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1 Introduction

In many applications, data are weakly dependent and the form of the dependence is not

of primary interest. The systematic variation in the mean response may be modelled

using standard regression methods, but inference regarding these mean contrasts requires

estimation of covariances.

A semiparametric estimating equation approach has been used in similar situations

where we are unable or unwilling to specify a fully parametric model for the data. Even

when a full parametric model can be specified, simple estimating equations can still provide

a reduction in computational effort and a gain in robustness of inference, with consistent

parameter estimation and valid testing under weaker assumptions than are required for

maximum likelihood methods. These benefits are illustrated by the fitting of generalized

linear models using quasilikelihood (Wedderburn, 1974), later extended by Liang & Zeger

(1986) to longitudinal data. Under this approach, a model is specified for only the first two

moments of the data. The resulting parameter estimates are consistent if the mean is cor-

rectly specified and relatively efficient if the second moment assumptions are approximately

correct.

If we have a scalar response Yj and a p-vector of predictors Xj for observation j, the

marginal generalized linear model specifies

g (E [Yj |Xj ]) ≡ g(µj) = X ′
jβ (1·1)

for a p-vector of parameters β, where g is a monotone, smooth known function called the

link. We are interested in inference that is valid under this mean restriction, together with

necessary moment restrictions, and that is still relatively efficient in the submodel where

var [Yj |Xj ] = φV (µj)
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for a known variance function V (·). We estimate β by solving the quasiscore equations

Un(β) =
n∑

j=1

Uj(β) =
n∑

j=1

∂µj

∂β

(Yj − µj)
V (µj)

= 0.

These have mean zero at the true value of β for any distribution satisfying the mean model

and are the exact score equations for the exponential family distribution contained in the

submodel with this link and variance function (McCullagh & Nelder, 1989). We will refer

to the loglikelihood for this exponential family distribution as the “independence working

loglikelihood” or “quasilikelihood”.

Using information sandwich estimators (Huber, 1967; White, 1984; Royall, 1986; Lin &

Wei, 1989), standard error estimates are consistent if the first moment is correctly specified.

These standard error estimators are based on empirical variances computed from indepen-

dent subsets of the data and so are not directly applicable to some important correlated

data designs. For data measured over time or space, modifications of the sandwich estima-

tors have been constructed (Newey & West, 1987; Lele, 1991; Lumley & Heagerty, 1999)

substituting asymptotic independence for exact independence.

We deal here with another important case of correlated data which occurs when the

correlation matrix is sparse but not block diagonal so that the data cannot be decomposed

into independent blocks even though most pairs of observations are independent. The most

common example of this is a crossed experimental design where obervations are correlated if

they share any one of the design factors. Perhaps the best known example of a crossed design

with non-Gaussian response is the salamander mating experiment analyzed by McCullagh

& Nelder (1989), Karim & Zeger (1992), Shun (1997), and others.

In this paper, we give conditions that allow marginal generalized linear models to be

estimated using the quasiscore equations. In Section 2, we describe the two applications

that motivated our research. The first is a method for modelling changing patterns of

genetic variation of the human immunodeficiency virus (HIV) within an infected patient;

the second is an investigation of the properties of quasiscore estimation for longitudinal
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data where the number of observations on each individual is large.

Other examples for which our methods are potentially relevant occur in education (Ras-

bash & Goldstein, 1994), reproductive medicine (Clayton & Écochard, 1997), and medical

diagnostics (Nelson, 1999). In many cases, sparsely correlated data have been analyzed by

fitting a generalized linear mixed model (Breslow & Clayton, 1993) in which the correlation

is modelled using latent Gaussian random variables. Estimation in these models is compu-

tationally difficult. More importantly, the parameters in a generalized linear mixed model

have a different interpretation from those in a marginal generalized linear model and so it

is useful to be able to fit either class of model as appropriate.

In the case of a complete crossed design where every level of each factor is crossed

with every level of every other factor, an analysis using U -processes may be possible. This

would allow weaker moment and smoothness assumptions (e.g. de la Peña & Giné, 1999;

Nolan & Pollard, 1987) than we require. Our methods, however, also apply to incomplete

crossed designs and other sources of sparsely correlated data that lack the special structure

of U -statistics, as will be demonstrated in the genetic variation example.

