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Dose expansion cohorts in Phase I trials

Alexia Iasonos and John O’Quigley

Abstract

A rapidly increasing number of Phase I dose-finding studies, and in particular
those based on the standard 3+3 design, frequently prolong the study and include
dose expansion cohorts (DEC) with the goal to better characterize the toxicity
profiles of experimental agents and to study disease specific cohorts. These tri-
als consist of two phases: the usual dose escalation phase that aims to establish
the maximum tolerated dose (MTD) and the dose expansion phase that accrues
additional patients, often with different eligibility criteria, and where additional
information is being collected. Current protocols typically do not specify whether
the MTD will be updated in light of the new data accumulated from the DEC.
In this paper, we propose methodology that allows monitoring of safety in the
DEC by re-evaluating the MTD in light of additional information. Our working
assumption is that, regardless of the design being used for dose escalation, dur-
ing the DEC we are experimenting in the neighborhood of a target dose with an
acceptable rate of toxicity. We refine our initial estimate of the MTD by con-
tinuing experimentation in the immediate vicinity of the initial estimate of the
MTD. The auxiliary information provided in this evaluation can include toxicity,
pharmacokinetic, efficacy or other endpoints. Weconsider approaches specifically
focused on the aims of DEC, that examine efficacy alone or simultaneously with
safety and compare the proposed tests via simulations.
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Abstract

A rapidly increasing number of Phase I dose-finding studies, and in partic-
ular those based on the standard 3+3 design, frequently prolong the study and
include dose expansion cohorts (DEC) with the goal to better characterize the
toxicity profiles of experimental agents and to study disease specific cohorts.
These trials consist of two phases: the usual dose escalation phase that aims to
establish the maximum tolerated dose (MTD) and the dose expansion phase
that accrues additional patients, often with different eligibility criteria, and
where additional information is being collected. Current protocols typically
do not specify whether the MTD will be updated in light of the new data ac-
cumulated from the DEC. In this paper, we propose methodology that allows
monitoring of safety in the DEC by re-evaluating the MTD in light of addi-
tional information. Our working assumption is that, regardless of the design
being used for dose escalation, during the DEC we are experimenting in the
neighborhood of a target dose with an acceptable rate of toxicity. We refine
our initial estimate of the MTD by continuing experimentation in the imme-
diate vicinity of the initial estimate of the MTD. The auxiliary information
provided in this evaluation can include toxicity, pharmacokinetic, efficacy or
other endpoints. We consider approaches specifically focused on the aims of
DEC, that examine efficacy alone or simultaneously with safety and compare
the proposed tests via simulations. KEYWORDS: dose finding; Phase I trials;
dose expansion; sequential monitoring; average sample number.
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1 Introduction

Phase I trials are increasingly using dose expansion cohorts to better characterize

the toxicity profiles of experimental agents or to study disease specific cohorts before

selecting an appropriate dose and patient population upon which closer attention will

be focused for the Phase II study [Iasonos and O’Quigley 2013, Manji et al. 2013].

The experimental setting for the dose expansion cohort (DEC) differs in two impor-

tant ways from that of the Phase I study. The first difference is the recruitment

criteria. The DEC patients are likely to belong to a more narrowly and more sharply

defined targeted category of patients, for example disease specific or histology spe-

cific cohorts. The second difference relates to the information gathered on the DEC

patients. This is typically broader than that for the Phase I and usually will include

efficacy data as well as additional information concerning toxicity gathered during

the Phase I stage. Furthermore, Phase I trials with dose expansion cohorts do not

have the same objectives as Phase I/II trials so that Phase I trials with DEC raise

numerous, new design considerations as they fall somewhere in between Phase I,

Phase I/II or Phase II trials (Figure 1). There is currently no design specific to DEC

[Manji et al. 2013, Iasonos and O’Quigley 2013], a shortcoming recently identified

by a National Institute of Health working group.

In this paper, we propose methodology that takes into account the informa-

tion provided from the additional patients treated at the maximum tolerated dose

(MTD) as part of an expansion cohort and we re-evaluate the recommended Phase

II dose (RP2D) based on the information provided by all the data. The proposed

design will provide efficacy estimates on multiple levels, so that investigators can
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decide which dose to take forward to a phase II testing. Over the last 20 years

much work has been done on model based designs for Phase I dose-finding studies

[O’Quigley, Pepe and Fisher 1990, Iasonos et al. 2008, Yuan et al 2011], which in-

cludes methods that can simultaneously deal with a bivariate outcome of toxicity and

efficacy [Yuan et al 2011, O’Quigley, Hughes and Fenton 2001]. Phase I dose-finding

studies carried out according to a model-based design are very easily adapted to take

on board the additional dose-expansion cohort. Whenever possible we would recom-

mend that any Phase I dose-finding trial uses one of the model based approaches,

for several reasons including the ability to readily extend to situations involving an

expansion cohort. However, the algorithmic 3+3 design, despite its known poor prop-

erties still heavily dominates the field and continues to be used in approximately 90%

of new studies [Rogatko et al. 2007]. At Memorial Sloan Kettering Cancer Center

alone, there are approximately 130 such trials annually that make use of the 3+3

design. Despite clinical investigators’ reluctance to move away from the 3+3 design,

analysis methods for the DEC are needed since the 3+3 no longer applies. Current

practice consists in simply treating patients at the estimated MTD with no planned

analysis of the observed outcomes of the patients accrued during DEC. Our purpose

is to develop designs for DEC that will be applicable regardless of the type of design

used in the Phase I stage. This includes Phase I trials based on the 3+3 which

account for the great majority of current trials.

Phase I protocols with dose expansions consist of two phases: the dose escala-

tion phase followed by a dose expansion phase (Figure 1). During the dose escalation

phase, the MTD is established and during the expansion phase, an additional number

of patients (6, 10 or more) are treated at the estimated MTD [Topalian et al. 2012].

3
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While the MTD is defined by the dose escalation phase, the RP2D is based on the

combined safety data (pre and post dose expansion) and it is the dose level selected for

future trials. The toxicity observed from the additional patients being treated at the

expansion phase, while being reviewed by clinical investigators, is not part of the dose

escalation algorithm that was followed to establish the MTD. There are cases where

the RP2D is lower or higher than the MTD [Manji et al. 2013, Isambert et al. 2012]

given the safety evaluation during the expansion phase, pharmacokinetic studies or

efficacy endpoints. The basis of our paper is that there is still considerable uncer-

tainty in the selection of the MTD after the dose escalation part, and zooming into

the vicinity of the MTD while exploring other endpoints beyond safety will help

guide the choice of the RP2D.

