
Submitted to the Annals of Applied Statistics
arXiv: math.PR/0000000

DEVELOPING ADAPTIVE PERSONALIZED THERAPY
FOR CYSTIC FIBROSIS USING REINFORCEMENT

LEARNING

By Yiyun Tang∗, Michael R. Kosorok∗

University of North Carolina at Chapel Hill

Optimal clinical management of inherited chronic diseases, such
as Cystic Fibrosis (CF), requires a dynamic approach which updates
treatments to cope with the evolving course of illness and to tailor
medicines and dosages for individual patient. In this paper, we exam-
ine the problem of computing optimal adaptive personalized therapy
for CF patients. A temporal difference reinforcement learning method
called fitted Q-iteration is utilized to discover the optimal treatment
regimen directly from clinical data. We conduct a simulation study
of virtual cystic fibrosis patients with Pseudomonas aeruginosa infec-
tion and antibiotic therapy with parameters tuned to approximately
match published data from CF patients. Our simulation results in-
dicate that reinforcement learning can be an effective tool in devel-
oping personalized therapy which optimises the benefit-risk trade off
in multi-stage decision making and improves long term outcomes in
chronic diseases.

1. Introduction. Cystic Fibrosis (CF) is the most common lethal hered-
itary disorder in Caucasians. It affects approximately 30,000 people in the
United State and 70,000 people worldwide [4]. The most fundamental patho-
genesis of CF is that the CF transmembrane conductance regulator (CFTR)
protein is encoded by a defective gene on chromosome 7 which leads to
life-threatening lung infections and obstruction of the pancreas [41]. The
prognosis of the disease is substantially dependent on chronic respiratory
infection, a hallmark of CF.

In clinical practice, treatment of many inherited chronic diseases, such
as CF, is a dynamic process involving a series of therapeutic decisions over
time. For example, in treating CF patients with chronic lung infections by
the most common and significant pathogen, Pseudomonas aeruginosa (Pa),
clinicians routinely modify therapy in the face of infection severity, toxicity
and antibiotics resistance, reducing the duration, dose, or switching medica-
tion [5, 12]. Essentially, these treatment decisions are made based on clinical
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judgement sequentially over time combined with accruing information on the
patient. The quality of life, length of survival and cost of care are commonly
determined by the success of the entire sequence of antibiotic treatment over
many years.

The unique characteristics of the disease require personalized, time vary-
ing and multistage consideration in order to improve patient longterm out-
come. There are three primary issues to consider. First, various defective
CFTR mutations lead to different cellular consequences [41]. Second, the
frequent infection relapse and progression require timely treatment modi-
fication [29]. Third, the chronic nature of CF leads to repeated courses of
potentially toxic drugs for many years, increasing risk of cumulative side-
effect, such as drug resistance, impairment of renal function and hearing
[5, 6, 12]. These characteristics reflect in multidimensional heterogeneities,
consisting in part of variation between patients due to genetic factors and
within-patient heterogeneities over time.

These aspects of the disease pose increasingly difficult challenges for study-
ing CF therapies, because standard, single-decision trials are unable to cor-
rect for individual differences and prior history in assessing treatments. The
reviews of clinical trials in CF [7, 20, 37, 42, 54] have found the common
dilemma between limited number of CF patients and the need to control
for confounding factors including mutation class, age, disease severity, and
prior treatment, among other factors. The increasing evidence and growing
recognition of the influence of prior and subsequent treatments has led to
considerable interest in studying the prolonged treatment effect and evaluat-
ing entire treatment sequences. For example, early aggressive Pa eradication
therapy is of significant interest because it might be able to improve overall
survival in the long term [46, 48, 49]; specifically, the strategy of intermit-
tent administration of inhaled tobramycin may reduce the risk of resistance
development [35]. Moreover, even if the value of a specific antibiotic therapy
has been established, significant questions remain as to optimum dosage,
duration of treatment and frequency of administration.

In this article, we present a “clinical reinforcement trial” procedure to
discover optimal personalized therapy for CF which seeks to address the
above questions and to tailor therapy to patients’ inherent characteristics
and adapt to time varying factors in the disease process in order to improve
the entire decision-making process. The discovery of optimal therapy in this
approach is based on a reinforcement learning method, called Q-learning,
which obtains patient responses to different regimens and maximizes the
average long term outcomes as a function of patients’ clinical status and
multi-stage regimens using backward and/or recursive algorithms. The clin-
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ical reinforcement trial approach based on Q-learning for discovering effec-
tive regimens was first introduced for potentially irreversible diseases such
as cancer in [55]. This framework was further refined for clinical trials in
non-small cell lung cancer after adaptation to handle right-censored sur-
vival data [56]. This clinical reinforcement trial framework is an extension
and melding of earlier work on dynamic treatment regimens in counterfac-
tual frameworks [26, 28, 40] and sequential multiple assignment randomized
trials (SMART) [25, 47] which have been applied to behavioral and psychi-
atric disorders [27, 32]. There are, however, several fundamental differences
between the challenge of identifying personalized therapy for CF and the
tailored therapy settings for the other therapeutic areas studied in previous
work. To begin with, CF patients are usually diagnosed by neonatal screen-
ing at birth as described in [43], acquire Pa infection in early childhood, and
experience frequent reinfection [19, 22]. CF patients are usually monitored
and treated at regular intervals, with three month intervals being typical,
throughout a life time with median survival between 30 and 40 years of age
[4]. A significant therapeutic goal is to delay acquisition of the mucoid vari-
ant of Pa, which usually occurs a median of 13 years after initial Pa infection,
since mucoid Pa is associated with marked decline in lung function [22]. As a
consequence, the decision making process involves more stages over a much
longer period of time in CF than in many other therapeutic areas. Thus the
degree of adaptation and modification of previous methodologies required
to meet the challenges of CF therapy is significant.