The central limit theorem that we require to establish conditions for the estimation of

generalized linear models using quasiscore equations is proven in Section 3 and in Section 4,

we derive the conditions for consistency and asymptotic Normality of regression parameter

estimates and consistency of an empirical variance estimator.

2 Examples

2·1 Modelling Patterns of HIV Genetic Variation

In studies of HIV genetic variation, the emphasis is often on describing patterns of evolu-

tionary change within the context of specific evolutionary models. Inference for parameters

in these models can therefore rely on underlying structural modelling assumptions (Hillis

et al., 1996, Felsenstein (1988), Miyamoto & Cracraft (1991)). In some instances however, it
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is useful to be able to rigorously test hypotheses regarding patterns of HIV genetic variation

using empirically based methods which are relatively free of underlying model assumptions.

This more formal statistical approach can provide comprehensive descriptions of patterns of

genetic variation which are important for understanding disease progression, transmission

dynamics, antiviral drug resistance, and vaccine efficacy.

In Mayer-Hamblett (1999), a regression modelling framework is developed to both de-

scribe and test for patterns of HIV genetic variation. We motivate the work in this paper

by presenting one particular model which describes the variation between viral populations

existing at different time points in a single patient’s infection as a function of covariates

such as time. Here, we define a viral population as a collection of viral genomes existing

at a particular time point within a patient’s infection and possibly within a specific tissue

compartment. This model can be used to answer biologically relevant questions concerning

the patterns of HIV genetic variation occurring over time within a single infected patient.

For example, one question of interest is what is the pattern over time in the variation be-

tween the initial viral population and viral populations existing later in infection. Such

information can provide valuable insights into the dynamics between the virus and the

immune system throughout infection (Shankarappa et al., 2000).

Suppose genetic sequences are sampled at times t1, ..., tT from a single patient during

their infection. Let Gt = (Gt1, ..., GtR) denote a sample of R genetic sequences drawn from a

large population of viral genomes existing at time t, t ∈ {t1, ...tT }, and Gu = (Gu1, ..., GuR)

denote a sample of R genetic sequences drawn from a second large population of viral

genomes existing at a different time u ∈ {t1, ..., tT } where GT
tr = (G(1)

tr , ..., G
(S)
tr ) is a genetic

sequence of length S from time t and G
(s)
tr denotes a “site” in this sequence taking values

from the set of nucleotides {A,C, T, G}. The marginal distributions of G
(s)
tr and G

(s)
ur are

assumed to be multinomial with probabilities p
(s)
t and p

(s)
u , respectively.

Since the viral life cycle occurs on a time scale (in days) which is much faster than the

interval between sampling of an infected patient, the viral populations existing at different
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time points can be considered distinct. It is therefore reasonable to consider samples drawn

at different time points, conditional on the time-specific multinomial parameters, to be

independent. Further, because the viral populations at each time point are generally very

large, we can consider the set of sequences sampled from a single viral population to be

independent and identically distributed.

One measure of the variation between two viral populations at site s is

Pr{G(s)
uj 6= G

(s)
tk } = 1− 〈p(s)

u , p
(s)
t 〉 = φ

(s)
ut

and when u = t, this quantity is referred to as Simpson’s Index of Diversity (Simpson,

1949). To estimate φ
(s)
ut , we can use the observed genetic distance indicators

d(G(s)
uj , G

(s)
tk ) =

 1 G
(s)
uj 6= G

(s)
tk

0 otherwise

since E[d(G(s)
uj , G

(s)
tk )]=φ

(s)
ut . There are T (T − 1)/2 different between viral population varia-

tion parameters specific to site s that can be constructed if sequence data is sampled at T

different time points.

Distance indicators pertaining to several sites can then be used to model the average

of site-specific measures of between viral population variation, φ
(·)
ut =

∑S
s=1 φ

(s)
ut /S, across

well-defined regions of the HIV genome. For instance, the env gene is one region that is

important to consider as this gene plays a major role in the infection of CD4+ T cells.