The aims of Phase I trials with DEC can be twofold depending on whether the

objective is to recommend the MTD based on safety alone, or whether the aim is to

further investigate for evidence of efficacy in a selected patient population. Combin-

ing safety and efficacy assessments in clinical trials in oncology under the heading

of a single study or protocol has been relatively common and statistical designs for

Phase I/II trials exist [Yuan et al 2011, O’Quigley, Hughes and Fenton 2001]. Un-

like Phase I/II trials where the Phase II part of the protocol aims to target a dose

with a specific efficacy threshold, Phase I trials with DEC are considered more ex-

ploratory in nature and often no efficacy is being measured during pre-expansion.

As such, Phase I protocols with expansion cohorts often aim to establish a safe dose

and at the same time obtain initial evidence whether to take the investigational drug

forward to a larger Phase II study and if so, at which dose level. Thus, DEC do not

necessarily need to include all patients at a single dose level, or target a dose with an
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efficacy threshold as in the Phase II setting, but instead, can further explore more

than a single dose level. At the end of the study, after accruing a number of addi-

tional patients at the expansion phase there might be an indication that the MTD

chosen based on safety alone may likely have low efficacy. The recommendation then

might be that investigators either need to add additional patients at the expansion

phase to better estimate the efficacy rate or that a higher dose should be considered

which is more likely to show activity. Alternatively, another approach will be to

test multiple levels in the expansion phase with the aim of selecting the dose with

a higher efficacy rate. Whether the efficacious level is unsafe and abandonment of

the investigational drug should be considered altogether is one of the questions the

proposed methodology aims to address. In the following sections, we develop these

ideas in a more formal setting.

2 Methods

The main idea is to use some model based design and guide the dose allocation of

the expansion cohort based on the complete data that consists of the data prior

and post expansion. Our focus here is the Continual Reassessment Method (CRM)

[O’Quigley, Pepe and Fisher 1990], although we may employ any other model based

design. CRM assumes the dose-toxicity curve can be modeled through a simple

working model and as accumulated data on patients’ responses are obtained, we

update this model, and assign the next patient at a level closest to an acceptable

toxicity rate, θ, based on some measure of distance. We assume the trial consists

of k ordered dose levels, d1, d2, . . . , dk, and a total of N patients. The assigned dose

5
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level for patient j is denoted as Xj , and the binary toxicity outcome is denoted as

Yj, where Yj= 1 indicates a DLT for patient j, and 0 indicates absence of a DLT.

We denote the true probability of toxicity at Xj = xj by: R(xj) = Pr (Yj = 1|Xj =

xj), xj ∈ {d1, d2, . . . , dk}. O’Quigley and Shen (1996) used a simple working model

for the dose toxicity relation of the form, ψ (di, a) = αa
i , where a ∈ (0,∞) is the

unknown parameter, and αi are the standardized units representing the discrete

dose levels di or skeleton. Optimal model skeletons can be selected by following the

work from Lee and Cheung 2011. Since drugs are assumed to be more toxic at higher

dose levels, ψ(di, a) is assumed to be an increasing function of di. The derivative of

log likelihood expressed in terms of dose levels di after j patients have been treated,

can be expressed as:

Uj(a) =
k

∑

i=1

[

ti(j)
ψ′

ψ
(di, a) + (ni (j)− ti (j))

−ψ′

1− ψ
(di, a)

]

(1)

where ni(j), ti(j) are the number of patients treated and the number of DLTs re-

spectively at each dose level i out of a total of j patients. Once the current esti-

mate of â by solving Uj(a) = 0 is obtained, and R̂(di) = ψ (di, â) are calculated,

the MTD is defined to be the dose dm ∈ {d1, . . . , dk}, 1 ≤ m ≤ k such that,

dm = argmindi ∆(R̂(di), θ), i = 1, ..., k. where ∆(R̂(di), θ) denotes the distance

from the target acceptable rate θ. For example, in the field of dose finding studies,

it is common to use the Euclidean distance, ∆(R̂(di), θ) = |R̂(di)− θ|. Note that m

is a random quantity that depends on R̂(di) which are random. However conditional

on the data F = {(xj , yj), j = 1, ...N} from N patients, then dm is determined at

each step.
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2.1 Prospective expansion guided by toxicity and/or efficacy

Assume that for the patients accrued during the expansion phase,i.e., in a subset of

patients, in addition to monitoring their toxicity we also collect some other measures

of efficacy or pharmacodynamic, pharmacokinetic endpoints [Pei and Hughes 2008,

O’Quigley, Hughes, Fenton, Pei 2010]. There are studies for example that modify

eligibility criteria to require measurable disease or biopsy for patients accrued in the

expansion cohort and therefore efficacy is measured on a subset of patients. Accord-

ingly, we re-write the log likelihood function and express it as the sum of two com-

ponents, the contributions from patients who have toxicity outcomes, this includes

all patients, and the contributions of patients who have efficacy measures, whom we

assume are the patients accrued during the expansion phase only. Let us denote the

true probability of efficacy response at Xj = xj as: Q(xj) = Pr (Vj = 1|Xj = xj),

where Vj is a binary random variable denoting efficacy response for patient j. Sim-

ilarly as before, we will use a one-parameter working model φ(di, b) = βb
i for Q(xj)

[O’Quigley, Hughes and Fenton 2001], where βi is a skeleton of initial probabilities of

efficacy. We require that for any dose level di ∈ {d1, . . . , dk} there exists a value of b ,

such that φ(di, bi) = Q(di), i = 1, ..., k. We assume that N patients have safety mea-

surements, and J, J ≤ N patients accrued in the expansion have efficacy and safety

measurements. Clearly the toxicity and efficacy outcomes are not independent. One

way to proceed would be via the use of copula models in conjunction with standard

marginal models for the rates of toxicity and efficacy. Dependence on the particular,

often arbitrarily chosen, correlation structure for the copula model can be problem-

atic and so our suggestion is to bypass this by making a simple working assumption

that the correlation that exists between toxicity and efficacy is essentially captured

7
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by the given dose. As a consequence, given the dose, these probabilities can now be

treated as conditionally independent. We use that as a working assumption, and,

in addition, we carry out extensive simulations to investigate the robustness of the

inference to significant departures from that assumption. The derivatives of the log

likelihood with respect to a and b are given by:

∂ logL(a, b|F)/∂a =

k
∑

i=1

[ti(N)
ψ′

ψ
(di, a) + (ni(N)− ti(N))

−ψ′

1− ψ
(di, a)]

∂ logL(a, b|F)/∂b =

k
∑

i=1

[ri(J)
φ′

φ
(di, b) + (ne,i(J)− ri(J))

−φ′

1− φ
(di, b)] (2)

where ne,i(J) are the number of patients treated at dose i who are also evaluable for

response and ri(J) are the number of responders observed at dose i.