We propose a new clinical reinforcement trial design consisting of ex-
ploratory and confirmatory stages. In the exploratory stage, we utilize our
prior knowledge and historical data of this disease, such as pathogenesis and
age-specific feature of Pa infection to design the multiple courses trial in-
volving a fair randomization of patients among different possible treatment
options as well as the collection of clinical relevant outcomes and biomarkers
at each time point, usually every 3-month in CF clinical practice. Based on
the resulting longitudinal data from the proposed sequential randomization
trial, we propose to estimate a personalized therapeutic regimen which syn-
thesizes patient information on all aspects available at each decision point
as input and dictates treatments that result in the most desirable long term
outcomes, with particular emphasis on delaying mucoid Pa. In the confir-
matory stages, we will demonstrate that the optimal personalized therapy
identified in the learning stage is superior to fixed treatment regimens in
prolonging time to mucoid Pa in patients with CF by a conventional ran-
domized control trial. The data and positive results from both stages will
establish the clinical utility of the optimal personalized therapy for future
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CF patients.
In the clinical trials, patients at various age ranges are enrolled with

long follow-up period in order to capture the known age-specific feature of
Pa infection, including patients diagnosed at birth, followed up life time,
disease progressing at different age, physician visit at least every 3 months.
Age services as both decision time point and important factor that might
dictate the optimal treatment option. The wide age-range enrollment and
long follow-up time aim to obtain representative samples and capture the
temporary impact of the treatment effects.

In order to efficiently inform the therapy in a manner clinically useful for
patients at all ages and decision times, we utilize fitted Q-iteration [9] in
reinforcement learning (RL) [18] to estimate the optimal therapy. In some
applications of RL to inform multi-stage therapies, such as STI strategies
for HIV [10], the procedures involve a mixture of learning and confirming,
which is analogous to response adaptive randomization during trial conduct.
This approach does not appear to be fruitful in the CF setting, due in part
to the generally irreversible progression of lung disease in CF [11], and so
we propose instead to conduct a second, confirmatory trial to validate the
estimated optimal therapy by comparing to existing alternatives.

Due to limited actual clinical data on treatment mechanism, in-silico mod-
eling of disease dynamics is a cost effective tool for examining the feasibility
of using the proposed procedure to identify optimal therapy. We utilize a
simple, multistate disease model of Pa infection which has been tuned to
approximately match published clinical outcome data from the Wisconsin
CF neonatal screening project [22]. The model expresses disease dynamics as
a discrete time non-homogeneous Markov chain with stochastic transitions
among three phenotypically distinguishable states, Pa free, non-mucoid Pa
infection, and mucoid Pa.

In Section 2, we formulate the problem within a reinforcement learning
context, specifically Q-learning, followed by the fitted Q-iteration algorithm
for estimating the required Q-functions without the time index. In Section
3, we provide details on disease progression and propose a discrete time
non-homogeneous multistage CF disease model as a generative model for
the simulation studies. The CF trial conduct, and related computation and
validation of the optimal therapy are presented in Section 4. We apply the
proposed procedure in a simulation study in Section 5. We close with a
discussion in Section 6.

2. Technical Background.
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Fig 1. Reinforcement learning in anti-Pa therapy treating lung infection for cystic fibrosis
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2.1. Reinforcement Learning in Medical Decision Making. Reinforcement
learning (RL) is a powerful artificial intelligence technique in which an agent
learns to optimize sequences of actions in an evolving system by exploring
possible action sequences, receiving both the long and short term conse-
quences for those actions, and estimating the relationship between actions
and consequences [17, 45].

The key elements of reinforcement learning include “state” St, “action”
At and incremental “reward” Rt at the t th decision time, t = 0, ..., T . In
the medical decision making setting, the state St corresponds to the vector
of patient information at that time, such as time-varying sputum culture
results in CF, serology measures, pulmonary function tests, prior response,
treatment history and baseline characteristics including mutation class, etc.
The action At refers to the treatment given at that decision point. Let
S̄t = (S0, ..., St) and Āt = (A0, ..., At) represent histories of state and action.
The reward is defined as a function of action and state, i.e.,Rt = rt(S̄t+1, Āt),
which reflects the immediate utility that contributes to the ultimate patient
outcome of interest. For example, the immediate status of Pa infection stage
and lung function contribute to future transition to mucoid Pa status and
overall survival of CF patients. Figure 1 gives a schematic of the fundamental
components of reinforcement learning described above in the anti-Pa therapy
context for CF. The available data from either clinical practice, observational
studies or sequential randomized trials, are realizations of the time-order
random variables

(S0, A0, R0, ..., ST , AT , RT , ST+1).

The “policy” πt(s̄t, āt−1) = at,t = 0, ..., T maps from the state-action his-
tory to the next action. The resulting action at from πt depends on early ac-
tion sequential āt−1 = (a0, ..., at−1) through state sequential s̄t = (s0, ..., st).
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The goal of reinforcement learning is to find the optimal policy resulting in
the maximum expected discounted cumulative return given by

∑T
t=0 γ

trt ,
which corresponds to our aim to discover the optimal personalized therapy
which achieves the most beneficial ultimate outcome in the long run. The
discount rate γ (0 < γ < 1) for each time unit balances the weights of
immediate rewards and future rewards.

To accomplish this goal, we utilize Q-learning [53], one of the most widely
used reinforcement learning methods. The direct relationship between the
optimal “value function” V ∗t , the optimal value function over state-action
pairs (the “Q-function”) Q∗t , and the optimal policy are given by

Q∗t (S̄t, Āt) = E
[
Rt + V ∗t+1(S̄t+1, Āt)|S̄t, Āt

]
,

(2.1) V ∗t (S̄t, Āt−1) = max
at

Q∗t (S̄t, Āt−1, at),

π∗t (s̄t, āt−1) = argmax
at

Q∗t (s̄t, āt−1, at).

Based on Bellman equation, the sequence of Q-functions satisfy the re-
currence equation [2, 26, 45]

(2.2) Q∗t (S̄t, Āt) = E
[
Rt + γmax

at+1
Q∗t+1(S̄t+1, Āt, at+1)|S̄t, Āt

]
.