Given a covariate vector Zut (i.e. |u − t|) where (u, t) ∈ {t1, ..., tT }⊗2 and u 6= t, and

associated regression parameter vector β, a marginal model for φ
(·)
ut can be specified as

g(φ(·)
ut ) = Z

′
utβ

where g represents a link function in the tradition of generalized linear models.

Let d
(s)
ut = d(G(s)

uj , G
(s)
tk ) and d

(s)
u′t′ = d(G(s)

u′j′ , G
(s)
t′k′) be distance indicators comparing

sequences from times u and t and times u′ and t′, respectively. From the previously discussed
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independence assumptions, the covariance structure of distance indicators pertaining to a

single site s is then given by

cov[d(s)
ut , d

(s)
u′t′ ] =



0 {(u, j) 6= (u′, j′) and (t, k) 6= (t′, k′)}

α σ2
utσ

2
u′t′ {(u, j) = (u′, j′) and (t, k) 6= (t′, k′),

(u, j) 6= (u′, j′) and (t, k) = (t′, k′)}

σ2
ut {(u, j) = (u′, j′) and (t, k) = (t′, k′)}

(2·1)

where σ2
ut = φ

(s)
ut (1 − φ

(s)
ut ), σ2

u′t′ = φ
(s)
u′t′(1 − φ

(s)
u′t′), and α = α(φ(s)

ut , φ
(s)
u′t′) is the correlation

between the two distance indicators.

The covariance structure at one site resembles that which arises from a crossed design

since genetic sequences are crossed with themselves in order to construct the distance ob-

servations used in the model. Because the distance indicators are symmetric, only distances

based on unique pairs of sequences are necessary and therefore this can more accurately be

called an incomplete crossed design. As data from several sites are used to estimate the pa-

rameters in this model, the dependence among distances from different sites in the genome

must also be accommodated. However, there is no biological model providing direction for

modelling the dependence across sites.

Since the mean response is of primary interest, Mayer-Hamblett (1999) uses a marginal

binary regression model for estimation of the regression parameters which avoids having to

specify a model for the covariance (Liang & Zeger, 1986). In addition, an empirical variance

estimator that accounts for the known independence in the data is used for obtaining

parameter standard errors. In this paper, we provide the theoretical foundation given in

Mayer-Hamblett (1999) for the use of marginal estimating equations and empirical variance

estimation in this example and more generally for other crossed designs.
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2·2 Two-index asymptotics for GEE sandwich estimator

The Generalized Estimating Equations (GEE) method (Liang & Zeger, 1986), popular for

the analysis of longitudinal data, involves fitting a marginal generalized linear model to

T repeated observations on each of K individuals. The asymptotic arguments presented

by Liang & Zeger (1986) and others assume that T is fixed and K → ∞, and show that

the parameter estimates are consistent and asymptotically Normal and that the sandwich

estimator for the variance is consistent.

An important practical question left open by these results is the performance of GEE

when the number of observations per individual T is relatively large. For example in dental

research, we typically have measurements on T = 32 teeth per person and in community

randomized trials where the “individual” is a whole community, T can be several hundreds

or thousands. In order for asymptotic results to be relevant to data analysis when T is not

small compared to K, we need to consider the asymptotic behavior as both T → ∞ and

K →∞.

Theorem 7 in this paper shows that consistency of the sandwich estimator holds with

rate K not only for T fixed, but for T →∞ at any rate. This suggests that in data analysis,

the performance of these estimators will depend largely on the number of individuals K

and not on the total number of observations KT . Since the value of T is not important,

simulation studies (e.g. Sharples & Breslow, 1992) that have been performed with relatively

small values of T can give useful information for larger values of T as well.

3 Limit theorems for sparsely correlated data

There are two main limit theorems for sparsely correlated data which need to be established:

a central limit theorem and a theorem for consistency of an empirical variance estimator.

These, together with standard convexity and smoothness arguments, imply asymptotic

normality of the regression parameters and valid standard error estimates.
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We begin this section with a formal definition of sparsely correlated data and a discussion

of the independence conditions under which the limit theorems hold. We then prove the

central limit theorem and the main lemma that will be needed in Section 4 where we

show consistency and asymptotic normality of regression parameters and consistency of an

empirical variance estimator.