Instead of assigning the next patient systematically at a dose xj+1 = dm, we

randomize patients to two levels, dm and the level just above dm if R̂(dm) < θ or

the level just below dm if R̂(dm) > θ. We can base the randomization on a random

mechanism by using equal randomization probabilities of 0.50 at the two levels or

by using the inverse of the distance to θ. In other words, we randomly select a dose

according to a discrete distribution which depends on the available levels and the

current estimate of the MTD. On the basis of the data from the first j patients, we

assign the (j + 1)th patient to a dose level as follows:

• If R̂(dm) ≤ θ < R̂(dm+1), 1 ≤ m < k then we randomize the patient to one of

two dose levels, xj+1 = dm with probability pm where

pm = 1−

{

∆(R̂ (dm) , θ)
[

∆(R̂ (dm+1) , θ) + ∆(R̂ (dm) , θ)
]−1

}

(3)
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or xj+1 = dm+1 with probability pm+1 = 1− pm.

• If R̂(dk) < θ, we allocate the patient to the last two levels with randomization

probabilities of pk = pk−1 = 0.5.

• If R̂(d1) > θ, allocation is still probabilistic but we ensure the closest level,

which is the lowest dose, is chosen with higher probability for safety reasons.

For example we can use the following probabilities for the lowest two levels:

p1 = 0.8 and p2 = 0.2, or by design, as long as R̂(d1) > θ, we could use p1 = 1.

We continue this algorithm until a fixed number of patients have been accrued during

the expansion phase and at the end of the trial the RP2D is defined as the dose closest

to the target rate, as in the definition given for dm, for the (N+1)th dose assignment.

Randomizing to two levels, say dm, dm+1, and assuming the model ψ(dm, a), then the

estimate â will converge almost surely to the value a0 where U(a0) = 0 and U(a) is

given by:

U(a) = π(dm)[Rm

ψ′

ψ
(dm, a) + (1− Rm)

−ψ′

1− ψ
(dm, a)]

+ [1− π(dm)][Rm+1
ψ′

ψ
(dm+1, a) + (1− Rm+1)

−ψ′

1− ψ
(dm+1, a)]

where π(dm) is the stable distribution of patients included at level dm [O’Quigley 2006].

The goal of Phase I trials remains to find a safe and acceptable dose and that

is the rationale of following the safety criterion along with randomization for dose

allocation. Thus far the RP2D is the dose that is chosen with respect to the proba-

bility distribution with pm (Equation 3). The collection of efficacy data is considered

a secondary and often exploratory aim as in obtaining some initial information on

9
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efficacy to design further studies. In the next section we give secondary criteria for

the definition of the RP2D. The information at the end of the study might not be

enough to distinguish levels based on their efficacy rates, but the idea is that these

predicted efficacy rates at each level separately based on the above estimation, will

provide additional insight for deciding which is the most promising dose to move

forward to a Phase II study.

2.2 Monitoring the expansion cohort

Here we formalize the choice of the RP2D based on hypothesis testing for efficacy.

The question we address is whether we can reach a definitive conclusion on whether

the chosen dose should move forward to later testing given that it meets some promis-

ing threshold for efficacy. The efficacy assessment contributes to deciding which dose

to take forward as the RP2D as follows. Denote a low efficacy rate, say q0, and a

higher, more clinically interesting rate, q1, 0 < q0 < q1 < 1. We test the hypotheses:

H0 : Q(di) ≤ q0 against H1 : Q(di) ≥ q1, where Q(di) denotes the true, unknown, effi-

cacy rate at level di. At each dose level di, these hypotheses correspond to H0 : b ≥ b0

against H1 : b ≤ b1 where b is the parameter that models the dose - efficacy relation-

ship. Since these are composite hypotheses, under H0 we define the region B0 to be

(b0,∞) and similarly under H1 the region B1 is (0, b1). The toxicity contributions

involving the parameter a cancel out, when the respective integrals cover the regions

B1 and B0 under the H1 and H0 respectively. Specifically, assuming j∗ patients have
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been treated at level di, the test at level di is given by:

T1(di) =

∫

B1

∏j∗

l=1 β
bvl
i (1− βb

i )
(1−vl)g(b) db

∫

B0

∏j∗

l=1 β
bvl
i (1− βb

i )
(1−vl)g(b) db

(4)

where g(b) is a pre-specified probability distribution for the parameter b. Note, that

the proposed test is calculated at each dose level separately by including contributions

to the likelihood from patients treated at the respective level alone. This test will

support H1 if there is sufficient evidence in support of H1, ie T1(di) > (1 − ε2)/ε1,

where the boundaries depend on the choice of Type I and II error rates denoted as

ε1, ε2 respectively, and on the sequence of efficacy responses. At the end, we might

still be indecisive if the test supports continuation of the trial because ε2/(1− ε1) <

T1(di) < (1 − ε2)/ε1. Alternatively if the test supports H0, ie T1(di) < ε2/(1 − ε1)

then the decision might be that no more resources need to be spent with this agent

at the current dose level.

As a next step, we simultaneously test for efficacy ie, H0 : Q(di) ≤ q0 against

H1 : Q(di) ≥ q1 and at the same time we want to test for adequate toxicity rate,

ie, H0 : R(di) > s0 against H1 : R(di) ≤ s1, 0 < s1 ≤ s0 < 1; where R(di)

denotes the true toxicity rate at dose di. Let A1, A0 denote the restricted space for

a under H1, H0, and B1, B0 denote the space for b under H1, H0. Given Ω(j) =

{(x1, y1, v1), ..., (xj, yj, vj)}, and assuming j∗ patients have been treated at level di,

let

H{A,B} =

∫

B

∫

A

j∗
∏

l=1

βbvl
i (1− βb

i )
(1−vl)

j∗
∏

l=1

αayl
i (1− αa

i )
(1−yl)g1(a)g2(b) da db (5)