The value of the action and state at time t is the sum of expected immediate
reward at t and the expected future value if making the optimal decision from
time t+1 till the end. Backward induction is the key point of optimization,
which starts from the end, i.e. the immediate reward of the last treatment
at t = T , and works backward through time t = T − 1, ..., 0 sequentially,
until Q0 for the initial action and state.

The Q-learning algorithm combined with supervised learning approxi-
mates the sequences of Q-functions by Q̂t, which determines the optimal
policy directly as given in (2.1).

The most suitable type of Q-learning for our setting is model-free Q-
learning in batch mode with an approximation algorithm [53]. This is be-
cause in complicated diseases the relationship between disease dynamics and
the unknown treatment effects are impossible to know in advance and should
thus be nonparametrically modeled. The batch offline learning mode is more
ethical in some medical settings because it protects against potential risks to
patients due to inadequately trained solutions in the early stages of online
learning. Because algorithms with a tabular representation are infeasible in
many real-life medical applications which typically have a continuous state
space, continuous and nonparametrically modeled Q-functions are needed.
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2.2. Fitted Q-Iteration Algorithm. The fitted Q-iteration algorithm [9]
makes use of a set of one-step dynamic system transition samples in a Markov
decision process (MDP) F = {(slt, alt, rlt, slt+1)}#Fl=1 . The recurrence relation
of (2.2) in the discrete MDP problem becomes:

(2.3) Q?N (St, At) = E
[
R(St, At) + γmax

a
Q?N−1(St+1, a)|St, At

]
, ∀N > 1

with Q?1(St, At) = R(St, At). As number of one-step transition N increases,
i.e. the total patient sample size and/or the stage number of single patient
trajectory increase, the sequence converges in infinity norm to the optimal
stationary Q-function in a stationary process. The resulting optimal policy
is π∗N (s) = argmaxaQ?N (s, a).

At each iteration, using the empirical rt, the approximation (2.3) can be
formulated as a sequence of standard supervised learning steps on the kth
training sample, taking the form

T Sk = {(slt, alt, rlt + γmaxaQ̂k−1(slt+1, a), slt+1)}#Fl=1 ,∀k > 1

with T S0 = {(slt, alt, rlt, slt+1)}#Fl=1 , Q̂0(s, a) = 0, ∀s, a. The estimated station-
ary policy is

(2.4) π̂N (s) = argmax
a

Q̂N (s, a).

Hence, fitted Q-iteration can be combined with any regression algorithm
to fit the Q-function with the property of consistency [9]. The diagram and
realization of this algorithm in estimating optimal CF therapy will be pro-
vided in Section 4.1 step 4. The extensive testing of fitted Q-iteration in stan-
dard RL simulation [9] and in clinical applications in HIV [10] and epilepsy
[16] demonstrate encouraging performance, even with high-dimensional state
spaces, and efficient use of training data. In chronic disease treatment, the
frequent regular monitoring provides relatively complete transition samples,
which lead to an appropriate Markovian working assumption and a sta-
tionary Q-function is often the most useful policy in practice. Age-specific
characteristics can be accommodated by adding age as a covariate.

2.3. Support Vector Regression. Due to challenges that may arise from
the complexity of the true Q-function, including the non-smooth maximiza-
tion operation and the potential high-dimension of the state and action
variables, we apply support vector regression (SVR) [52] as the main ap-
proximation method for fitting the Q-functions.

As one of the most popular extensions of support vector machine, SVR
is a more general and flexible approach compared to competing methods
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Fig 2. Pa infection progression in 3-state Markov Model for cystic fibrosis
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which handle potentially complex nonlinear relationship between rewards
and state-action pairs, because ε-insensitive loss function defines errors within
deviation ε as acceptable and the data is mapped through the nonlinear
transformation into a feature space within the reproducing kernel Hilbert
space (RKHS) context. Also, overfitting training data can be avoided in SVR
through regularization term. Hence, fast and high quality performance can
be archieved.

SVR performs with similar or better reproducibility in clinical research
settings [55] as extremely randomized trees [13], a popular, more computa-
tionally intense alternative also used for fitted Q-iteration.

3. Disease Dynamics.

3.1. Rationale. To obtain data which mimics real life clinical data for CF
patients with Pa infection, we briefly review prior knowledge of this disease
process. After being diagnosed at birth, children with CF usually acquire
nonmucoid Pa, which is transient and can possibly be eradicated by aggres-
sive anti-Pa antibiotics [19, 22, 46, 49]. Mucoid Pa, a mutant phenotype of
Pa, develops at later stages, and lives in a defensive mode of growth called
a biofilm [33]. Hence it confers resistance to phagocytosis and antibiotics
and is much more difficult to treat and eradicate [14]. Therefore, there are
three phenotypically distinguishable states: free of Pa (state 1), nonmucoid
Pa (state 2), and irreversible mucoid Pa (state 3), as illustrated in Figure 2.

There are three major classes of endpoints in CF trials. First, one of the
most established sets of biomarkers in CF is microbiological parameters re-
lating to Pa [23]. Secondly, the FDA defines forced expiratory volume FEV1,
the maximum amount of air expired in one second, and rate of decline as
surrogate endpoints because they are well established predictors of survival.
Thirdly, pulmonary exacerbation is a clinical efficacy measure for definitive
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Table 1
Patient outcomes and biomarkers collected in regular study visits

Patient Information Definition

∆F508H ∆F508/∆F508 at CFTR residue 508 indicator
Cul(t) Pa phenotype nonmucoid + isolated from respiratory culture
Ser(t) Pa serology tests + indicator
Muc(t) Pa phenotype mucoid + isolated from respiratory culture
FEV1(t) Pulmonary function test predicted FEV1

D2(t) Cumulative duration in nonmucoid infection
Sev(t) Severity: 50% Pa + in past year to divide as chronic or intermittent
CumD(t) Cumulative intensity of drug D exposure
SusD(t) Susceptibility tests result of drug D

clinical trials. Table 1 shows the content of patient information and outcomes
typically collected.