3·1 Definitions

Suppose we have observations X1, . . . , Xn. For each observation Xj , j = 1, . . . , n we define

a set of indices Sj such that for j, j′ ∈ {1, . . . , n},

1. j′ 6∈ Sj and j 6∈ Sj′ implies Xj and Xj′ are independent

2. j1, j2, . . . , j` 6∈ ∪`′
j′=1Sj′

i
and j′1, j

′
2, . . . , j

′
`′ 6∈ ∪`

j=1Sji implies {Xj1 , . . . , Xjk
} indepen-

dent of {Xj′
1
, . . . , Xj′

k
}

We refer to data as sparsely correlated if we can choose the Sj , j = 1, . . . , n such that

Mm = O(n) where M = maxj |Sj |, j = 1, . . . , n and m is the size of the largest subset T

of {1, . . . , n} such that j 6∈ Sj′ and j′ 6∈ Sj for all pairs (j, j′) ∈ T . In this paper, we use

the independence conditions only for `, `′ ≤ 2. Use of larger values would allow control of

higher moments of sums of sparsely correlated variables and may have other applications.

By definition, Sj must contain at least all observations pairwise correlated with Xj .

In the HIV genetic variation application, for example, we define Sj as the set of distances

sharing at least one time point with distance indicator j.

Continuing with the genetic variation example, let T be the number of independent

viral populations, R the number of independent sequences sampled from each of these viral

populations, and S the number of sites in each of these sequences. It follows that there

are TR(R − 1)S/2 and T (T − 1)R2S/2 unique distances which compare sequences from

distinct viral populations, and the total number of observations included in the model is

then n = TR(R− 1)S/2 + T (T − 1)R2S/2.

8

http://biostats.bepress.com/uwbiostat/paper207



Given one observation d(G(s)
uj , G

(s)
tk ) comparing different sequences from two viral pop-

ulations u and t, we know that G
(s)
uj will appear in TR − 1 different distances when doing

all within and between time point comparisons, and G
(s)
tk will appear in TR − 1 different

distances. Thus, the maximum number of observations correlated with a single distance

observation when including all sites in the model is M = ((TR− 1) + (TR− 1)− 1) S =

(2TR − 3)S. Finally, assuming that R is even, we have that there are R/2 distances cor-

responding to a single time point and site which are multivariate independent (i.e. the

distances are not based on any of the same sequences). Therefore, the largest subset of

independent observations since we do not assume independence across sites is m = TR/2.

It follows that mM/n = (2TR− 3)/(TR− 1) which is bounded in probability if either

1. The number of independent viral populations increases and the number of sequences

sampled from each of these viral populations is bounded,

2. The number of independent sequences sampled from each viral population increases

and the number of sampled viral populations is bounded, or

3. Both the number of independent viral populations sampled and the number of inde-

pendent sequences sampled from each of these viral populations increases.

Under at least one of these conditions, mM = O(n) as m →∞.

3·2 Proofs

Before presenting the proofs of the limit theorems, we begin by considering a simple example

to motivate the normalizing constants. Suppose

Xij = ηi + ζj + εij

where {ηi}k
i=1, {ζj}K

j=1, and {εij}(k,K)
(i,j)=(1,1) are each independent and identically distributed

with k ≤ K, and that everything has finite variance. In this classical crossed random effects

model, m = k, M = k + K − 1, and n = kK < mM. Assume that k/K → C ∈ [0, 1].

9
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Then ∑
i,j

Xij = K
k∑

i=1

ηi + k
K∑

j=1

ζj +
(k,K)∑

(i,j)=(1,1)

εij

so
√

m

n

∑
i,j

Xij =

√
kK

n

k∑
i=1

ηi +

√
kk

n

K∑
j=1

ζj +

√
k

n

(k,K)∑
(i,j)=(1,1)

εij

=
1√
k

k∑
i=1

ηi +
1√
K

√
k

K

K∑
j=1

ζj + op(1)

d→ N (0, var[η] + Cvar[ζ])

by the classical central limit theorem, suggesting that
√

m/n is the correct normalizing

sequence and that the rate of convergence is only 1/
√

m.

We present three lemmas needed to prove the central limit theorem. Lemma 1 is adapted

from Ibragimov & Linnik (1971). It allows us to prove the central limit theorem for bounded

variables and extend it by truncation.