11
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where g1(a), g2(b) denote pre-specified probability distribution functions for the pa-

rameters a and b respectively. The sequential test is defined as the ratio of the

functions H when integrated within the respective regions under H1, H0 respectively

and it is given by T (di) = H{A1,B1}/
∑

R H{AR,BR} where R denotes different regions

for the parameters a and b. The regions under the null correspond to different clinical

hypothesis and one can modify the region under the null as well as the indifference

regions accordingly. As a special case, if we want to test efficacious and non toxic

dose against non-efficacious and toxic dose, then H0 : b ≥ b0 and a ≤ a0 against

H1 : b ≤ b1 and a ≥ a1 and the test equals to [H{A0,B0}]
−1H{A1,B1}. Specifically, the

test at level di is given by:

T2(di) =

∫

B1

∫

A1

∏j∗

l=1 β
bvl
i (1− βb

i )
(1−vl)

∏j∗

l=1 α
ayl
i (1− αa

i )
(1−yl)g1(a)g2(b) da db

∫

B0

∫

A0

∏j∗

l=1 β
bvl
i (1− βb

i )
(1−vl)

∏j∗

l=1 α
ayl
i (1− αa

i )
(1−yl)g1(a)g2(b) da db

where A0 : (0, a0), A1 : (a1,∞) and B0 : (b0,∞) and B1 : (0, b1) are the corresponding

regions for the hypothesis given above. Alternatively, we can choose to test for

adequate efficacy rate at level i assuming the value of the toxicity rate is known.

The hypothesis will then be H0 : b ≥ b0(a) against H1 : b ≤ b1(a) conditional on

a known value for a, for example the current estimate of â. For simplicity we can

use the mean of a or the maximum likelihood estimate of â (maximum) as a plug in

estimate in Equation 5. In the context of Phase I designs, given the small sample

size involved, the operating characteristics provide our main guide to the practical

usefulness of such approximations.

In practice, we might approximate the composite hypotheses by using simple

point hypotheses rather than composite ones. Integrating over a composite hypothe-
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sis amounts to taking a mean, therefore we can approximate this mean (of a function)

by the same function of the mean. Assume that at the current level di where pa-

tient j is being treated we want to test the hypotheses: H0 : Q(di) = q0 against

H1 : Q(di) = q1, where q0, q1 denote low and desirable efficacy rates respectively. We

can calculate the sequential test after j patients have been accrued at level di given

by:

T3(di) = ri(j) log

(

q1(1− q0)

q0(1− q1)

)

+ j log
(1− q1)

(1− q0)
(6)

where ri(j) is the sum of responders treated at di who also have efficacy response

measured. This test uses the empirical estimate of the number of efficacy responses

assuming binomial distribution (O’Quigley et al. 2001). These tests help us decide

whether the current dose is efficacious (T1 or T3), or efficacious and safe (T2) which

are the secondary criteria used to define the RP2D.

2.3 Theoretical Properties

The Average Sample Number (ASN) and Operating Characteristic (OC) function of

the proposed tests are of interest both from a theoretical and applied perspective.

Let us denote the probability that the sequential process will terminate with the

acceptance of H0, at dose level i when b is the true value of the parameter as Li(b).

Let E1 = (1 − ε2)/ε1 and E2 = ε2/(1− ε1) be the boundaries for the sequential test

T1. The following lemma is needed for the proof of Theorem 1.

Lemma 1 The Operating Characteristic function Li(b) is given by

Li(b) = [E
h(b)
1 − 1]/[E

h(b)
1 −E

h(b)
2 ] where for any chosen b > 0, h(b) is the solution of

13

Hosted by The Berkeley Electronic Press



b =
[

log (c∗ (b1, b0, h)− 1)− log
(

c∗(b1, b0, h)− β
(b1−b0)h
i

)]

[1/ (log(βi))], where c
∗(b1, b0, h) =

[(1− βb1
i )/(1− βb0

i )]h.

Proof: See Appendix A.1.

Theorem 1 The expected value of T1 is given by

E(T1(di)) = Li(b)E2 + (1− Li(b))E1.

Proof: See Appendix A.1 in Supplementary Materials.

If we assume that all patients in the expansion cohort are treated at the same

level, say dm then the probability to terminate the clinical trial overall will be equal to

the probability of terminating the experiment at dm. However, because experimen-

tation occurs at two levels, the probability of terminating the clinical trial in favor of

H0, L
∗(b) is given by L∗(b) =

∑k

i=1 Pr(stop for H0|di)π(di) =
∑k

i=1 Li(b)π(di) where,

π(di) corresponds to the true probability of experimenting at level di. It has been

shown [O’Quigley 2006] that under certain conditions, CRM has the property to con-

verge to the true MTD, say dm∗ and that π(di) → 0, i 6= m∗, while π(di) → 1, for i =

m∗, as N increases. In the proposed design we assume that experimentation will

focus at two levels around dm∗ as defined in Section 2.1 and the corresponding prob-

abilities will depend on the randomization probabilities accordingly. Thus there exist

two levels whose π(di) 6= 0, specifically π(dm∗) > 0 and π(dm∗+1) > 0, while for the

remaining levels we assume π(di) → 0, i 6= m∗, m∗ + 1. If J , and thereforeN , increase

without bound, we could approximate these probabilities with the stable distribution

of patients included at dm∗ . Thus, L∗(b) = π(dm∗)Lm∗(b) + [1 − π(dm∗)]Lm∗+1(b).
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Numerical approximations for Li(b) (Supplementary Materials, Appendix A.2) and

the expected value of n, which is the number of patients required to reach a decision

in favor of H1 are derived in Appendix B.

3 Applications

3.1 An example of a clinical trial in solid tumors

For illustration we use a published Phase I trial that followed the 3+3 algorithm dur-

ing the dose escalation phase followed by an expansion cohort [Isambert et al. 2012].

The trial was in patients with advanced solid tumors with metastatic or nonre-

sectable cancer. The aim of the study was to find the RP2D of aflibercept when in

combination with docetaxel. The trial followed the 3+3 design with modifications

and recommended level 4 as the MTD, based on two adverse events of hypertension

observed in levels 5 and 6 that met the definition of DLT. The dose escalation phase

consisted of 34 patients, ten of whom were treated at the MTD. An additional 20

patients were treated at the MTD, as part of a DEC for a total of 54 (34+20) patients

in the trial. The observed DLT rates at each one of the six dose levels that were

included in the trial before the DEC were 1/7, 0/3, 0/6, 0/10, 1/5, 1/3 respectively.

We illustrate how we could allocate patients to levels during the expansion phase

using a model based algorithm sequentially after each patient’s response is updated.