The transitions between three states in Pa infection are closely related to
both biological pathogenesis and clinical outcome. Specifically, progression
to the mucoid state is associated with irreversible damage of lung function
[19, 22], and many studies have demonstrated that reduction of Pa bacte-
rial density or eradication of Pa leads to significant improvement in FEV1

and reduction in pulmonary exacerbations [15]. Motivated by regularity of
clinical patient observations and the progressive nature of CF, we propose
a discrete time non homogeneous Markov model for Pa infection.

3.2. Probability Model. The proposed multi-state model is expressed as a
continuous stochastic process with a finite state space and time-homogeneous
assumption, and is partly motivated by competing risks survival analyses
from earlier work [18, 21, 34]. For non-homogeneous processes, the model
is either reduced to the homogeneous case or fitted through piecewise con-
stant transition intensities between different time points [21]. The time-
homogeneous Markovian assumption is a working assumption for modeling,
which does not need to be true for the proposed methods to work.

We propose a multi-state model that expresses the underlying disease
dynamics as a discrete-time stochastic process Y (t), for t = 0, 1, . . ., with
transitions between three states having covariate-dependent transition prob-
abilities pij(s, t,Z(s)) depedendent on time-dependent covariates Z(s), de-
noted

pij(s, t,Z(s)) = pr{Y (t) = j|Y (s) = i,Z(s)}, (s < t),

and with the one time unit step transition matrix P (t, t + 1,Z(t)) having
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the structure

1− p12(t, t+ 1,Z(t)) p12(t, t+ 1,Z(t)) 0

p21(t, t+ 1,Z(t)) 1− p21(t, t+ 1,Z(t)) p23(t, t+ 1,Z(t))
− p23(t, t+ 1,Z(t))

0 0 1


.

Note that the zero values of p13, p31 and p32 reflect the disease progression
nature in Figure 2, where patient will experience nonmucoid Pa (state 2)
before progressing to irreversible stage mucoid Pa (state 3).

Based on longitudinal studies of Pa development [3, 14, 19, 22, 38, 44],
ηij(t,Z(t)) is related to individual characteristics through the time-dependent
covariates Z(t)), consisting of age, ∆F508H, Trt(t), Cul(t), Ser(t), D2(t),
with corresponding definitions given in Table 1. First, the probability of
first acquisition of nonmucoid, p12(t), depends on age, and mutation class
in CFTR at residue 508. ∆F508H indicates ∆F508 homozygosity or not.
Secondly, the probability of successful eradication of nonmucoid Pa infec-
tion, p21(t), relates to treatment effect, age and ∆F508H. Because of the
relatively low sensitivity of throat sputum cultures issue in CF, the detec-
tion of nonmucoid Pa infection can be improved by combining with serology
measurements as reflected in antibody titer levels, as the detection crite-
ria. In our model, the observated nonmucoid infection is determined by the
product of culture Pa + indicator, Cul(t), and serology tests + indicator,
Ser(t). These are Bernoulli random variables which are linked to the true
state 2 by the published sensitivities of these tests. Once nonmucoid Pa
infection is detected, treatment aims to eradicate bacteria and change pa-
tient back to free of Pa. In order to exam the capacity of the reinforcement
learning procedure to discover the optimal therapy in such disease dynamics,
we simulate different treatment effect scenarios with time-varying efficacy
and toxicity through parameter β212(t). Details will be provided in Section
3.3. Thirdly, the probability of progression to mucoid Pa infection, p23(t),
is modeled through the residual probability 1− p21(t) of failing to eradicate
Pa, which depends on the true cumulative duration in nonmucoid infection
D2(t), age and ∆F508H.

The following generalized logistic model accounts for the time varying
treatment structure, biomarkers, and prognostic covariates. We denote the
linear components at time t by

η12(t,Z(t)) = β120 + β122t+ β123∆F508H,
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Table 2
Literature and model generative patient outcomes

Patient Outcomes Literature Model Output

Time to first acquisition of nonmucoid Pa (yr) 1.0 (0.5-1.5) [22] 1.0 (0.5-2.5)†
Time to mucoid Pa (yr) 13.0 (10.0-14.9) [22] 13.6 (9.8-17.5)†
Pa free duration after eradication (month) 8 (3,25) [8],18 (4,80) [44] 9 (1.5,39)*
∆FEV1 · yr−1 standard care -4.69±2.95% [44] -4.42±12.2%‡
∆FEV1 · yr−1 some anti-Pa treatment -1.63±1.60% [44] -1.5±8.1%‡
Sputum culture sensitivity 83% [39] 85%
Serology markers sensitivity 93% [31] 93%

† Median (95%CI), * Median (Range) , ‡ Mean ± SD

(3.1) η21(t,Z(t)) = β210 +β211t+β212(t)Trt(t)Cul(t)×Ser(t) +β214∆F508H,

η23(t,Z(t)) = β230 + β231t+ β232D2(t) + β234∆F508H.

We characterize the regression of one time unit step transition at time t
on time-dependent covariates Z(t) by probability functions

p12(t, t+ 1,Z(t)) =
exp(η12(t,Z(t)))

1 + exp(η12(t,Z(t)))

(3.2) p21(t, t+ 1,Z(t)) =
exp(η21(t,Z(t)))

1 + exp(η21(t,Z(t)))

p23(t, t+ 1,Z(t))
1− p21(t, t+ 1,Z(t))

=
exp(η23(t,Z(t)))

1 + exp(η23(t,Z(t)))

The formulation in (3.1) and (3.2) also accommodates an arbitrary num-
ber of treatment courses as well as options for either discrete or continuous
time. Because we aim at optimizing the maintance therapy of Pa infec-
tion, the patient outcomes simulated include the observed Pa infection state,
severity, and FEV1 based on the underlying true state.