Lemma 1 Suppose Zj, j = 1, 2, . . . , n is a sequence of mean zero random variables with

||Z||2+δ ≡ sup
j
‖Zj‖2+δ < L

for some δ > 0 and L < ∞ and define truncated variables Y
(K)
j = Zj {|Zj | < K}. If for

every K > 0, √
m

n

n∑
j=1

Y
(K)
j

d→ N(0, 1) (3·1)

then √
m

n

n∑
j=1

Zj
d→ N(0, 1).

Proof Let 0 < δ′ < δ. Then

var
[
Zj − Y

(K)
j

]
≤

∥∥∥Zj − Y
(K)
j

∥∥∥2

2+δ′

≤ K
2

2+δ′ (δ
′−δ)(‖Z‖2

2+δ)
2+δ
2+δ′

10

http://biostats.bepress.com/uwbiostat/paper207



This is a bound uniform in n, going to zero as K → ∞. Now if equation 3·1 holds for all

K, it also holds for some Kn →∞. For this sequence,
√

m

n

n∑
j=1

Y
(Kn)
j

d→ N(0, 1)

and √
m

n

n∑
j=1

(Zj − Y
(Kn)
j ) → 0

in mean square. So √
m

n

n∑
j=1

Zj
d→ N(0, 1).

The following is Lemma 2 of Bolthausen (1982).

Lemma 2 Let νn be a sequence of probabilities over R which satisfies

1. supn

∫
x2dνn(x) < ∞ and

2. For all λ ∈ R,

lim
n

∫
(iλ− x)eiλxdνn(x) = 0.

Then

νn
d→ N(0, 1).

Lemma 3 is the crux of the proof for both the central limit theorem and consistency

of the sandwich estimator. The method was originally used by Bolthausen (1982) to give

a simple proof of a central limit theorem for strong mixing stationary random fields and

derives from ideas of Stein (1972). A similar result for non-stationary strong mixing random

fields was used by Guyon (1995) to prove a central limit theorem and adapted by Lumley

(1998) to prove consistency of a sandwich estimator.
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Lemma 3 Let Xj for j = 1, . . . , n be a sequence of sparsely correlated mean zero random

variables. Assume m →∞ and mM = O(n).

If

||X||4 ≡ sup
j
||Xj ||4 < L

then

var

 m

n2

∑
k,j

wkjXkXj

 <
4L4

m
→ 0

where wkj = 1 if Xk ∈ Sj and wjk = 0 otherwise.

Proof: Define Sn =
∑n

j=1 Xj and

Sj,n =
∑
k∈Sj

Xk.

First, note that

var

 m

n2

∑
k,j

wkjXkXj

 = var

 m

n2

n∑
j=1

XjSj,n


=

m2

n4

n∑
j,j′=1

∑
k∈Sj ,k′∈Sj′

cov
[
XjXk, Xj′Xk′

]

by definition of Sj,n. The covariance term would be equal to zero if (Xj , Xk) is independent

of (Xj′ , Xk′) which implies XjXk is independent of Xj′Xk′ . Thus, a covariance term could

be nonzero if j′ ∈ Sj ,j′ ∈ Sk, k′ ∈ Sj , or k′ ∈ Sk. An upper bound for the number of

nonzero terms is then nM(4M)M = 4nM3 as there are n choices for j, at most M choices

for k given j, 4M ways that (j′, k′) and (j, k) can be linked, and M choices for k′ given j′.

Each covariance term is bounded above such that

cov
[
XjXk, Xj′Xk′

]
= E[XjXkXj′Xk′ ]

≤ ||X||44

12
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< L4

and we therefore have that

var

 m

n2

n∑
j=1

XjSj,n

 ≤ m2

n4
4nM3L4

= 4L4/m

which goes to zero as m →∞.

The central limit theorem for sparsely corrleated data follows. The central limit theorem

also implies a weak law of large numbers which we will use extensively.

