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1. Introduction

Consider a randomized, two-arm, placebo-controlled clinical trial to evaluate eÆcacy of

a preventive HIV vaccine. The �rst two trials of this kind began in 1998 and 1999, and

are ongoing (Francis et al., 1998). For each trial, the primary objective is to assess the

vaccine's impact on the incidence of HIV infection (Rida and Lawrence, 1995). Another

objective of these trials and future trials is to assess the vaccine's impact on viral load

post acquisition of HIV (Nabel, 2001); viral load is the concentration of HIV in blood or

another body compartment. This objective is important because natural history studies

have shown that the viral load of an infected person predicts infectiousness (Quinn et al.,

2000) and the rate of disease progression (cf., Mellors et al., 1997), and several animal

studies have identi�ed vaccines that failed to prevent infection but successfully controlled

viremia and prevented disease (cf., Shiver et al., 2002). Therefore, a vaccine e�ect to

lower viral load may be bene�cial, whereas an e�ect to increase viral load may hasten or

exacerbate disease. The risk of harmful vaccine \enhancement" of viral load is genuine

(Burke, 1992), and has been observed for several viral vaccines (cf., Mascola et al., 1992).

The impact of vaccination on viral load can be studied in several ways. The data

available for analysis are right-censored HIV infection diagnosis times in all randomized

subjects, and longitudinal quantitative measurements of viral load in subjects who become

infected. Two main inferential approaches are intent-to-treat (ITT) analyses of all ran-

domized subjects and conditional analyses of infected subjects only. The ITT approach

assesses the causal e�ect of randomizing to vaccine. However, the majority (likely > 80%)

of randomized subjects will have zero viral load because they do not become infected dur-

ing the trial, which can give ITT analyses low power for detecting many alternatives of

interest (Hudgens, Hoering, and Self, 2002a). Also, in ITT analyses two very di�erent

populations (uninfected and infected subjects) are placed on the same response scale.
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Consequently, the ITT analysis of viral load assumes that the outcomes absence of infec-

tion (with zero viral load) and infection with viral load below the quanti�cation limit of

the assay are approximately equally prognostic for disease progression. This assumption

is diÆcult to justify, because the initial suppression of viral load in infected subjects may

be lost due to HIV evolution (Barouch et al., 2002). Alternatively, rank-based ITT meth-

ods could be used that assign the lowest two ranks to absence of infection and viral load

below the assay limit, respectively. However, to achieve greater power and to study the

causal e�ect of randomizing to vaccine in a subpopulation of persons who would become

infected described below, in this article we consider conditional analyses.

Conditioning on infection poses a major challenge to making an unbiased inference

of the vaccine e�ect on viral load, because the analyzed groups are selected by the post-

randomization event HIV infection. This post-treatment selection bias problem is common

in biomedical studies (cf., Rosenbaum, 1984; Robins and Greenland, 1992), and implies

that a comparison of viral load between infected subgroups, which measures the `net

vaccine e�ect', does not have a causal interpretation. In particular, partial eÆcacy of

the vaccine to prevent HIV infection can bias the viral load comparison. For example,

the vaccine may prevent infections in individuals with strong immune systems, but allow

infections in individuals with relatively weak immune systems. If a weaker immune system

correlates with a higher viral load upon infection, then the viral loads in infected subjects

will tend to be selectively shifted upwards in vaccine relative to placebo recipients. On the

other hand, selection bias could occur in the opposite direction, for example the vaccine

could protect well against highly virulent strains but allow infections with mild viruses

which establish low viremia levels. Therefore, a standard two-sample test comparing viral

loads between infected groups may give a misleading impression that vaccination enhances

or suppresses viral burden. Or, the test may fail to detect a meaningful vaccine e�ect.
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Frangakis and Rubin (2002) (FR) developed a framework for causal inference that can

be used for studying a causal e�ect of vaccine on viral load that adjusts for the post-

randomization selection bias. This framework de�nes causal estimands using potential

outcomes (Rubin, 1974, 1978; Holland, 1986). For the present problem, each trial partici-

pant has a potential infection status under each randomization assignment. Additionally,

subjects who would be infected under randomization to vaccine have a potential viral load

under vaccine assignment, and subjects who would be infected under randomization to

placebo have a potential viral load under placebo assignment. Within FR's framework,

a causal vaccine e�ect on viral load is de�ned as a comparison of potential viral loads

under the two randomization assignments for a subgroup of subjects with a common pair

of potential infection status outcomes; FR referred to such a group as a principal stratum.

Hudgens, Hoering, and Self (2002b) (HHS) developed tests for a causal vaccine e�ect

on viral load in the \always infected" principal stratum of subjects who would be infected

regardless of randomization to vaccine or placebo. Under plausible assumptions described

in Section 2, vaccine recipients who become HIV infected would also be infected had they

received placebo. Consequently, inferences drawn for the always infected subpopulation

address a practical question for individuals vaccinated in a public health program: If I

acquire HIV despite vaccination, what is the viral load compared to if I had foregone

vaccination? We consider inference on causal estimands de�ned for the always infected

principal stratum, which are de�ned in terms of potential outcomes in Section 2.