We tune the model so that when under standard care or anti-Pa antibiotic
treatment, the descriptive statistics of patient outcomes are comparable to
those in prior clinical studies [1, 8, 13, 15, 19, 22, 23, 31, 39, 46]. We list the
important clinical outcomes in Table 2, including time to first acquisition
and progression to mucoid, pulmonary function and sensitivity of culture
and serology tests, etc. The age prevalences given in [22] and in simulations
are shown in Figure 3. This model not only reflects the important issues
in CF clinical care, but also mimics the disease progression in a relatively
realistic way.
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Fig 3. Age-specific prevalence of no, nonmucoid, and mucoid Pa from birth to age 16 years
in the literature [22] and in 1000 simulations.
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Table 3
Efficacy and side-effects of treatment regimens

Mutation Age Range Population Antibiotics Intensity Effect Scenario

Immediate Non∆F508H Age≤8 1.early A L High 1

Efficacy 1.early A H High 2
1.early B L Low 3
1.early B H Low 4

Age>8 1.later A L Low 5
1.later A H Low 6
1.later B L Medium 7

1.later B H High 8
∆F508H Age≤8 2.early A L Low 9

2.early A H Low 10
2.early B L Medium 11

2.early B H High 12
Age>8 2.later A L Low 13

2.later A H Medium 14
2.later B L Low 15
2.later B H Low 16
all Standard of care (SC) Low 0

Delayed all No Off-drug Cycle Susceptibility ↓
Side-effects all Life-time Exposure> 20 Eradication ↓

Abbreviations A-L antibiotics A in low intensitiy optimal for 1.early,lower burden
A-H antibiotics A in high intensitiy optimal for 1.early,2.later
B-L antibiotics B in low intensitiy suboptimal for 1.later,2.early,lower burden
B-H antibiotics B in high intensitiy optimal for 1.later,2.early
S-C Standard of care without Pa antibiotics optimal for drug holiday to lower burden
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3.3. Clinical Scenarios. We evaluate the design under the realistic clin-
ical scenarios [12, 35, 37, 38, 46, 48–50] described in Table 3, where the
treatment options consist of antibiotic (A or B) and intensity level(H or L)
choice and standard of care for drug holiday. There are differential treatment
efficacy and side effects in terms of probability of successful eradication for
patients with different mutation class and age range. For simplicity, we de-
note the different population and age range by population 1.early, 1.later,
2.early and 2.later respectively. The different optimal treatment options in
the four populations are presented and boxed in Table 3.

For the low risk population 1, both high and low intensity A treatments
are preferable for the patient is under 8 years old (population 1.early); while
high intensity B is best when the patient is older than 8 years old (popula-
tion 1.later). For the high risk population 2, high intensity B is preferable
when the patient is under 8 years old (population 2.early); while antibiotic
A is best when the patient is older than 8 years old (population 2.later); the
higher intensity level regimens are more successful for bacteria eradication.
Patients who are ∆F508 homozygous are a high risk population, generally
more severe, more easily acquire mucoidy and have greater difficulty eradi-
cating Pa infection, hence, the treatments have lower efficacy compared to
low risk population 1.

In the middle panel of Table 3, the delayed side effects are modeled when
the cumulative drug use exceeds a threshold or repeated courses of the same
anti-Pa drug without a “drug-off” period, antibiotic resistance will then
develop, and consequently, the eradication probability will decrease. The
“drug-off” or switching drug can lead to some degree of return of susceptibil-
ity, as has been observed with inhaled tobramycin (TOBI) [12, 15, 16, 35, 36].
Standard of care is the optimal treatment option in drug holiday to lower
cumulative burden.

4. Clinical Reinforcement Trials. The proposed “clinical reinforce-
ment trial” consists of both a learning stage (phase IIb) and a confirmatory
stage (phase III) trial to optimize and validate the personalized therapy. As
mentioned in Section 1, background for the general strategy and key as-
pects of clinical reinforcement trial designs can be found in [55, 56] and for
SMART designs can be found in [25, 27, 47]. Based on the published results
from previous CF trials [7], the CF neonatal screen project [14, 46], and a
contemporary CF trial [48], we develop a virtual clinical reinforcement trial
that provides a realistic approximation to a potential real CF trial.

4.1. Virtual CF Trial Conduct.
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1. Learning stage trial design.
In a randomized trial in CF for patients 1–15 years of age, N1 trial
participants are sequentially fairly randomized at enrollment and at
each decision time based on detection of Pa from quarterly respiratory
cultures (culture-based therapy) to one of the five treatment options
A-L, A-H, B-L, B-H and S-C with an equal allocation ratio for L1

years. The randomization is stratified by patient indicator of muta-
tion class ∆F508 homozygosity. The primary endpoint is the time
to presence of mucoid isolated from Pa respiratory culture. The sec-
ondary clinical endpoint is the decline in pulmonary function FEV1.
The secondary microbiological endpoint is the proportion of patients
with new Pa-positive respiratory cultures during the study. Patient
clinical outcomes and biomarker values are collected at each quarterly
clinical visit. The conceptional overview is given in Figure 1.
For simplicity and without loss of generality, we here consider four
active anti-Pa treatments, consisting of two anti-Pa antibiotic drugs
A and B having different insensitive levels high (H) and low (L).
The choice of drug could, for example, be based on FDA approved
inhaled antibiotics tobramycin and consensus panel supported oral
ciprofloxacin [5, 48]. The treatment S-C represents stand of care with-
out targeted anti-Pa antibiotics, which could be applied in drug holiday
to lower burden and avoid resistence development.

2. Learning stage rationale and goal.
The rationale of culture-based therapy is based on the clinical guidance
for Pa infection in CF patients [5, 6, 12]. Usually anti-Pa treatment is
applied only when Pa is detected, since risk of nephrotoxicity due to
long term preventive treatment may out-weigh benefit. For patients in
the mucoid stage, a high intensity level such as IV anti-Pa treatments
are required [12]. The scientific goal of this trial is to uncover the
optimal strategy based on existing treatments to prolong the time to
the mucoid stage for young CF patients whenever nonmucoid Pa is
detected.