Theorem 4 Let Xj for j = 1, . . . , n be a sequence of sparsely correlated mean zero random

variables. Let Sn =
∑n

j=1 Xj, and σ2
n = var[Sn]. Assume m →∞ and mM = O(n). If

||X||2+δ ≡ sup
j
||Xj ||2+δ < L

for some δ > 0 and L < ∞ then

1. Rate of Convergence lim supn mσ2
n/n2 < ∞, and

2. Central Limit Theorem: If in addition

lim inf
n

mσ2
n/n2 > 0, (3·2)

then

S̄n ≡ Sn/σn
d→ N(0, 1).

Proof: To prove the first claim, write

σ2
n =

n∑
j=1

∑
k∈Sj

cov[Xk, Xj ].

13
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There are at most Mn summands, each bounded by L2, and so

σ2
n < MnL2 = O(n2L2/m).

Now let σ̃2
n = mσ2

n/n2, the normalized variance of Sn. By applying Lemma 1 with

Zj = Xj/σ̃n, it suffices to prove the second claim for bounded variables. From now on, we

assume that Xj is bounded by L.

We now use Lemma 2. The first condition of the lemma is certainly satisfied since Xj

is bounded so it is needed to show that

E
[
(iλ− S̄n)eiλS̄n

]
→ 0

for all real λ.

Following Guyon (1995, p114), we decompose this as

(iλ− S̄n)eiλS̄n = A1 −A2 −A3

where

A1 = iλeiλS̄n

1− σ−2
n

n∑
j=1

XjSj,n


A2 = σ−1

n eiλS̄n

n∑
j=1

Xj

(
1− iλS̄j,n − e−iλS̄j,n

)
A3 = σ−1

n

n∑
j=1

Xje
iλ(S̄n−S̄j,n).

We need to show that E[A1], E[A2], and E[A3] go to zero. First, note that |eiλS̄n |=1 and

E[|A1|2] = λ2E

∣∣∣∣∣∣1− σ−2
n

n∑
j=1

XjSj,n

∣∣∣∣∣∣
2 = λ2var

σ−2
n

n∑
j=1

XjSj,n


14
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= λ2

(
m2

n4
σ4

n

)−1

var

 m

n2

n∑
j=1

XjSj,n


= O(

1
m2M2

)

→ 0.

Hence, E[A1] → 0.

For A2, first observe that

S̄j,n =

∑
k∈Sj

Xk

σn
<

MK

σn

≤ cK√
m

→ 0

for some c and all m as m →∞. The first inequality comes from the fact that the maximum

number of observations in Sj is M and the maximum value of Xj is K since X is bounded.

The second inequality follows from the assumption given in Equation 3·2 of this theorem.

By a Taylor expansion of e−iλS̄j,n , we can show that∣∣∣1− iλS̄j,n − e−iλS̄j,n

∣∣∣ ≤ cλ2S̄2
j,n

for some c > 0 and all n. So,

E[|A2|] = σ−1
n E

∣∣∣∣∣∣
n∑

j=1

Xj

(
1− iλS̄j,n − e−iλS̄j,n

)∣∣∣∣∣∣


≤ σ−1
n E

[
sup

n
cλ2S̄2

j,n

]
E

∣∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣∣


≤ σ−1
n E

[
sup

n
cλ2S̄2

j,n

]
nK
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= O

(
1√
Mn

n

m

)
→ 0.

Thus E[A2] → 0. Lastly, E[A3] = 0 since Xj and S̄n − S̄j,n are independent.

So E [A1 −A2 −A3] → 0 for all λ, and by Lemma 2, S̄n
d→ N(0, 1) completing the

proof.

Remark: An inspection of the proof shows that if Mj = |Sj | for j ∈ T defined in Section

3.1, we can replace M = maxj Mj by

M =

 1
m

m∑
j=1

M4
j

1/4

.

This is useful when the correlation structure is random, as in the case of clustered data

with random cluster sizes, and there is no uniform upper bound on Mj .

4 Marginal generalized linear models

We fit the marginal generalized linear model by maximizing the independence working

loglikelihood function that would be the loglikelihood if the data were independent and

from the appropriate exponential family. We confine our attention to generalized linear

models for which this loglikelihood under independence is concave. This restriction is only

needed to prove the uniqueness of the parameter estimates. In addition to any model using

the canonical link, this includes binomial regression models with the linear and probit links

as described by Wedderburn (1976).