The causal estimands are not identi�ed, because membership of an infected placebo

recipient in the always infected principal stratum is unknown (i.e., the infection status

had the subject been randomized to vaccine is unknown). This problem can be addressed

by modeling the probability that an infected placebo recipient is in the always infected

stratum as a function of the potential viral load under randomization to placebo. HHS
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implicitly took this approach, by de�ning two selection models that express bounds for

the maximum plausible levels of selection bias. Under these models, which identify the es-

timands, HHS developed testing procedures for assessing di�erences in the potential viral

load distributions of always infected subjects under the two randomization assignments.

Testing the null hypothesis presuming an extreme degree of selection bias is practically

very useful, because rejection implies a signi�cant e�ect of vaccination above and beyond

any plausible selective e�ects. However, the actual degree of bias is likely less than that

speci�ed by an extreme model, so that HHS's tests may sacri�ce power. Achieving maxi-

mal power is especially important for key subgroup analyses, such as by gender (Sterling

et al., 2001), route of exposure, or host genotype, and for analyses of seminal viral load,

given the higher variability of seminal versus plasma viral load (Coombs et al., 1998).

Therefore, it is important to also consider selection models that reect intermediate de-

grees of selection bias, which may be more realistic and will allow for more powerful

statistical tests. In this article we develop a method for sensitivity analysis that con-

siders a continuous range of possible selective e�ects spanning from no bias to maximal

plausible bias as considered by HHS. In di�erent contexts, Rosenbaum and Rubin (1983),

Scharfstein, Rotnitzky, and Robins (1999), and Goetghebeur et al. (2000) also developed

methods of continuously-indexed sensitivity analysis of inferences on causal e�ects.

The article is organized as follows. Section 2 de�nes causal estimands and shows that

they are identi�ed from three assumptions and a biased sampling model that speci�es

the nature and degree of selection bias. A class of logistic biased sampling models is de-

scribed, which is indexed by an interpretable sensitivity parameter � that can be chosen

to represent any magnitude of selection bias ranging between extreme positive and nega-

tive bias. Given a particular model in the class, Section 3 describes procedures for testing

the corresponding null hypothesis of no causal e�ect of vaccination on viral load. A plot
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of the test statistic (or p-value) versus � provides a sensitivity analysis to help discern if

the data support a causal e�ect that is robust to plausible post-randomization selective

e�ects. Section 3 also shows how the sensitivity analysis can be based on estimation

rather than testing. Section 4 evaluates the proposed testing procedures in simulations,

and Section 5 illustrates a sensitivity analysis on a simulated vaccine trial dataset.

2. Causal Estimands and Biased Sampling Models for Sensitivity Analysis

2.1 De�nition and identi�ability of causal estimands

First we de�ne the potential outcomes of the trial participants. Let Z be the vector

of vaccination assignments for the N randomized subjects, with ith element Zi (Zi = v;

vaccine; Zi = p; placebo). Let S(Z) be the N -vector with ith element Si(Z), which is

the indicator of whether the ith subject would be infected given Z. For subjects with

Si(Z) = 1; let Yi(Z;S) be the potential viral load (PVL) given Z and S = S(Z). In order

to limit the possible potential outcomes for each subject, we adopt Rubin's (1978) Stable

Unit Treatment Value Assumption (SUTVA) throughout. It states that Si(Z) = Si(Z
0)

whenever Zi = Z 0i, and, Yi(Z;S) = Yi(Z
0;S0) whenever Zi = Z 0i and Si(Zi) = S 0i(Zi) = 1:

SUTVA implies that potential outcomes for each subject i are unrelated to the assignment

Zj of other subjects, and allows Si(Z) and Yi(Z;S) to be written as Si(Zi) and Yi(Zi);

respectively. Therefore, under SUTVA each subject has two potential infection outcomes

(Si(v), Si(p)) and at most two PVL outcomes (Yi(v); Yi(p)). For each subject only one

of Si(v) or Si(p) is observed, denoted Sobs
i � Si(Zi); and in the subgroup with Sobs

i = 1;

Y obs
i � Yi(Zi) is observed. Note that Yi(v)(Yi(p)) is de�ned only if Si(v) = 1(Si(p) = 1):

By Property 2 of FR, a comparison between the ordered sets fYi(v) : Si(v) = Si(p) =

1g and fYi(p) : Si(v) = Si(p) = 1g is a causal e�ect, because it is made within a principal

stratum. For subjects in the always infected stratum fSi(v) = Si(p) = 1g, suppose the

Yi(v) are identically distributed as F alw:inf
(v) (�); and the Yi(p) are identically distributed as
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F alw:inf
(p) (�): Then, any functional that measures a contrast of the distributions

F alw:inf
(v) (y) � Pr(Yi(v) � yjSi(v) = Si(p) = 1)

F alw:inf
(p) (y) � Pr(Yi(p) � yjSi(v) = Si(p) = 1) (1)

is a causal estimand. Based on (1), a null hypothesis for no causal e�ect of vaccination

on viral load in the always infected principal stratum can be expressed as:

H0 : F
alw:inf
(v) (y) = F alw:inf

(p) (y) for all y: (2)

Unfortunately, because neither distribution in (1) is identi�able (since Si(v) and Si(p)

are not both observed for any subject), it is not possible to test (2) without introducing

assumptions. Two assumptions are useful for identifying the distributions:

A1: The assignment Zi of each subject is independent of his/her potential outcomes.