Assume hypothetically that during the expansion phase, the 20 additional patients

were randomized as described in Section 2.1. The toxicity outcomes of the additional

patients were simulated using isotonic regression estimates of the observed rates [?]

obtained during the dose escalation phase. Using this algorithm, 11 patients would
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have been treated at level 5 and 9 patients at level 6 since the estimated DLT rate

indicated that the MTD lies between levels 5-6. At the end of the study the predicted

probabilities of toxicity at each level are equal to 0.01, 0.03, 0.07, 0.13, 0.22, 0.32 for

a skeleton of αi = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6), and â = 2.2175, and hence the RP2D is

dose 5 for a target toxicity rate of 25% (Table 1). As a next step, we assume that

we have efficacy measured on a subset of patients as denoted by J , and we update â

and b̂ (Equation 2) sequentially. The algorithm without randomization allocated 9

patients to level 5 and 11 patients to level 6, and the observed efficacy rate at level

5 and 6 was 0/9 and 5/11 respectively. The test given by Equation 6 recommends

terminating the trial after 10 patients and supports adequate efficacy rate of 30%

or more at level 6. Note that the recommendation at the beginning of the DEC

is to continue the trial, then it switches to evidence favoring H0 as more patients

are treated at level 5 without efficacy responses and then by patient number 10, it

reaches a decision in favor of a response rate of 30% for dose level 6. Note that by

treating all 20 patients at the current MTD, the established MTD was dose level 4.

3.2 Designing and running a trial

Logistically calculating the test statistic after each patient inclusion is challenging.

Instead, we can provide investigators in advance the number of efficacy responses

required to make a decision in favor of accepting or rejecting the null hypothesis

respectively and include these numbers in the protocol as shown in Table 2. Inves-

tigators need to only count the number of efficacy responses ri(j); if this number lies

in the the interval (r∗1(j), r
∗
2(j)) we continue experimentation, if ri(j) ≥ r∗2(j) we con-

clude in favor of H1 and if ri(j) ≤ r∗1(j) we conclude in favor of H0. An R code can
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be provided by the first author to obtain the numbers r∗1(j), r
∗
2(j) for pre specified

values for Type I, II errors, and rates q0, q1. Table 2 shows that the model based

test reaches a conclusion in favor of the alternative hypothesis faster. Selecting the

values of these errors in an actual trial will depend on the operating characteristics

of the SPRT which depend on the unknown and true, underlying parameters such

as the difference in the efficacy rates. The results given in Table 4 (ASN) will help

us decide the values of Type I and II errors. Type I and II errors set as high as 20%

is not uncommon in DEC.

4 Simulation study

4.1 Operating Characteristics

In the simulation study we assume investigators follow the 3+3 design during the

dose escalation phase, as this is typical in Phase I trials in oncology, followed by a

DEC of additional J patients. The dose expansion phase is guided by the model

following the completion of the 3+3. We assume that the trial established an initial

estimate of the MTD using the 3+3 design [Iasonos et al. 2008]. Additional data,

such as efficacy or PK response are obtained during the expansion phase. The DEC

could be accrued under three different schemes as follows: Scheme 1: all patients are

treated at the MTD established during the dose escalation phase (3+3). Scheme 2:

after the MTD has been established using the 3+3 algorithm, patients accrued during

the expansion phase are being randomized to two levels sequentially asm in Equation

3, might change at each step, based on the toxicity data from all patients as described

in Section 2.1. Scheme 3: same as scheme 2, i.e., the DEC is being allocated to one
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or two levels based on randomization, but the predicted probabilities of DLT are

obtained using a bivariate outcome of toxicity and efficacy simultaneously utilizing

all available information from all patients. In this last set of trials we calculated

the sequential tests after each patient, using different forms of hypothesis testing as

shown in Section 2.2.

The parameters used in the simulation study are as follows:

1. The true toxicity and efficacy rates at each dose level are denoted as Ri and

Qi respectively and are shown in Table 3. Scenario 1 denotes a case where

there exists a safe dose which is not efficacious and the efficacious level is not

safe; in Scenario 2, d5 is the dose which is safe and simultaneously efficacious.

Scenario 3 has two levels that are safe but only one is efficacious. Scenario 4

is used as a theoretical bound of how well the method is doing since here the

models are following the true rates.

2. The skeleton values for toxicity and efficacy for the parameters αi, βi are given

by skeleton values, αi equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 for the 6 levels respec-

tively.

3. The sample size during the 3+3 stage varies since the trial stops at any time

after observing 2/6 DLTs and after 6 patients have been treated at the level

below and with at most 1/6 DLTs at the MTD. The sample size for the DEC

J , varied from 12, 25, 50 when evaluating accuracy of dose recommendation

and percent of patients treated. A maximum sample size of 200 is used in order

to estimate the average sample number.

4. Type I and Type II errors, ε1, ε2 are set at 10%.
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5. For the hypothesis test involved in Section 2.2 the efficacy rates that are con-

sidered too low and desirable are q0 = 10% and q1 = 30% respectively. The

acceptable threshold for toxicity was set at s1 = s0 = θ = 30%. Alternatively

one can test the hypotheses H0 : R(di) > s0 = 0.3 and H1 : R(di) ≤ s1 = 0.2

so that we can reject levels with DLT rate > 0.3 while considering levels with

rates ranging from 0.2-0.3 as supporting further experimentation (s1 ≤ θ ≤ s0).

The choice of values of s1, s0 depend on the individual clinical scenario.

6. The uniform distribution was used for the distribution of g1(a) and g2(b) in the

test statistics T1, T2 with a sensitivity analysis using Gamma distribution with

different parameters allowing for larger variance.

Table 3 provides a summary of the dose recommendation across many simulated

trials. We see that following a model based approach during the expansion phase

increases the accuracy of finding the true MTD. The increase is on average 40% in

absolute percentage points or 35% improvement compared to assigning all patients

at the MTD found during the dose escalation phase. The increase in accuracy is

apparent across many scenarios regardless of the location of the MTD. This indicates

that we ought to take into account the toxicity responses from the additional patients

accrued during the expansion phase, and while the efficacy responses are considered

secondary in terms of dose allocation, there is no loss in accuracy by estimating

efficacy rates simultaneously to the toxicity rates. Updating these rates as the trial

is ongoing and more data are accumulated seems the right approach, both from an

ethical standpoint since we maintain safety as the primary objective, as well as in

terms of efficiency in the dose allocation algorithm.
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Table 4 shows the results from carrying out sequential probability ratio tests.