Let Ln(β) be this loglikelihood and `j(β) be the contribution from observation j. The

central limit theorem (Theorem 4) shows that Ln(β)/n converges in probability for each β
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to a function L0(β) = limn→∞E [Ln(β)/n] and thus by Lemma 5 below,

β̂n = argmaxLn(β)

is consistent for

β0 = argmaxL0(β).

The remaining step in proving consistency is to show that β0 as just defined is the true

regression coefficient. This follows because Uj(β) = ∂`j(β)/∂β is a linear function of Yj−µj

and so is zero at the true value of β. Thus, E[`j(β)] has a maximum at the true value of β

for all j and so L0(β) has its unique maximum at the true value of β.

Lemma 5 Let Θ be an open convex subset of Rp and fn : Θ → R be a sequence of random

convex functions of θ. Define

θ̂n = argmaxΘfn(θ).

If fn(θ)
p→ f(θ) then θ̂n

p→ argmaxΘf(θ).

A proof of Lemma 5 is given by Andersen & Gill (1982, Appendix II). Asymptotic normality

of β̂n follows from the central limit theorem and classical assumptions about the smoothness

of Ln. We use the following result which is Theorem 3.4.5 of Guyon (1995).

Theorem 6 Suppose that β̂n minimizing a random function of βn, Kn, is consistent for

β0 ∈ Θβ ⊂ Rp and that

6.1 There exists a neighborhood V of β0 over which

(a) Kn is twice continuously differentiable, and

(b) There exists an integrable random variable H such that for all β ∈ V and for k,

j = 1, . . . , p ∣∣∣∣(K̈n

)
jk

∣∣∣∣ ≤ H.

17

Hosted by The Berkeley Electronic Press



6.2 There exists a sequence 〈an〉 → ∞ such that Jn = var
[√

anK̇n(β0)
]

exists and:

(a) There exists a positive definite matrix J with Jn ≥ J for all large enough n, and

(b)
√

anJ−1/2
n K̇n(β0)

d→ N (0, 1p)

where 1p is a p× p identity matrix.

6.3 There exists a sequence of deterministic p× p matrices 〈In〉 such that

(a)
(
K̈n(β0)− In

)
p→ 0, and

(b) There exists a positive definite matrix I with In − I positive semidefinite for all

large enough n.

Then
√

anJ−1/2
n In

(
β̂n − β0

)
d→ N(0, 1p).

We apply this theorem to the function Kn(β) = −Ln(β)/n. We will consider only

bounded predictors although this restriction can be relaxed for specific link and variance

function combinations.

Theorem 7 Suppose that Yj, j = 1, 2, . . . , n is a sparsely correlated sequence satisfying a

marginal generalized linear model with predictors Xj taking values in a bounded subset of Rp.

Suppose the link and variance functions have three continuous derivatives, the independence

working loglikelihood Ln(β) is convex, and that the true parameter β0 is in the interior of

a convex parameter space. If

1. mM = O(n),

2. E[Y 4
j ] is uniformly bounded,
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3. There exists a vector W and a positive definite matrix T such that

1
n

n∑
j=1

Xj ≡ X̄n → W

1
n

n∑
j=1

XjX
′
j ≡ Tn → T,

and

4.

lim sup
1
m

var[
m∑

i=1

Yi] > 0

then
√

m
(
β̂n − β0

)
d→ N(0,Ξ)

where β̂n maximizes Ln(β) and

mΞ̂n(β̂n) = m

 n∑
j=1

∂Uj

∂β

−1  n∑
j=1

∑
k∈Sj

Uj(β̂n)Uk(β̂n)T

  n∑
j=1

∂Uj

∂β

−1

p→ Ξ.

If the link and variance functions are twice continuously differentiable, then Conditions

6.1(a) and 6.1(b) hold for any bounded neighborhood N0 where V (·) and g′(·) are bounded

away from zero.

