 

 
50.00 (34.56, 65.44) 

 
43 

 
69.77 (53.88, 82.82) 

 
2.31 (0.96, 5.56) 

 
40.23 

 
0.60 
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Table 1 

 
(B) Validation Data 

 
 
Age 
(years) 

 
Gender 

 
Number 
of Cases 

 
Sensitivity % 

 
Number 
of 
Controls 

 
Specificity % 

 
Odds Ratio 

 
Criterion 
Positive 
% 

 
1 Year 
Positive PV 
% 

 
40-49 

 
female 

 
16 

 
50.00 (24.65, 75.35) 

 
19 

 
78.95 (54.44, 93.95) 

 
3.75 (0.86, 16.40) 

 
34.29 

 
0.05 

 
40-49 

 
male 

 
12 

 
25.00 (5.49, 57.19) 

 
12 

 
66.67 (34.89, 90.08) 

 
0.67 (0.11, 3.93) 

 
29.17 

 
0.01 

 
50-59 

 
female 

 
35 

 
40.00 (23.87, 57.89) 

 
38 

 
71.05 (54.10, 84.58) 

 
1.64 (0.62, 4.33) 

 
34.25 

 
0.08 

 
50-59 

 
male 

 
26 

 
30.77 (14.33, 51.79) 

 
15 

 
86.67 (59.54, 98.34) 

 
2.89 (0.52, 15.91) 

 
24.39 

 
0.19 

 
60-69 

 
female 

 
54 

 
48.15 (34.34, 62.16) 

 
44 

 
81.82 (67.29, 91.81) 

 
4.18 (1.64, 10.63) 

 
34.69 

 
0.36 

 
60-69 

 
male 

 
47 

 
44.68 (30.17, 59.88) 

 
19 

 
84.21 (60.42, 96.62) 

 
4.31 (1.10, 16.79) 

 
36.36 

 
0.56 

 
70-79 

 
female 

 
46 

 
56.52 (41.11, 71.07) 

 
38 

 
81.58 (65.67, 92.26) 

 
5.76 (2.10, 15.75) 

 
39.29 

 
0.81 

 
70-79 

 
male 

 
19 

 
52.63 (28.86, 75.55) 

 
16 

 
62.50 (35.43, 84.80) 

 
1.85 (0.48, 7.18) 

 
45.71 

 
0.51 
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Table 2 
 

 Odds 
Ratio 

95% CI 

Education   
     high school or less 1.00  
     some college 0.62 (0.43, 0.91) 
     college graduate 0.47 (0.32, 0.69) 
Body mass index 
  per kg/m2 

 
1.04 

 
(1.01, 1.07) 

Calcium 
  months of use  

 
0.96 

 
(0.93, 0.99) 

Family history of colon cancer 
  yes versus no 

 
2.78 

 
(1.81, 4.28) 

Screening sigmoidoscopy 
  yes versus no 

 
0.59 

 
(0.40, 0.86) 

Fried poultry 
  servings per week 

 
1.04 

 
(0.99, 1.10) 

Poultry 
  servings per week 

 
0.90 

 
(0.82, 0.99) 

 

http://biostats.bepress.com/uwbiostat/paper204



Table 3 
 

Age (years) Gender Sensitivity % Specificity % 
30-39 Female 2.0 100.0 
30-39 Male 48.0 92.0 
40-49 Female 53.0 87.0 
40-49 Male 1.0 100.0 
50-59 Female 54.0 93.0 
50-59 Male 2.0 100.0 
60-69 Female 50.0 95.0 
60-69 Male 13.0 97.0 
70-79 Female 42.0 98.0 
79-79 Male 0.0 100.0 
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Figure 1   Example of a logic tree that evaluates to 1 if the Boolean expression
  illustrated is true.  White letters on black denote negation of the entry.

lack of
exercise

low dietary
fiber intake

and

or

female on
post-menopausal

hormones
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Figure 3  Contour plots for the odds ratio.  (FPF, TPF) combinations
  that yield equal values for the odds ratio are connected.  Shown
  are contours for odds ratios of 1.0, 1.5, 2.0, 3.0, 9.0, 16.0.
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Figure 4   The trees L1 (upper panel) and L2 (lower panel) fit to the colon cancer
  data.  The fitted age and gender adjusted model is β1L1 + β2L2 = 1.096L1 + 0.777L2.
  Variables in L1 are described in Figure 1.  Variables in L2 are: low poultry
  consumption (< 2 servings per week); screening sigmoidoscopy (> 1 year before
  study entry); NSAID use (> 0.25 months using non-steroidal anti-inflammatory
  drugs); college education (some college education).

Tree #2:  L2

Tree #1:  L1

or

and and
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FPF
0 1

TPF

0

1

Figure 5  Operating characteristics for criteria based on the two-tree
  model.  Each point represents a stratum with numbers of cases and
  controls shown in Table 1b.  Values for most sensitive (  ) and  most
  specific (  ) criteria are displayed.
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Figure 6  Operating characteristics associated with the linear logistic
  model.  The average ROC curve is shown, ROC(t) = Φ( a + bΦ-1(t) ) 
  with a = .55 and b = 1.05.  Estimated (FPF, TPF) points for the
  single tree logic regression model are also shown.
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