3. Learning stage utility.
The relatively short study duration is one of the common character-
istics in phase II trials. Due to its strong relationship to both time
to mucoid Pa and nonmucoid Pa infection severity, FEV1 serves as
a surrogate endpoint or biomarkers in our phase IIb trial. A util-
ity function, i.e., a reward in the reinforcement learning framework
rt = R(st, at, st+1), for t = 0, 1, . . . , 4L1 − 1, is prespecified and con-
tains an appropriately weighted assessment of benefit and risk based on
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Table 4
Reward/utility function setup

State Variables Definition Change Reward Rt

Sputum/Serology Pa + for one visit Infected to free of Pa 0.9
Lung Function Predicted FEV1 change ↓ ∆ ≤ −10% −0.1

between adjacent visits −10% < ∆ ≤ 10% 0
↑ ∆ > 10% 0.1

Severity of Infection mucoid Pa progress to mucoid −0.1
non-mucoid Pa:free/intermittent/chronic free to intermittent 0
free infection:0%Pa + in 12 months stay as intermittent 0
intermittent infection:<50%Pa + in 12 months intermittent to chronic 0
chronic infection:≥50%Pa + in 12 months chronic to intermittent 0.1

the outcomes available at each interval. We use a combination of three
clinical meaningful components, lung function, infection status, and
severity, as guidance for the optimal therapy we are seeking for [20].
Specifically, Table 4 is our reward function for the simulation study
of Section 5. The utility/reward set-up in RL enables us to integrate
benefits at the individual level and cumulated over time.

4. Estimating optimal therapy.

(a) Inputs: State variables St consisting of age, ∆F508H, Cul(t),
Ser(t),D2(t),Muc(t), Sev(t), FEV1(t), CumA(t), CumB(t), SusA(t),
SusB(t) and Trt(t), as given in Table 1. The patients have longi-
tudinal observations quaterly for L1 years {si0, ai0, ri0, si1, ai1, ri1,
..., ai(4L1−1), ri(4L1−1), si(4L1)}N1

i=1. The set of one-step system tran-
sitions is obtained after separation and standardization as a train-
ing set T S of 4-tuples of the form 〈s, a, r, s′〉. Hence, T S0 =
{(slt, alt, rlt, slt+1)}#T S0

l=1 with #T S0 = 4× L1 ×N1.

(b) Initialization: Q̂0(s, a) = 0,∀s, a,
(c) Estimation: Q∗N (s, a) sequence in (2.3) is fitted by Q-iteration:

• repeat at each iteration k,k ≥ 1
– for all 〈s, a, r, s′〉 on T Sk−1 do
– r

′ ← r + γmaxa′ Q̂k−1(s
′
, a
′
)

– update 〈s, a, r′, s′〉 as T Sk
– approximate Q̂k(s, a) on T Sk by SVR
– end for

• until stop criteria max∀s,a |Q̂k(s, a)− Q̂k−1(s, a)| ≤ ε is met.
We use the Gaussian kernel K(x,y) = exp (−ζ‖x− y‖2) in SVR
approximation iterations. The tuning parameter pair (CE , ζ) are
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selected by grid search over cost parameter CE = 2−5, 2−3, . . . , 215

and scale parameter ζ = 2−15, 2−9, . . . , 23 in 10-fold cross-validation.

(d) Output: Personalized therapy π̂?(s) = argmaxa Q̂?N (s, a)

5. Confirmatory stage design.
In a separate, potentially longer duration L2 years trial, participants
are only randomized at enrollment to either one of the four fixed ther-
apies A-L, A-H, B-L, B-H or the new arm R-L with equal allocation
N2 pre arm in a conventional way. The therapy R-L represents the
adaptive personalized therapy identified in step 4. The randomiza-
tion, stratification, endpoints and patients information are the same
as those in the step 1 trial. The objective is to investigate whether
the adaptive personalized therapy prolongs time to mucoid infection
and reduces the isolation of Pa from respiratory cultures, compared
with the five fixed treatment options. The standard of care arm is not
included at this stage due to ethical consideration.

4.2. Consistency of Estimating Optimal Therapy. Using the notation
in Section 2.2 and Section 4.2 Step 4, we denote at, at+1 as the decision
at time points t and t+ 1, respectively.
Moreover, we let Q?N (St, At) be the potential outcome as the Nth Q-
function value of the sequence by fitted Q-iteration in (2.3), after time
t and before t + 1. We also let Q?N−1(St+1, At, At+1) be the potential
outcomes from the N − 1th Q-function in fitted Q-iteration.
Additionally, St denotes the states at time t and St+1(at) denotes the
state at time t+1, after policy at and independent of any other previous
action sequence (due to the Markov assumption). Under counterfactual
framework, which assumes relations between observed and unobserved
(factual and counterfactual) random variables to determine causality
and to find optimal treatment strategy from correlations in longitudi-
nal data, we need to maximize the value state function

Eat

[
Q?N (at)

∣∣∣St] = Eat

[
R(St, at, St+1(at)) + γmax

at+1
Q?N−1(at, at+1)

∣∣∣St]
= Eat

[
R(St, at, St+1(at)) + γmax

at+1
Eat,at+1

[
Q?N−1(at, at+1)

∣∣∣St+1(at)
]∣∣∣St].

Specifically, the optimal policy in (2.4) can be obtained via the Q-
iteration algorithm:

(4.1) π∗N−1(πN ) = argmax
at+1

EπN ,at+1

[
Q?N−1(πN , at+1)

∣∣∣St+1(πN )
]
,
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(4.2)

π∗N = argmax
at

Eat

[
R(St, at, St+1(at))+γEat,π∗N−1

[
Q?N−1(at, π∗N−1)|St+1(at)

]∣∣∣St]
We now justify that the above functions of the potential outcomes in
(4.1) and (4.2) can be estimated via the observed data under our se-
quential randomized designs. We assume stable unit treatment value
assumptions (SUTVA), which implies that one patient’s counterfac-
tual outcomes do not depend on the treatment received by any other
patients, i.e. “no interaction between subjects”, Q?N and Q?N−1 satisfy

(4.3) Q?N (St, At) =
∑
at

Q?N (St)I(At = at),

(4.4)
Q?N−1(St+1, At, At+1) =

∑
at,at+1

Q?N−1(St+1, at, at+1)I(At = at, At+1 = at+1).