A2: For each subject i, Pr(Si(v) = 1; Si(p) = 0) = 0:

Assumption A1 plausibly holds in HIV vaccine eÆcacy trials due to randomization and

blinding. A2 states that no subject would be infected if randomized to vaccine but unin-

fected if randomized to placebo, and under A1 will hold if vaccination does not increase

the per-exposure infection probability for any subject. The SUTVA assumption may not

hold because HIV disease is infectious (Halloran and Struchiner, 1995); however if the

study population is a small sample from a large population of susceptible individuals and

there are few infectious contacts between trial participants, then it should approximately

hold. SUTVA can be checked through epidemiologic studies and data on mixing of risk

behavior among trial participants. Given SUTVA, A1 can be tested based on risk behav-

ior data, and under SUTVA and A1, A2 can be checked by testing if the HIV infection

rate is higher in the vaccine group than in the placebo group.

Assumption A2 is very useful, because it implies that infected vaccine recipients

must be in the always infected principal stratum. Together with A1, this implies that
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F alw:inf
(v) (y) = Fv(y) �Pr(Y

obs
i � yjSobs

i = 1; Zi = v); where Fv(�) is the distribution of viral

load in infected vaccine recipients; thus F alw:inf
(v) (�) is identi�ed from the observed data.

A2 is similar to Angrist, Imbens, and Rubin's (1996) Monotonicity Assumption 5, which

is useful for identifying a causal estimand de�ned for a principal stratum of compliers.

On the other hand, A1 and A2 do not identify F alw:inf
(p) (�); because they do not determine

whether an infected placebo recipient is in the \protected" fSi(v) = 0; Si(p) = 1g or

always infected fSi(v) = 1; Si(p) = 1g stratum.

Given the randomization assignment and observed infection status of a trial partic-

ipant, Table 1 indicates the principal stratum or strata to which the participant must

belong, and lists the information available on potential viral loads. The table makes clear

that the always infected stratum is the natural subpopulation for causal inference on viral

load, because it is the only stratum for which causal estimands involve only well-de�ned

potential viral loads. Rubin (2000) made this point through a parallel example in which

there are two randomized treatments and vital status is observed one year after random-

ization, and the goal of causal inference is to assess the treatment e�ect on quality of life

within the principal stratum of subjects alive under either treatment assignment.

2.2 Logistic selection bias models that identify the causal estimands

The set of subjects infected under randomization to placebo, fSi(p) = 1g, partitions

into the principal strata of protected and always infected subjects, with the level of vaccine

eÆcacy (V E) against infection determining the proportion in each. Speci�cally, de�ne

V E = 1�RR = 1�Pr(Si(v) = 1)=Pr(Si(p) = 1); V E is a causal estimand measuring the

relative reduction in infection risk conferred by randomizing to vaccine versus placebo.

A2 implies V E = Pr(Si(v) = 0jSi(p) = 1); which is the probability that a subject in

fSi(p) = 1g is in the protected principal stratum (note that A2 is crucial here; Pr(Si(v) =

0jSi(p) = 1) is not identi�ed by randomization alone). The density of Y (p) in subjects
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infected under randomization to placebo (f(p)(y)) can be written as a mixture of the

densities of Y (p) for the protected (f prot(p) (y)) and always infected (falw:inf(p) (y)) strata:

f(p)(y) = V E � f prot(p) (y) + (1� V E) � falw:inf(p) (y): (3)

With some calculations, the mixture (3) can be re-expressed as a biased sampling model

falw:inf(p) (y) =W�1w(y)f(p)(y); (4)

where w(y) = Pr(Si(v) = 1jYi(p) = y; Si(p) = 1) and W =
R
1

�1
w(y)f(p)(y)dy is a

normalizing constant equal to 1 � V E = RR: The weight function w(y) = RR(y) =

1 � V E(y) is the probability that a subject infected with viral load y if randomized to

placebo would be infected if randomized to vaccine.

Let Fp(y) and fp(y) be the distribution and density of the observed viral load in in-

fected placebo recipients, respectively. Under the randomization assumption A1, F(p)(y) =

Fp(y), and the biased sampling model (4) can be re-stated as falw:inf(p) (y) = (1�V E)�1w(y)

fp(y): Therefore, under A1-A2 the null hypothesis of interest (2) is equivalent to

H0 : Fv(y) = (1� V E)�1
Z y

�1

w(z)dFp(z) for all y: (5)

By A1, V E is identi�ed from the observed data. If w(�) were known, then both

F alw:inf
(v) (�) and F alw:inf

(p) (�) would be identi�ed, and the hypothesis (2) could be tested.

However, w(�) is unknown, and it is not possible to test whether a particular w(�) is

correctly speci�ed from the data plus A1-A2. Our approach to this problem assumes w(�)

is known, and tests (5) for a variety of �xed choices of w(�). For such an approach to be

fruitful, it is important that the unidenti�ed sensitivity function w(�) be interpretable.

Towards this goal, we parameterize w(y) as logistic, indexed by an interpretable selec-

tion bias parameter �, which allows it to be constant or smoothly monotone increasing or

decreasing: w(y) = w(yj�; �) = expf�+�yg=(1+expf�+�yg): The sensitivity parameter
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� is a log odds ratio: e� is the odds ratio of infection under randomization to vaccine given

infection under randomization to placebo with viral load y versus with viral load y � 1.