Each test is calculated at the dose level where the current patient is being treated

thus for each one of the three tests we have summarized the percent of trials where

the decision was in favor of H1 : R(di) ≥ 0.30 at the MTD or at MTD plus or

minus a level. The first scenario is a case where there exists a safe dose which is not

efficacious, and the dose above this level is unsafe and efficacious. Table 4 shows that

all tests correctly accept MTD+1 as an efficacious level, but fail to support MTD as

efficacious level, given the fact that 20-24% of the trials decided in favor of H1 when

testing efficacy at MTD. Note that T2 supports less frequently efficacy at MTD+1

since T2 tests simultaneously for a safe and efficacious level, and MTD+1 fails these

requirements. In Scenario 2, the tests correctly identify the MTD as efficacious and

safe dose which is supported by the true rates while again T2 often rejects MTD+1

based on safety compared to the other two tests. In scenario 3, the MTD falls between

dose level 4 or 5 based on safety alone, whereas dose level 5 is more efficacious. Thus

the tests are deciding in favor of H1 at the MTD or/and MTD+1. The last scenario

represents a case where the working models follow the true rates and the MTD is

efficacious. In this scenario, 95% of trials reached a decision in favor of H1.

The sample size required to make a decision in favor of H1 or H0 was calculated

for each trial (denoted as ASN∗). In addition, we calculated the average sample

number (ASN) required to make a decision in favor of H1 calculated at each level

separately. Figure 2 shows the distribution of ASN when the test is calculated at

any level, regardless if that was the MTD. We see that depending on the scenario

and whether there exists a safe and efficacious dose, then the tests either terminate

in favor of H1 early as in Scenario 2 or they take longer to reach a decision for H1 as
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in Scenario 1, when a level with high efficacy might not be a safe dose. The median

sample size is shown in Table 4 and it is substantially smaller with T2 as compared

to the test based on the empirical rates. This supports increase in efficiency by

using complete data on toxicity and efficacy. Using a model based test, we need on

average 20 patients to reach a decision in favor of H1 which is consistent with current,

clinical practice. Additional simulations with a scenario where the efficacious dose

was highly toxic (R =50%) showed that each test takes longer (larger ASN) to reach

a decision in favor of H1 as there is little experimentation at the efficacious level due

to safety concerns and the safe levels are not efficacious.

4.2 Sensitivity analysis

In order to assess whether Type I and Type II errors are controlled and what is the

effect of small sample sizes in the operating characteristics, we report the decision

reached by the three sequential tests when a sample is fixed at 12, 25, 50 (Table

5) in the context of dose expansion cohorts. The number of trials in favor of H1

in Scenario 1 is an estimate of the Type I error since the MTD is not efficacious

(response rate at MTD is 10%),and we see Type I error is less than the set value of

10%. In Scenario 2 the MTD has an efficacy rate of 30%, so the number of trials

in favor of H0 is an estimate of the Type II error and again it is close to the set

value of 10%. A sensitivity analysis for the choice of distribution g(b) can inform us

about the influence of the choice of such distribution. In our sensitivity analysis for

the distributions used in T1,T2 we assumed Gamma distribution with various shape

and scale parameters that result in various mean and variance values. The results

show that in certain cases, Gamma with small variance can be more informative
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than Uniform since the sequential test was reaching a decision early on and a higher

number of trials were reaching a decision in favor of H1 (Table 6). This indicated that

the prior was informative when the variance was small (1.25) but was not informative

with larger variance (variance of 4 for a and 6 for b). The relative importance of the

prior depends on the sample size. Since here we are not only dealing with estimation

and finding the location of the MTD but in addition we are using sequential tests

to guide a decision process of whether to terminate or continue the trial, then the

influence of the prior matters early on in the trial. If the decision is to stop the trial

early, then we will never increase N to recover from that decision. For these reasons

we suggest using a non informative distribution such as Uniform.

We assessed the robustness of our proposed approach to the assumption of con-

ditional independence by running additional simulations under various values of cor-

relation parameter(Appendix C of Supplementary Materials).

5 Conclusion

In this paper, we outline methodology to adequately design and monitor DEC in

Phase I trials in oncology. This methodology provides initial estimates of efficacy

activity, as this is one of the goals of DEC, and aids in providing a go/no go decision

rule at the current dose. It is meant to serve as a guide to help clinical investigators

decide whether the dose with the best chance for efficacy activity should be selected or

whether more patients need to be treated and at which level; versus abandonment of

the investigational drug altogether. Given that there is still considerable uncertainty

in the selection of the MTD after the dose escalation part of the phase I trial, we
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propose experimentation at more than a single level during the expansion phase in

order to estimate efficacy at more than one dose level. This dose exploration during

the expansion phase will provide support to the decision of whether a higher or

lower dose is needed with regards to efficacy. The secondary efficacy measure can

capture evidence of biomarker expression or tumor absorption, which allows the dose

expansion to focus experimentation in this targeted population and help select the

appropriate patient population for future trials. Finally, an important feature of the

proposed approach is that it does not require toxicity and efficacy endpoints to be

obtained at the same time. The sequential equations can be updated at any point,

as data become available, making this approach logistically simple to implement.

Sequential tests are efficient in terms of sample size requirements in order to test

for a specific hypothesis [Wald 1947, Cheung 2007] and they have been used exten-

sively in other contexts such as randomized Phase II or III studies with multiple

looks. In the scenarios presented above, 35 patients would be required to test for

a response rate of 10% versus 30% with Type I and II errors set at 10% using Si-

mon’s optimal design. In the simulation study we presented, when there exists a safe

and efficacious dose, on average 16-24 patients are required to terminate the study.

Depending on the location of the MTD and the steepness of the efficacy curve, the

sample size savings can be as high as 20 patients. This is a considerable amount in

patient savings given that at the end of the study we simultaneously address two

objectives: establish the dose and estimate the efficacy associated with the proposed

dose. In this paper, we followed clinical practice by adding the DEC following the

3+3 design. It would be preferable to use a model based design from the beginning

of the trial and to include the DEC in the model estimation. In such scenario no
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additional methodological considerations are needed. However, the choice of which

design to use is up to clinical investigators. Regardless of how we obtain the data,

SPRT allows us to select a dose based on promising activity, since it allows us to stop

at any point for futility; stop early if there is a strong efficacy signal or suggest that

further experimentation is needed if the results are inconclusive. Sequential tests

make an efficient use of the data in the context of Phase I trials and this is the best

we can do under such small size studies before committing ourselves to embark on a

larger Phase II or a Phase III study.

Supplementary Materials: The reader is referred to the on-line Supplementary

Materials for the proofs of Lemma 1, Theorem 1 (Appendix A.1), approximations of

the composite hypotheses (Appendix A.2) and Average Sample Number (Appendix

B); and further simulations as part of a sensitivity analysis (Appendix C).
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Table 1: Illustrative Trial: Parameter estimates and decision rules for a hypothetical
expansion cohort of 20 patients enrolled in addition to the 34 patients accrued in the
dose escalation trial. Type I and II errors ar set at 20% and efficacy rates are set at
q0 = 5% , and q1 = 30% under H0, H1 respectively.