The sequential randomized assumption and (4.3) implies [25, 56] that

Eat,at+1

[
Q?N−1(at, at+1)

∣∣∣St+1(at)
]

= E

[
Q?N−1(at, at+1)

∣∣∣St+1(at), At = at, At+1 = at+1

]
= E

[
Q?N−1(At, At+1)

∣∣∣St+1, At = at, At+1 = at+1

]
.

This justifies the fact that the function of the potential outcomes on the
right hand side of (4.2) can be estimated via estimating E[Q?N−1|St+1, At, At+1].
Similarly, based on (4.3) and (4.4), we have

Eat

[
R(St, at, St+1(at)) + γEat,π∗N−1

[
Q?N−1(at, π∗N−1)|St+1(at)

]∣∣∣St]
= Eat

[
R(St, at, St+1(at)) + γmax

at+1
E

[
Q?N−1(At, At+1)|St+1, At = at, At+1 = at+1

]∣∣∣St]
= E

[
R(St, at, St+1(at)) + γmax

at+1
E

[
Q?N−1(At, At+1)|St+1, At = at, At+1 = at+1

]∣∣∣St, At = at

]
= E

[
R(St, At, St+1) + γmax

at+1
E

[
Q?N−1(At, At+1)|St+1, At = at, At+1 = at+1

]∣∣∣St, At = at

]
.

Therefore, the function regarding the potential outcome on the right
hand side of (4.2) can be estimated via estimating E[Q?N |St, At].

5. Simulation Studies.



18

Fig 4. Boxplots of distribution of time to mucoid Pa and barplots of Pa infection state
average frequencies over time using different therapies in a simulated trial with follow up
until development of mucoid Pa. In the boxplots,the gray and dark green represent patients
with ∆ F508 homozygosity, otherwise the colors are blue and light green. In the barcharts,
the green, red, gray colors represent patients in state 1 (free of Pa), state 2(nonmucoid
Pa) and state 3(mucoid Pa) respectively; x-axis represents age and each bar corresponds
to 3 months interval.
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Table 5
Comparisons between fixed treatment regimens and estimated optimal therapy for time to

mucoid Pa(year). Each training/testing dataset is of size 100/subgroup.

Summary By Non ∆F508H versus ∆F508H Overall All

Therapy SOC AL AH BL BH RL SOC AL AH BL BH RL

Scenarios 0 1&5 2&6 3&7 4&8 1− 8 0 1&5 2&6 3&7 4&8 1− 8

Population 1|2 1|2 1|2 1|2 1|2 1|2 1&2 1&2 1&2 1&2 1&2 1&2

Time to Mucoid Pa (T2) (Yr)

Mean 11.7|12.0 15.6|13.8 15.7|12.9 14.0|15.0 13.0|15.5 21.4|17.8 11.8 14.7 14.3 14.5 14.3 19.6
SD 1.6|1.5 1.4|2.6 1.3|1.9 2.2|1.4 2.3|1.4 2.8|2.6 1.4 2.3 2.1 1.9 2.2 3.3
Min 9.1|9.3 11.0|8.8 14.3|8.8 10.8|10.0 9.8|12.5 15.5|14.3 9.0 8.8 8.8 10.0 9.8 14.3

Median 11.8|11.5 15.2|13.5 15.0|12.8 14.0|14.8 13.5|14.9 22.2|18.2 11.8 14.4 14.0 14.8 14.5 20.5
Max 16.0|15.5 19.5|18.8 19.5|18.8 19.8|19.5 20.8|20.3 26.3|25.3 16.0 19.5 19.5 19.8 20.8 26.3

Nonmucoid Pa + over T2 (%)

Mean 62.2|61.4 40.8|47.5 43.2|49.3 45.1|45.1 44.5|39.7 37.9|38.3 61.8 41.7 46.7 44.5 42.1 39.1

Predicted FEV1 while non-mucoid (%)

Mean 70.4|70.6 76.5|72.5 76.4|71.4 73.2|75.3 72.6|76.6 78.7|77.9 70.5 74.5 73.9 74.2 74.6 79.3
↓ Rate/Yr 5.78|6.45 3.54|4.62 3.60|4.91 4.03|3.58 4.11|3.96 0.54|2.32 6.10 3.90 4.25 3.82 4.03 1.43

5.1. Simulation Results. We generate a virtual CF trial based on the
disease model with treatment effect scenarios in Section 3. The conduct
of the clinical reinforcement trial follows the procedure proposed in
Section 4.1 with total sample sizes N1 = 1000, N2 = 200 pre arm
and study durations L1 = 2 years and L2 = 4 years for the learning
and confirmatory stages respectively. Without loss of generality, we
assume equal numbers of patients in two subgroups defined by whether
patients are ∆F508H in all studies. Besides the testing scenario in the
confirmatory trial with 4 years of follow up, we examine the procedure
in the scenario where we can apply the therapies from birth until a
mucoid Pa event occurs. We use the threshold ε in fitted Q-iteration
with stopping criteria 10−4 and discount factor γ = 0.5, which implies
that the impact of the immediate reward will be less than 10% after
12 months and less than 1% after 2 years. We explore the effect of
γ on the performance of discovered therapy R-L. The larger γ, the
less sensitive R-L therapy to capture the immediate treatment efficacy
pattern and, as expected, the slower in convergence.