This interpretation allows the choice of � to be guided by beliefs about plausible degrees

of selection bias. For �xed � 2 [�1;1], the logistic selection bias model is speci�ed by

F alw:inf
(p) (y) = (1� V E)�1

Z y

�1

expf� + �zg

1 + expf�+ �zg
dFp(z) � Fp(yj�): (6)

Given �xed �, the parameter � is determined as the solution to the equation Fp(1j�) = 1:

Figure 1 illustrates �ve selection models speci�ed by (6) and � �xed at�1;�1; 0; 1;1;

which represent di�erent ways to distribute V E of the mass of f(p)(y) into the protected

principal stratum via (3). Note that if V E = 0 there is no selection bias, regardless of

�; and the higher V E; the greater opportunity for bias. Heuristically, � speci�es how

much bias occurs through V E: Fixing � = 0 speci�es a constant weight w(yj�; � = 0) =

RR; and reects an assumption of no selection bias. Fixing � > 0 makes w(yj�; �)

monotone increasing in y and reects \positive" selection bias, with infection odds under

randomization to vaccine higher for a larger PVL Y (p) = y. In this case, if the causal null

hypothesis (2) is true, then the net vaccine e�ect is that Fv(�) is stochastically larger than

Fp(�): Similarly, � < 0 makes w(yj�; �) monotone decreasing in y and reects \negative"

selection bias, with infection odds under randomization to vaccine lower for a larger y,

and under (2) the net vaccine e�ect is that Fv(�) is stochastically smaller than Fp(�):

HHS developed tests for (5), using two models representing maximum plausible posi-

tive and negative bias. HHS's \positive" selection model is speci�ed by placing all subjects

in fSi(p) = 1g with Y (p) less than the V Eth-percentile qV E(p) of its distribution into the

protected principal stratum, and the \negative" selection model is speci�ed by placing

all subjects in fSi(p) = 1g with Y (p) greater than the upper V Eth-percentile q1�V E(p) of

its distribution into the protected principal stratum. These models are limiting members

of the class of logistic models (6), speci�ed respectively by � = 1 (Figure 1, right-most
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panel) and � = �1 (Figure 1, left-most panel). To see this, note that setting � = ��qV E(p)

implies lim�!1w(yj�; �) equals Ify > qV E(p) g for y 6= qV E(p) and 1=2 for y = qV E(p) ; and setting

� = ��q1�V E(p) implies lim�!�1w(yj�; �) = Ify < q1�V E(p) g for y 6= q1�V E(p) and 1=2 for

y = q1�V E(p) . Therefore, based on the logistic weight function with � ranging between �1

to 1; the class of models (6) spans all plausible magnitudes of selection bias.

If selection bias is presumed to follow model (6) for some unknown � within a plausible

range �neg to �pos, then a 2-sided null hypothesis representing no causal vaccine e�ect in

the always infected stratum allowing for possible selection bias is given by

H0�pos;�neg : Fp(�j�pos) � Fv(�) � Fp(�j�neg); �pos 2 [0;1]; �neg 2 [�1; 0]: (7)

Under A1-A2, H0�pos;�neg is equivalent to F
alw:inf
(p) (�) � F alw:inf

(v) (�) assuming model (6) with

� = �pos and F alw:inf
(v) (�) � F alw:inf

(p) (�) assuming model (6) with � = �neg. For the special

case �pos = �neg = 0, (7) collapses to the null hypothesis of no net vaccine e�ect on

viral load, H0 : Fv(�) = Fp(�): Therefore, under the assumption of no selection bias, a

standard comparison of viral load distributions between infected subgroups assesses the

causal e�ect of vaccine in the always infected principal stratum.

One-sided null hypotheses representing no causal vaccine e�ect are given by

H0�pos : Fp(�j�pos) � Fv(�); �pos 2 [0;1]; (8)

H0�neg : Fv(�) � Fp(�j�neg); �neg 2 [�1; 0]: (9)

If (8) is rejected, then always infected individuals have signi�cantly higher viral loads

under randomization to vaccine than placebo when controlling for selection bias. In

sum, A1-A2 and model (6) can be used to specify a 1- or 2-sided null hypothesis for no

causal e�ect of vaccine in the always infected stratum that can be tested, and a sensitivity

analysis can be performed by testing the hypothesis for a range of �xed values of �pos; �neg:

3. Statistical Hypothesis Tests and Estimation
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Let Yv1; � � � ; Yvnv and Yp1; � � � ; Ypnp denote the samples of observed viral loads from in-

fected vaccine and placebo recipients. Y could be the average of 2 or more viral load

measurements taken from an infected subject, or another continuous outcome such as the

area under the longitudinal viral load curve. We assume each sample is independently,

identically distributed, and the two samples are independent of one another. Sections 3.1

and 3.2 consider nonparametric tests of the null hypotheses (7), (8), and (9), and Section

3.3 considers nonparametric estimation of an average causal e�ect parameter.

3.1 Nonparametric Test Statistics

Fix �pos � 0 and �neg � 0. Using the empirical distributions bFv and bFp calculated from
the two observed samples, and an estimate of V E; nonparametric tests of H0�pos; H0�neg ;

and H0�pos;�neg can be based on comparisons of bFv(�) with bFp(�j�pos); bFp(�j�neg); and both

estimates, respectively. The V E parameter can be estimated by dV E = 1� nv
Nv
= np
Np
, with

Nv(Np) the number of subjects randomized to vaccine (placebo). Under A1 dV E is unbi-

ased for V E if the vaccine protects by an \all-or-none" mechanism, and is approximately

unbiased if it protects by another mechanism, since HIV infection is a rare event (Hal-

loran, Haber, and Longini, 1992). We consider three criterion functions for summarizing

the comparisons, based on means, suprema, and integrated squared di�erences.