To prove Condition 6.3, note that

E[K̈n(β)|X] = E

[
1
n

U̇n(β)|X
]

=
1
n

n∑
j=1

g′(µj(β))2

V (µj(β))
XjX

T
j

=
1
n

n∑
j=1

wj(β)XjX
T
j

where wj(β) is bounded above and below for β ∈ N0. Assumption 3 in this theorem now

implies that K̈n(β) converges in probability, and Assumption 2 and boundedness of Xj

imply that this convergence also holds in mean, as required.
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To verify Condition 6.2, we take an = m and apply the central limit theorem (The-

orem 4) to the elements of
∑n

j=1 Uj/n. Using the Cramér-Wold device, we can consider

only scalars whereby Theorem 4 applies to the vector Uj(β) if and only if it applies to

the scalars b′Uj(β) for all vectors b of norm 1. The moment condition of the central limit

theorem follows with δ = 2 from boundedness of X and the assumption that E[Y 4
j ] is uni-

formly bounded, and the variance lower bound (Equation 3·2 in Theorem 4) comes from

Assumptions 3 and 4 in this theorem. Theorem 4 gives us that 1
n

n∑
j=1

Uj(β)

  1
n

n∑
j=1

Uj(β)

T

converges in probability to a positive definite limit, and again Assumption 2 and the bound-

edness of X imply that the expectation also converges, as required for Condition 6.2. We

note for later use that this convergence is true not only at β = β0 but for all β ∈ N0.

So by Theorem 6, we see that

√
m

(
β̂n − β0

)
d→ N(0,Ξ)

for some positive definite variance matrix Ξ.

For this result to be useful for inference, we must be able to estimate Ξ consistently.

The sandwich estimator Ξ̂n can be rewritten as

mΞ̂n(β) =

√
m

n

n∑
j=1

∂Uj

∂β

−1  m

n2

n∑
j=1

∑
k∈Sj

Uj(β)Uk(β)T

 √
m

n

n∑
j=1

∂Uj

∂β

−1

= A−1
n (β)Bn(β)A−1

n (β)

evaluated at β = β̂n.

Since E[mΞ̂n(β0)] = Ξ it suffices to show that mΞ̂n(β) converges in probability to a

continuous function of β uniformly over a neighborhood of β0. Consistency of β̂n then gives

consistency of Ξ̂(β̂n). We work with An and Bn separately.
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First we show that An(β̂n) is consistent. As argued for Condition 6.3 in the proof of

asymptotic Normality of β̂n, An(β) converges pointwise in β to A(β) = limn An(β). A

straightforward calculation shows that the derivative of An(β) is bounded over N0 so that

An(β) is uniformly equicontinuous and the limit function A(β) is continuous. Consistency

of β̂n implies that An(β̂n) is consistent for A(β0) and as this is positive definite as shown

for condition 6.3(b), An(β̂n)−1 is consistent for A(β0)−1.

To show that Bn(β̂n) is consistent, note that by Assumption 2 and boundedness of X

and the fact that V (µj) is bounded away from zero uniformly in β, we have E[U4
j (β)] is

uniformly bounded for β ∈ N0. Applying Lemma 3,

var [Bn(β)] <
4
m

sup
j,β∈N0

E[Uj(β)4]

so Bn(β) converges in mean square uniformly over β ∈ N0. As Bn(β) is continuous for each

n, the uniform limit B(β) is continuous on N0. Finally, as β̂n
p→ β0, Bn(β̂n)

p→ B(β0).

So the sandwich estimator mΞ̂n(β̂n) is consistent for Ξ and we can use Ξ̂n(β̂n) as an

estimator of var[β̂n].

Remark: Assumption 3 in Theorem 7 is stronger than the conditions imposed by Fahrmeir

& Kauffman (1985), but is satisfied by many reasonable fixed or random designs. For ex-

ample, if the Xj are sparsely correlated with a common marginal distribution that does not

concentrate along a lower-dimensional subspace of Rp, then Assumption 3 follows from the

central limit theorem.

5 Conclusions

Marginal generalized linear models for sparsely correlated data require fairly weak assump-

tions, are computationally straightforward, and provide a useful complement to random

effects models. The limit results we have presented here are applicable to similar models

where smooth, finite-dimensional parameters are to be estimated. Extensions of empirical
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process central limit theorems based on entropy to sparsely correlated data would widen

the class of models that could be used, as would extensions of the GEE methodology using

working models other than independence.
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