Patient
No.

Data:
(di, y)

â Data:
(di, y, v)

â T3(di) Decision

35 6 0 2.1857 5 0 0 2.1857 -0.31 continue
36 6 1 2.2512 5 0 0 2.2369 -0.61 continue
37 6 0 2.1221 5 0 0 2.2868 -0.92 continue
38 6 0 2.1824 5 1 0 2.3355 -1.22 continue
39 6 0 2.2419 5 0 0 2.1611 -1.53 acc H0

40 6 0 2.3004 5 0 0 2.2057 -1.83 acc H0

41 5 0 2.3580 5 0 0 2.2493 -2.14 acc H0

42 6 0 2.4013 5 0 0 2.2919 -2.44 acc H0

43 5 1 2.4569 5 0 0 2.3336 -2.75 acc H0

44 5 1 2.2869 6 0 1 2.3743 1.79 rej H0 /stop

45 5 0 2.1453 6 0 1 2.4264 3.58 rej H0

46 6 1 2.1829 6 0 1 2.4778 5.38 rej H0

47 5 1 2.0913 6 1 0 2.5292 5.07 rej H0

48 5 0 1.9817 6 0 0 2.4050 4.76 rej H0

49 5 0 2.0160 6 0 0 2.4519 4.46 rej H0

50 5 0 2.0497 6 0 0 2.4987 4.15 rej H0

51 5 0 2.0827 6 0 0 2.5456 3.85 rej H0

52 5 0 2.1152 6 1 1 2.5902 5.64 rej H0

53 5 0 2.1470 6 0 1 2.4741 7.43 rej H0

54 6 0 2.1783 6 0 0 2.5169 7.13 rej H0

55 2.2175 2.5588
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Table 2: Acceptance and rejection numbers used for trial design, (r∗1(j), r
∗
2(j)) for

the test statistics given in Equations 4 and 6.

ε1 = 0.20, ε2 = 0.20 ε1 = 0.20, ε2 = 0.20
q0 = 0.05, q1 = 0.30 q0 = 0.15, q1 = 0.30

r∗1(j), r
∗
2(j) r∗1(j), r

∗
2(j)

Patient No. for T1 for T3 for T1 for T3
1 ( - , - ) ( - , 1 ) ( - , - ) ( - , 3 )
2 ( - , - ) ( - , 1 ) ( - , 2 ) ( - , 3 )
3 ( - , 2 ) ( - , 2 ) ( - , 2 ) ( - , 4 )
4 ( - , 2 ) ( - , 2 ) ( - , 3 ) ( - , 4 )
5 ( - , 2 ) ( 0 , 2 ) ( - , 3 ) ( - , 4 )
6 ( - , 2 ) ( 0 , 2 ) ( - , 3 ) ( - , 4 )
7 ( - , 2 ) ( 0 , 2 ) ( - , 4 ) ( - , 5 )
8 ( 1 , 2 ) ( 0 , 2 ) ( 1 , 4 ) ( - , 5 )
9 ( 1 , 3 ) ( 0 , 2 ) ( 1 , 4 ) ( - , 5 )
10 ( 1 , 3 ) ( 0 , 3 ) ( 1 , 4 ) ( - , 5 )
11 ( 1 , 3 ) ( 0 , 3 ) ( 1 , 5 ) ( - , 5 )
12 ( 1 , 3 ) ( 1 , 3 ) ( 1 , 5 ) ( 0 , 6 )
13 ( 1 , 3 ) ( 1 , 3 ) ( 2 , 5 ) ( 0 , 6 )
14 ( 1 , 3 ) ( 1 , 3 ) ( 2 , 5 ) ( 0 , 6 )
15 ( 2 , 4 ) ( 1 , 3 ) ( 2 , 6 ) ( 0 , 6 )
16 ( 2 , 4 ) ( 1 , 3 ) ( 2 , 6 ) ( 1 , 6 )
17 ( 2 , 4 ) ( 1 , 4 ) ( 2 , 6 ) ( 1 , 7 )
18 ( 2 , 4 ) ( 1 , 4 ) ( 2 , 6 ) ( 1 , 7 )
19 ( 2 , 4 ) ( 2 , 4 ) ( 3 , 7 ) ( 1 , 7 )
20 ( 2 , 4 ) ( 2 , 4 ) ( 3 , 7 ) ( 1 , 7 )
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Table 3: Proportion of trials recommending each dose level for the four scenarios
for J = 50. Scheme 1: 3+3 design followed by expansion; Scheme 2: expansion is
guided by CRM and randomization; Scheme 3: expansion is guided by CRM and
randomization using efficacy as well as toxicity. True toxicity and efficacy rates used
in the simulation study are denoted with R,Q respectively.

Scenario Levels: d0 d1 d2 d3 d4 d5 d6
1 R 0.10 0.15 0.30 0.45 0.50 0.60

Q 0.05 0.09 0.10 0.30 0.40 0.45
Scheme 1 0.08 0.19 0.40 0.26 0.06 0.01
% patients 0.25 0.38 0.25 0.07 0.01 0.00
Scheme 2 0.11 0.61 0.20 0.01
% patients 0.10 0.18 0.45 0.20 0.03 0.00
Scheme 3 0.12 0.61 0.18 0.01
% patients 0.10 0.18 0.44 0.20 0.03 0.00

2 R 0.05 0.10 0.15 0.20 0.30 0.60
Q 0.01 0.05 0.09 0.10 0.30 0.40
Scheme 1 0.03 0.09 0.17 0.23 0.26 0.20 0.01
% patients 0.14 0.19 0.23 0.23 0.17 0.02
Scheme 2 0.00 0.00 0.02 0.26 0.63 0.07
% patients 0.07 0.07 0.11 0.25 0.41 0.08
Scheme 3 0.00 0.00 0.03 0.28 0.59 0.07
% patients 0.07 0.07 0.11 0.26 0.40 0.08

3 R 0.05 0.1 0.15 0.27 0.33 0.60
Q 0.01 0.05 0.09 0.10 0.30 0.40
Scheme 1 0.10 0.17 0.36 0.20 0.13 0.02
% patients 0.14 0.19 0.33 0.19 0.11 0.02
Scheme 2 0.00 0.00 0.06 0.45 0.43 0.04
% patients 0.06 0.07 0.14 0.34 0.31 0.06
Scheme 3 0.00 0.0 0.08 0.43 0.43 0.04
% patients 0.06 0.07 0.15 0.34 0.31 0.05