The statistic TM� for comparing means, appropriate for testing (8) or (9), is given by

TM� =
Z
1

�1

y
n
d bFv(y)� d bFp(yj�)o ; (10)

where
R
1

�1
yd bFv(y) = n�1v

Pnv
i=1 Yvi and

bFp(yj�) is the nonparametric maximum likelihood

estimator of Fp(yj�) under model (6), calculated as

bFp(yj�) = �
1� dV E��1 1

np

npX
i=1

I fYpi � ygw(Ypijb�; �):
Here, b� is computed by solving the equation bFp(1j�) = 1 for �; i.e., � solves

1� dV E =
Z
1

�1

expf� + �yg

1 + expf�+ �yg
d bFp(y): (11)
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A solution to (11) can be found rapidly using a numerical one-dimensional line search.

The null hypothesis H0�pos is rejected if TM�pos is large. For large positive �pos and

b� = ��posbqcV Ep ; with bqcV Ep the (np(1 � dV E))th largest value of Yp1; � � � ; Ypnp as used by

HHS, TM�pos reduces to HHS's nonparametric statistic TM that tests (8) with �pos = 1:

Similarly, H0�neg is rejected if TM�neg is negative and large, and for large negative �neg and

b� = ��neg bq1�cV Ep ; TM�neg reduces to HHS's statistic TM that tests (9) with �neg = �1:

The maximum of jTM�posj and jTM�neg j can be used for a 2-sided test of (7).

Second, a 1-sided Kolmogorov-Smirnov-type statistic for testing (8) is de�ned by

TKS�pos = m1=2sup
�1<y<1

���n bFp(yj�pos)� bFv(y)o _ 0
��� ; (12)

with n = nv + np; m = (nvnp)=n; and an Anderson-Darling-type statistic is de�ned by

TAD�pos = m
Z
1

�1

hn bFp(yj�pos)� bFv(y)o _ 0
i2

cHn(yj�pos)
�
1� cHn(yj�pos)

�dcHn(yj�pos); (13)

where cHn(yj�pos) = (np=n) bFp(yj�pos) + (nv=n) bFv(y): One-sided statistics for testing (9)

are given by (12) and (13) with �pos replaced by �neg and _ replaced by ^: Two-sided

statistics for testing (7) can be de�ned similarly. When � = �pos = �neg = 0; the 2-sided

statistics reduce to the classical Kolmogorov-Smirnov and Anderson-Darling test statistics

for comparing two distribution functions (D'Agostino and Stephens, 1986).

3.2 Computing Critical Values for the Tests

We use a modi�cation of the `Controls Only' bootstrap procedure developed by HHS

for computing critical values for the test statistics. The modi�cation is that once the

bootstrap estimate of vaccine eÆcacy dV E?
is computed as in HHS, a bootstrap estimate

b�? is computed as the solution to equation (11) with dV E replaced by dV E?
: Estimating

V E and � within each bootstrap iteration appropriately accounts for the uncertainty in

the vaccine eÆcacy estimate.
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In general, the nonparametric bootstrap tends to approximate smooth distributions

better than distributions with discontinuities. For � �nite, the use of a smooth logistic

selection weight function in the test statistics suggests that the nonparametric bootstrap

should perform well. For j�j in�nite (the extreme cases), the distributions Fp(�j�pos) and

Fp(�j�neg) have discontinuities at the truncation point, which could abrogate bootstrap

performance. The simulation study con�rms that tests of H0�pos with �pos = 1 have

poorer size and power characteristics than tests of H0�pos with �pos = 1:

3.3 Nonparametric Estimation

Under A1-A2 and a model (6) with � �xed, b�ACE(�) � �TM� is a consistent es-

timate of the average causal e�ect (ACE) parameter �ACE(�) =
R
1

�1
yfdF alw:inf

(p) (y) �

dF alw:inf
(v) (y)g: By bootstrap re-sampling from bFv(y) and bFp(yj�), 95% bootstrap percentile

con�dence intervals about �ACE(�) can be constructed. An estimation-based sensitivity

analysis can be carried out by plotting point and interval estimates of �ACE(�) versus �.

4. Simulation Study

Through simulations of an HIV vaccine trial we evaluate the three 1-sided tests of the

null hypothesis H0�pos in (8). Rejecting (8) implies that individuals infected under ei-

ther assignment have signi�cantly higher viral load if assigned vaccine than if assigned

placebo when controlling for selection bias speci�ed by �pos and model (6). We consider

an intermediate-sized eÆcacy trial with 45 infections expected in the placebo group (Rida

et al., 1997), and suppose the true V E equals 30% or 50%. The true amount of selection

bias is determined by the parameter � = �pos in model (6), with � = 0; 1, or 1: Thus,

data are generated under three kinds of null models, which assume no selection bias, an

intermediate amount of selection bias (supposing the infection odds under vaccine of a

subject who would be infected under placebo increases e1 = 2:72-fold per one unit higher

PVL Y (p)), and maximal plausible positive selection bias. We assume two independent
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measures of viral load are available per person. The sample Yp1; � � � ; Ypnp is generated from

a normal distribution with mean 4.50 and variance 0.36. These parameter values equal

those used by HHS, selected based on a cohort of recently HIV infected persons. The

sample Yv1; � � � ; Yvnv is generated from Fp(�j�) in model (6) with true � = 0; 1; or 1: For

each true �; three vaccine e�ects on viral load in the always infected are evaluated: mean

shifts of � = 0; 1=3; or 1=2 log10 over and above any selection bias induced by the true �;

i.e., the samples are drawn such that F alw:inf
(p) (y) = Fp(yj�) and F

alw:inf
(v) (y) = Fp(y��j�).