5.1.1. Results in testing scenario I: from birth until a mucoid Pa. To
evaluate the empirical performances of fixed treatment regimens S-C,
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A-L, A-H, B-L, B-H and the adaptive personalized therapy denoted
R-L, we follow up 200 virtual patients in each arm with one half being
∆ F508 homozygous until their development of mucoid Pa infection
(Figure 4 and Table 5).
Time to mucoid Pa infection of ∆F508 homozygosity A-L, A-H, B-L,
B-H, R-L treated patients, calculated from the date of birth, has longer
median than that of patients treated by S-C as shown in Figure 4.B. It
is potentially complicated to compare the outcomes among four fixed
anti-Pa antibiotics regimens A-L, A-H, B-L, B-H. The time-varying
and subpopulation specific treatment effect in Table 3 might remain
undetected. For example, drug A’s benefit to population 1.early is
masked and “averaged out” by outcomes for patients in population 2
and population 1.later.
We therefore examine the outcomes among patients treated by the
identified personalized therapy R-L, where we optimize the usage of the
existing drugs A, B and standard of care. The R-L achieves superior
patient outcomes to any other fixed treatment regimens even in the
mixture of the two subpopulations 1&2 (Figure 4.A, .B). The superior
treatment benefits of these drugs might be missed in a traditional,
single-decision point clinical trial.
Other endpoints, the observed frequency of the three states (Fig-
ure 4.C), nonmucoid Pa infection proportion, predicted FEV1% and
change per year, all demonstrate the same patient outcome patterns
(Table 5). For simplicity, Table 5 presents the outcomes in two for-
mats, two subpopulations side by side and overall, where one can see
the performances of different treatment options in subpopulations and
general population, which are consistent with the treatment effect sce-
narios (Table 3). In short, the right drug for the subpopulation chosen
in early childhood improves prognosis and the high risk population 2
requires higher intensity level treatment to eradicate Pa infection.
We next illustrate the discovered therapies R-L for two individual pa-
tients who are in population 1 (Figure 5.A,B). When a patient is un-
der 8 years old, the right antibiotic A is often chosen at the effective
and lower intensity level. After 8 years old, the right antibiotic B is
chosen more frequently and with higher intensity level. However, the
discovered therapies for two individual patients who are in population
2(Figure 5.C,D) choose the right antibiotic B initially, and automati-
cally switches to the more suitable antibiotic A at the correct age. In
this more severe population 2, high intensity level is chosen more often
than low intensity level. For both subpopulations 1&2, the alternating
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Fig 5. Representation of the optimal adaptive regimens for four individuals who are not
∆ F508 homozygous on the top and ∆ F508 homozygous at the bottom.
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Fig 6. Kaplan-Meier plot of time to mucoid Pa infection using different therapies in a
simulated trial with 4 years of follow up.
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patterns to switch the drug or lower the intensity level, are achieved in
order to avoid resistance development, regain susceptibility and lower
the cumulative toxicity burden.
The discovered adaptive personalized therapy by the reinforcement
learning procedure outperforms any fixed treatment regimen therapies
because it considers the time varying treatment effect on different age
specific groups and balances the trade-offs between efficacy and side
effects, and immediate and delayed effects, simultaneously. These find-
ings demonstrate the reinforcement learning procedure’s substantially
powerful long term capabilities. Note that the reinforcement learning
approach does not require the generative treatment model, and thus
the proposed method is able to discover an optimal regimen without
prior knowledge of the treatment mechanism.
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5.1.2. Results in testing scenario II: seperate confirmatory trial. In
the second follow up scenarios, we simulated trials with study dura-
tions of 4 years. Figure 6 illustrates the Kaplan-Meier plot of time to
mucoid Pa of the four fixed treatment regimens and the discovered
personalized therapy. The analyses are based on the Cox proportional
hazards model (PH), stratified Cox model (SPH), log rank test (LR)
and stratified log rank test (SLR), with ∆F508H as the stratification
factor. All tests show no significant treatment difference between the
four fixed treatment regimens with p-values given in Figure 6, while the
discovered personalized therapy is significantly superior to the other
four therapies. In addition, the analysis of the proportion of Pa positive
patients during the repeated measurement of culture by a GEE model
using a logit link shows no significant treatment differences among
the four fixed treatment regimens, while the discovered personalized
therapy is significantly superior than the other four therapies.

6. Discussion. We have proposed the use of a clinical reinforce-
ment trial procedure for discovering effective personalized therapy for
patients with CF. After developing a plausible multi-state Markov dis-
ease model for the underlying disease dynamics, we simulated several
virtual CF trials to investigate the performance of the proposed proce-
dure. In the simulated clinical scenario where standard one-size-fits-all
and once-and-for-all approaches are ill-suited, we have shown that the
proposed procedure has great potential in tailoring therapy to indi-
vidual patients, optimizing the timing to switch treatment, and iden-
tifying the best suited treatment to a subpopulation. Such adaptive
personalized therapies can reduce antibiotic burden while taking into
account a drug’s immediate and delayed toxicity.
Additionally, the proposed clinical reinforcement trial procedure has
several distinct advantages, including optimizing therapy without re-
lying on the identification of accurate mechanistic models, efficient
usage of one unit time step disease transitions by fitted Q-iteration,
constructing stationary personalized therapy that has high practical-
ity as a single function representing an adaptive personalized therapy
for patients at different decision time points. Also, at the same time,
the therapy preserves age specific characteristics of therapy. Moreover,
the cumulative reward procedure in the proposed trial not only pro-
vides a novel metric to quantify benefits and risks in the long term,
but also provides a framework to integrate benefit risk assessment at
the individual level and then accumulates over time to improve deci-
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sion making. All these encouraging results suggest that the proposed
clinical reinforcement trial and accompanying methods can be power-
ful tools for improving treatment strategies for long term outcomes in
chronic diseases.
There are a number of additional topics to work on and challenges we
expect to address in future research. First, the benefit risk assessment
through the reward functioning consists of the metrics and the dimen-
sion reduction to quantify the benefit and risk within patient; however,
it is unclear how changing these numbers affects the resulting optimal
personalized therapies identified. The sensitivity analysis of the reward
function, and understanding the robustness of Q-learning to choices of
numerical reward and approximation function, clearly deserves further
investigation. Secondly, the model parameters can be estimated from
existing data such as, for example, the Wisconsin CF neonatal screen-
ing project [11, 22] along with expert judgment. The refinement of
the disease model for cystic fibrosis and computer tools for evaluation
of treatment and monitoring regimens can be very useful in practice
to improve the design and to predict long-term health outcomes in
this patient population. Thirdly, refining the proposed clinical rein-
forcement learning trial will require close collaboration with clinical
researchers to improve the practical, logistic aspects, and for actual
implementation.
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