4 R 0.02 0.06 0.12 0.20 0.30 0.41
Q 0.02 0.06 0.12 0.20 0.30 0.41
Scheme 1 0.05 0.13 0.28 0.27 0.20 0.08
% patients 0.09 0.15 0.27 0.24 0.17 0.07
Scheme 2 0.00 0.00 0.01 0.20 0.61 0.18
% patients 0.05 0.06 0.09 0.22 0.42 0.17
Scheme 3 0.00 0.00 0.01 0.21 0.60 0.18
% patients 0.05 0.06 0.09 0.22 0.41 0.17
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Table 4: Proportion of trials deciding in favor of H1 when including patients treated
at the MTD, MTD -1, MTD +1 for the four scenarios of Table 3 and trials under
Scheme 3. T1 is based on model based efficacy rates; T2 is based on an acceptable
region of efficacy and toxicity and T3 is based on the observed efficacy rate. Median
Sample size and interquartile range (IQR) in order to make a decision in favor of H1

at any dose.

Test : MTD-1 MTD MTD+1 Median n (IQR)
Scenario 1

T1 0.06 0.20 0.56 35 ( 9, 201)
T2 0.18 0.26 0.49 34 (11, 201)
T3 0.03 0.17 0.52 60 (17, 201)

Scenario 2
T1 0.11 0.84 0.61 17 ( 7, 40)
T2 0.25 0.85 0.49 16 ( 8, 36)
T3 0.07 0.84 0.56 23 (12, 50)

Scenario 3
T1 0.07 0.53 0.60 24 ( 8, 71)
T2 0.19 0.58 0.54 21 ( 9, 58)
T3 0.04 0.50 0.57 33 (13, 89)

Scenario 4
T1 0.43 0.95 0.64 10 (5,21)
T2 0.53 0.96 0.62 11 (6,19)
T3 0.39 0.94 0.61 15 (9,27)
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Table 5: Proportion of trials deciding in favor of H1, H0, or inconclusive when includ-
ing patients treated at the MTD under different sample size requirements accrued
during the expansion cohort (J = 12,25,50). The four scenarios represent trials
simulated under Scheme 3 of Table 3.

Scenario 1 Scenario 2
Scenario 1 J H1 H0 continue H1 H0 continue
T1 50 0.06 0.80 0.13 0.71 0.11 0.17

25 0.06 0.68 0.26 0.55 0.10 0.34
12 0.05 0.48 0.46 0.37 0.11 0.52

T2 50 0.07 0.77 0.16 0.73 0.11 0.17
25 0.08 0.62 0.30 0.60 0.09 0.31
12 0.09 0.39 0.52 0.45 0.12 0.43

T3 50 0.05 0.72 0.23 0.68 0.09 0.24
25 0.04 0.49 0.47 0.49 0.05 0.45
12 0.02 0.21 0.77 0.29 0.01 0.69

Scenario 3 Scenario 4
J

T1 50 0.39 0.45 0.15 0.77 0.05 0.18
25 0.33 0.37 0.30 0.58 0.06 0.36
12 0.25 0.23 0.52 0.37 0.09 0.54

T2 50 0.39 0.44 0.16 0.79 0.04 0.17
25 0.34 0.34 0.33 0.63 0.08 0.29
12 0.31 0.20 0.49 0.47 0.12 0.41

T3 50 0.37 0.40 0.23 0.75 0.02 0.23
25 0.28 0.27 0.45 0.54 0.02 0.44
12 0.15 0.09 0.76 0.30 0.01 0.69
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Table 6: Proportion of trials deciding in favor of H1 when including patients treated
at the MTD, MTD -1, MTD +1 for the four scenarios when using different prior
distributions. T1 is based on model based efficacy rates; T2 is based on an acceptable
region of efficacy and toxicity. Median Sample size (ASN) to make a decision in favor
of H1 at any dose. G : Gamma with parameters (scale,shape).

g(b) in T1 g2(b), g1(a) in T2
Scenario 1 MTD-1 MTD MTD+1 ASN Scenario 1 MTD-1 MTD MTD+1 ASN
Uniform 0.06 0.20 0.56 35 Uniform 0.18 0.26 0.49 34
G(1.5,2) 0.11 0.26 0.59 14 G(1.5,2);G(1,2) 0.17 0.26 0.49 34
G(2,1) 0.15 0.31 0.63 12 G(2,1);G(2,1) 0.17 0.25 0.48 36
G(5, 0.5) 0.49 0.74 0.78 4 G(5, 0.5);G(4,0.5) 0.20 0.29 0.50 30

Scenario 2 Scenario 2
Uniform 0.11 0.84 0.61 17 Uniform 0.25 0.85 0.49 16
G(1.5,2) 0.15 0.84 0.61 12 G(1.5,2);G(1,2) 0.23 0.85 0.48 16
G(2,1) 0.19 0.85 0.61 11 G(2,1);G(2,1) 0.22 0.84 0.48 16
G(5, 0.5) 0.50 0.94 0.72 4 G(5, 0.5);G(4,0.5) 0.26 0.86 0.49 16

Scenario 3 Scenario 3
Uniform 0.07 0.53 0.60 24 Uniform 0.19 0.58 0.54 21
G(1.5,2) 0.10 0.54 0.61 15 G(1.5,2);G(1,2) 0.17 0.58 0.54 21
G(2,1) 0.14 0.58 0.62 13 G(2,1);G(2,1) 0.17 0.57 0.53 22
G(5, 0.5) 0.45 0.79 0.72 4 G(5, 0.5);G(4,0.5) 0.20 0.59 0.54 20

Scenario 4 Scenario 4
Uniform 0.43 0.95 0.64 10 Uniform 0.53 0.96 0.62 11
G(1.5,2) 0.44 0.94 0.66 6 G(1.5,2);G(1,2) 0.52 0.96 0.62 11
G(2,1) 0.49 0.95 0.64 6 G(2,1);G(2,1) 0.52 0.96 0.61 11
G(5, 0.5) 0.69 0.99 0.70 3 G(5, 0.5);G(4,1/2) 0.54 0.97 0.62 11
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Figure 1: Illustrating the use of dose expansion cohorts following a dose escalation study.
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Figure 2: Distribution of sample size required to make a decision in favor of H1 at
any level regardless if that was the MTD. Horizontal panels show sequential tests
based on T1, T2, T3 for the 4 scenarios respectively.
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