For each of 500 datasets simulated under each parameter con�guration, the three 1-

sided test statistics are calculated, with presumed selection bias levels � = 0, 1, or 1.

Critical values for the tests are determined using 500 bootstrap replications.

Using a nominal 5% Type I error level, Table 2 shows estimated sizes and powers of the

tests. The sizes are judged by the bolded rows, for which the correct amount of selection

bias is presumed (true � = presumed �). All tests have empirical size close to nominal,

except when V E = 30% and � = 1 the size is inated to 8-12%. The elevated size is

caused by the simulated trials with estimated V E less than zero; this occurred 18 times

and of these the nonparametric mean-based test rejected the null hypothesis 16 times. If

the 18 trials with dV E < 0 are discarded, then the rejection rate is 5.8%. A similar pattern

was seen for the other test statistics. When dV E < 0; the testing procedure operates under

the assumption of no selection bias, and simply tests H0 : Fv(�) = Fp(�). However, in fact

Fv(�) < Fp(�) due to positive selection bias (true � = 1), which explains the inated

probability of rejection. Note that when V E = 50% the sizes are not elevated, because

the estimated V E is rarely negative. In summary, the tests generally have nominal size,

except that when V E is low and the sample size is moderate, underestimation of V E can

lead to an increased risk of false rejection. This phenomenon was also found by HHS.

When the correct selection bias model is assumed, the three tests have comparable
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power, with that of the Kolmogorov-Smirnov procedure slightly less. In addition, power

diminishes as the true � increases. Next we consider power when an incorrect amount of

selection bias is presumed (Table 2, unbolded rows). If zero bias is presumed (� = 0), but

in truth there is moderate bias (� = 1), power is high, but at the expense of an inated

false rejection rate, at 15% when V E = 30% and 26% when V E = 50%. If zero bias

is presumed and there is actually extreme bias (� = 1), then power is extremely high

and the sizes are extremely inated. This illustrates the importance of accounting for

the possibility of selection bias to avoid being misled. Next, suppose there is no selection

bias, but one conservatively presumes � = 1: Then power drops severely, e.g., to 10%

for detecting a 1/2 log10 mean shift when V E = 50%; compared to 93% if the correct

� = 0 is assumed. For the more moderate assumption � = 1; a much smaller price is

paid, with power dropping to 64%. Thus, making a highly conservative assumption of

maximal selection bias can cause great power loss. This �nding supports the use of a

continuously-indexed sensitivity analysis as proposed here.

The Kolmogorov-Smirnov-type and Anderson-Darling-type tests are expected to have

greater power than the mean-based test for detecting non-mean-shift alternatives. We

briey studied this conjecture by generating placebo group viral loads from a normal

mixture distribution 0:5N(3:50; 0:36) + 0:5N(5:50; 0:36) (e.g., infection with a mild or

virulent virus), and vaccine group viral loads from a mixture of truncated normal dis-

tributions 0:5TruncN(3:50; 0:36) + 0:5TruncN(5:50; 0:81), with truncation point of each

distribution at the 70th percentile. With alternative hypothesis no change in the �rst

component and a 1.5 log10 mean shift in the second component, assuming � = 1; the

Kolmogorov-Smirnov-type test had 78% power while the other tests had between 13%

and 20% power. Thus, if the viral load distributions are expected to di�er in respects

other than a mean-shift, then the Kolmogorov-Smirnov-type test may be preferable.
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5. Example

To illustrate how a sensitivity analysis could be carried out on a forthcoming vaccine trial

dataset, we analyze a single dataset, simulated using Gaussian distributions assuming

np = 45 infections in the placebo group, dV E = 40% (and thus nv = 27 infections in the

vaccine group), a true causal vaccine e�ect to reduce the mean viral load in the always

infected by 0:33 log10, and true � = �neg = �1, i.e., moderate negative selection bias

that leads to lower viral loads in infected vaccine recipients. The true causal and biasing

vaccine e�ects on viral load imply that the net vaccine e�ect on mean viral load is 0.49

log10. For �neg ranging in [�1; 0], we consider testing H0�neg in (9) versus the alternative

hypothesis that vaccination lowers viral load in the always infected.

The �rst step is to produce descriptive plots and summary measures comparing the

observed viral load distributions between the infected subgroups. The average viral loads

are 3.96 and 4.48 in the infected vaccine and placebo groups, respectively. The second step

is to calculate a test statistic for values of � = �neg ranging between 0 and a negative value

that makes the selection bias odds ratio OR = e�� large (e.g., � = �5 yields e�� = 148),

and for the extreme model (� = �1): The third step is to plot the p-value of the test

statistic versus OR, which will always be monotone except for stochastic variations in the

bootstrap. This provides a graphical sensitivity analysis (Figure 2). Fourth, calculation

of the value of � at which the test statistic is exactly statistically signi�cant at the 0.025

level allows one to assess the extent of selection bias needed to lose the signi�cance of the

result. A 0.025 signi�cance level is chosen because the test is 1-sided. In this example

the critical � value for the TM� test statistic is -1.83, which implies the selection odds

ratio must be at least e1:83 = 6:23 before the signi�cance of the test result is lost. The

sensitivity analyses based on the other two test statistics give similar results (Figure 2).

Fifth, an estimation-based sensitivity analysis can be carried out (Figure 3). Suppose
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vaccination must lower mean viral load in the always infected by at least 0.2 log10 to be

considered clinically signi�cant. The value of � at which the lower 95% con�dence limit

for �ACE(�) crosses 0.2 is -0.50, corresponding to a \critical" odds ratio of e0:50 = 1:65.

Sixth, the analyses could be repeated for important subgroups of infected participants.

Seventh, interpretations are made. In this example, a study team might conclude that it

is unlikely that selection bias could fully explain the observed lower viral loads in infected

vaccine recipients, and therefore a genuine viral suppressing e�ect of vaccine in the always

infected is inferred. However, whether the e�ect is clinically signi�cant is inconclusive.

These conclusions would be based on beliefs that a selection bias e�ect with odds ratio

6:23 or higher is implausible, but a selection odds ratio of 1.65 is not unexpected.

Note that if only the hypothesis H0�neg with extreme selection bias �neg = �1 had

been tested, then the team would likely not be able to conclude that vaccination reduced

viral load in the always infected (p-value > 0:20, Figure 2). This illustrates the added

value of a continuously-indexed sensitivity analysis.

6. Discussion

Appropriate interpretation of analyses of vaccine e�ects on viral load is challenging. Two

main reasons are the lack of validation of viral load measures as accurate surrogates for

secondary transmission and disease progression, and the potential for selective e�ects of

the vaccine to bias inferences. Like HHS, we address the second problem, and extend

their work to provide a method of sensitivity analysis over a continuous range of levels

of putative selective e�ects. Since the true amount of selection bias may be considerably

less than the worst-case amounts considered by HHS, the methods developed here may

provide for more powerful assessments.

As illustrated in the Example, an observation of lower viral loads in infected vaccine

recipients compared to infected placebo recipients could be caused partly by a causal
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viral suppressing e�ect of vaccine in the always infected principal stratum and partly by

selective vaccine protection against viruses that produce higher viral loads. Both e�ects

are bene�cial, and the assessment of the net vaccine e�ect (in the infected subgroups)

usefully informs about the overall bene�t of vaccination, and this result should be reported

together with the causal inference for the always infected principal stratum. On the other

hand, for assessing a possible vaccine e�ect to increase viral load, the inference on the

net vaccine e�ect could dangerously mislead. Selection bias could create higher viral

loads in infected vaccine recipients compared to infected placebo recipients, i.e., produce

a negative net vaccine e�ect, even though the vaccine has no adverse causal e�ect on viral

load and has bene�cial V E > 0: Therefore, it is crucial to build robustness to selection

bias into assessments of vaccine harm, to protect against a spurious conclusion that could

prevent use of or slow development of a safe and partially eÆcacious vaccine.

Within the framework of FR, this article develops techniques for causal inference in

the always infected principal stratum. Alternatively, causal inference could be made using

a missing data framework that assumes all randomized subjects will eventually become

HIV infected, and thus at some point will have a viral load value. In such an approach, the

viral load is missing in subjects who have not yet been infected by the time of the analysis,

and causal estimands can be de�ned based on functionals of contrasts of the viral load

distributions for the vaccine and placebo groups. The goal of assessing such estimands is

to compare the viral load distribution between the randomized groups had (contrary to

fact) all subjects been infected during the trial. Rotnitzky and Robins (1997) developed an

inverse probability of censoring weighted estimating equations method that could be used

for causal inference on a mean-di�erence version of this estimand. This technique would

model the viral load by a semiparametric conditional mean model with unspeci�ed error

distribution and the infection probability (i.e., the response probability) by a parametric
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model. If the hazard rate of infection rather than the binary infection probability was

modeled, then Scharfstein, Rotnitzky, and Robins' (1999) method would apply for making

inference on the same estimand. The advantages of these approaches include that they

minimize modeling assumptions, they can incorporate predictors of the infection risk, and

they can be used for sensitivity analysis of the e�ect of misspeci�cation of the model for

infection risk. The drawback of any such missing data approach for the present application

is that the causal estimand may not be relevant or interpretable, because it is unrealistic

to suppose that all subjects would eventually be HIV infected. FR criticize use of such a

causal estimand because it uses nonexistent \a priori" counterfactuals. Inferences for the

always infected subpopulation provide interpretable and practical information for vaccine

recipients who become HIV infected despite vaccination.

In addition to HIV vaccine trials, the methods developed here apply to general random-

ized clinical trials, for sensitivity analyses of causal treatment e�ects in the subpopulation

of subjects who would experience a post-randomization event under either assignment.
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Table 1. For the two randomization assignments Zi = v; p and infection outcomes

Sobs
i � Si(Zi) = 0; 1, the table indicates the basic principal stratum or strata to which

the subjects belong, and the information available on the potential viral loads Yi(v) and

Yi(p). Note that Yi(Z) is de�ned if and only if Si(Z) = 1; Z = v; p; and the principal

strata of uninfected placebo recipients and of infected vaccine recipients are known by

assumption A2.

Randomiz. Observed
Assignm. Infection Principal Stratum fSi(v); Si(p)g and

Zi Status Sobs
i Information on Potential Viral Loads Yi(v); Yi(p)

vaccine uninfected Protected or Never-infected

fSi(v) = 0; Si(p) = 1g fSi(v) = 0; Si(p) = 0g
Yi(v) unde�ned Yi(v) unde�ned
Yi(p) unobserved Yi(p) unde�ned

placebo uninfected Never-infected

fSi(v) = 1; Si(p) = 0g fSi(v) = 0; Si(p) = 0g
(empty set by A2) Yi(v) unde�ned

Yi(p) unde�ned

vaccine infected Always-infected

fSi(v) = 1; Si(p) = 0g fSi(v) = 1; Si(p) = 1g
(empty set by A2) Yi(v) observed

Yi(p) unobserved

placebo infected Protected or Always-infected

fSi(v) = 0; Si(p) = 1g fSi(v) = 1; Si(p) = 1g
Yi(v) unde�ned Yi(v) unobserved
Yi(p) observed Yi(p) observed
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Table 2. Power � 100% for detecting a 0, 1/3, and 1/2 log10 mean-shift alternative, over

and above any selection bias induced by the true �; based on a 1-sided 5% level test

Nonparametric Kolmogorov- Anderson-
True Presumed Mean Smirnov Darling
� � 0 1/3 1/2 0 1/3 1/2 0 1/3 1/2

V E = 30%
0 0 4.8 73.8 96.8 5.4 69.0 91.2 4.0 72.0 94.4

0 1 3.2 49.8 82.0 3.0 44.8 78.2 2.4 46.8 79.6
0 1 0.2 15.8 36.0 0.8 16.8 37.6 0.2 15.4 33.6
1 0 14.6 91.8 99.8 15.6 85.4 97.8 14.4 90.2 99.2
1 1 5.8 67.6 94.6 7.2 63.4 90.8 5.4 65.4 94.0

1 1 1.8 26.0 52.2 1.4 27.6 51.8 1.6 25.8 48.8
1 0 69.6 100 100 76.2 100 100 79.8 100 100
1 1 37.4 95.8 100 42.6 97.0 100 45.8 97.4 100
1 1 8.8 55.0 83.2 12.0 55.2 82.4 10.8 57.2 86.2

V E = 50%
0 0 6.6 70.0 93.2 5.8 63.8 89.8 5.8 66.4 92.6

0 1 1.0 30.6 64.2 0.4 25.8 58.0 0.2 26.6 61.2
0 1 0.2 3.4 10.2 0.4 3.6 9.0 0.2 2.8 7.4
1 0 25.8 92.2 99.0 24.8 87.4 99.0 24.0 91.0 99.2
1 1 5.0 62.4 88.2 5.8 57.2 84.2 4.2 60.6 87.8

1 1 0.4 9.8 30.6 0.2 8.6 25.0 0.2 8.2 24.6
1 0 94.8 100 100 97.2 100 100 97.6 100 100
1 1 56.8 99.2 100 72.6 99.8 100 69.0 99.6 100
1 1 5.2 59.2 84.2 6.0 55.6 79.4 6.4 57.8 82.0

25

http://biostats.bepress.com/uwbiostat/paper208



Figure Legends

Figure 1. The upper panel shows plots of the density of Yi(p) for subjects infected under

randomization to placebo fSi(p) = 1g (total area) partitioned into the subdensity for

\protected" subjects not infected under randomization to vaccine fSi(v) = 0; Si(p) = 1g

(hatchmarked area = V E) and the subdensity for subjects \always infected" under ran-

domization to either vaccine or placebo fSi(v) = 1; Si(p) = 1g (unshaded area = 1�V E).

Using model (6) with � = �1;�1; 0; 1; or 1; the 5 panels reect di�erent assumptions

about how the vaccine relative risk w(yj�; �) = RR(y) = Pr(Si(v) = 1jYi(p) = y; Si(p) =

1) depends on the potential viral load (PVL) Yi(p) = y for subjects infected under ran-

domization to placebo. The lower panel shows corresponding plots of the logistic weight

function w(yj�; �). The hatchmarked areas equal V E = 0:30; and � was calculated from

1� V E =
R
1

�1
w(zj�; �)dF(p)(z) with F(p)(�) given a normal distribution.

Figure 2. Based on the nonparametric mean-based, Anderson-Darling-type, and Kolmogorov-

Smirnov-type test statistics, the �gure shows the 1-sided bootstrap p-value plotted as a

function of the selection bias odds ratio OR = e�� = e��neg ; e� is the odds ratio of infec-

tion under randomization to vaccine given infection under randomization to placebo with

viral load y versus with viral load y � 1. If the magnitude of selection bias is believed

to be less than OR = e1:83 = 6:23; then a signi�cant causal e�ect of vaccination to lower

viral load in the always infected principal stratum can be inferred.

Figure 3. Point estimates b�ACE(�) = �TM� (bold line) and bootstrap 95% con�dence in-

tervals (dotted lines) for the average causal e�ect of vaccine �ACE(�) =
R
1

�1
yfdF alw:inf

(p) (y)�

dF alw:inf
(v) (y)g in the always infected principal stratum as a function of the selection bias

odds ratio OR = e��pos (left side of 0) and of OR = e��neg (right side of 0); e� is the odds
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ratio of infection under randomization to vaccine given infection under randomization to

placebo with viral load y versus with viral load y�1. If the magnitude of selection bias is

believed to be less than OR = e0:50 = 1:65; then a signi�cant causal e�ect of vaccination

to lower the mean viral load by at least 0.2 log10 in the always infected principal stratum

can be inferred.
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