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Improving GSEA for Analysis of Biologic
Pathways for Differential Gene Expression

across a Binary Phenotype

Irina Dinu, John D. Potter, Thomas Mueller, Qi Liu, Adeniyi J. Adewale, Gian S.
Jhangri, Gunilla Einecke, Konrad S. Famulski, Philip Halloran, and Yutaka Yasui

Abstract

Gene-set analysis evaluates the expression of biological pathways, or a priori de-
fined gene sets, rather than that of single genes, in association with a binary phe-
notype, and is of great biologic interest in many DNA microarray studies. Gene
Set Enrichment Analysis (GSEA) has been applied widely as a tool for gene-set
analyses. We describe here some critical problems with GSEA and propose an
alternative method by extending the single-gene analysis method, Significance
Analysis of Microarray (SAM), to gene-set analyses (SAM-GS). Specifically, we
illustrate, in a simulation study, that GSEA gives statistical significance to gene
sets that have no gene associated with the phenotype (null gene sets), and has very
low power to detect gene sets in which half the genes are highly associated with
the phenotype (truly-associated gene sets). SAM-GS, on the other hand, performs
perfectly in the simulation study: none of the null gene sets is identified with
statistical significance, while all of the truly-associated gene sets are. The two
methods are also compared in the analyses of three real microarray datasets and
relevant pathways, the diverging results of which clearly show the advantages of
SAM-GS over GSEA, both statistically and biologically.
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1. Introduction 
Some DNA microarray studies may target discovery of single genes that are associated 
with a phenotype.  Useful statistical approaches have been proposed for such single-gene
analyses, for example, Significance Analysis of Microarray (SAM) in (1).  In many 
instances, however, the goal of studies is in the assessment of biologic pathways, or a 
priori defined gene sets, in association with a phenotype, i.e., gene-set analyses.  
Computationally, gene-set analyses require an additional consideration over single-gene 
analyses, namely, the incorporation of gene sets into an association measure.  Mootha et 
al. (2) proposed Gene Set Enrichment Analysis (GSEA) for gene-set analysis, utilizing 
the Kolmogorov-Smirnov statistic to measure the degree of differential gene expression 
in a gene set across binary phenotypes.  GSEA was revised in 2005 by the same research 
team, replacing the Kolmogorov-Smirnov statistic with its weighted version to avoid 
certain deficiencies in the original GSEA method (3). 

We propose here an alternative approach, an extension of SAM, to gene-set analysis, 
called hereafter SAM-GS.  This is motivated by our observation that GSEA, in both the 
original and revised versions, fails to satisfy certain required properties that a gene-set 
analysis method should satisfy: for example, a gene-set analysis should not indicate an 
association for a gene set in which no gene is associated with the phenotype.  In this 
paper, we first illustrate the behavior of GSEA in relation to a few required properties of 
a gene-set analysis method and compare it with the behavior of SAM-GS, using a mouse-
microarray kidney-transplant dataset.  We then re-analyze, by SAM-GS, three DNA 
microarray datasets with which the application of GSEA was illustrated in (3), showing 
appreciable differences in the analysis results.  The differences of the results are 
discussed from both biologic and statistical points of view, pointing out clear advantages 
of SAM-GS over GSEA.    

2. Methods 
GSEA for gene-set analyses
A gene-set analysis for an a priori defined set of genes S in a total of N genes (or probes) 
on a DNA microarray is a test of the null hypothesis that the expression pattern of S is not 
associated with a phenotype of interest, D.  To simplify the discussion, we will consider 
only a phenotype with two categories, {0, 1}: e.g. presence or absence of a disease.  As 
biologists are often interested in testing multiple gene-sets {S1, …, Sk}, we will also 
consider a gene-set analysis for multiple gene-sets, following our discussion of an 
individual gene-set. 

The revised version of GSEA by (3), for an individual gene-set, proceeds as follows.

GSEA Steps 
1) Compute the Pearson correlation (or another metric) between each of the N genes with 
a phenotype D, where the correlation or another metric of the ith gene is denoted by ri. 

2) Order the N genes by their correlation values from the maximum to the minimum (the 
ordered list is denoted by L). 
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3) Compute the Enrichment Score (ES): start with ES = 0; walk down the ranked list L, 
from the top rank (i=1) to the last rank (i=N), increasing ES by | | / | |ji

j S

r r
∈

∑  if the ith gene 

belongs to the gene set S, and decreasing ES by 1/( | |)N S−  otherwise, where | |S  is the 
number of genes in the set S. 

4) Take the absolute value of the maximum deviation from zero of the ES values among 
the N genes as the test statistic for the gene set S. 

5) Permute the labels of the phenotype D and repeat steps 1)- 4).  Repeat until all (or a 
large number of) permutations are considered. 

6) Statistical significance for the association of S and D is obtained by comparing the 
observed value of the test statistic from 3) and its permutation distribution from 5). 

The initial version of GSEA proposed in Step (2) used 1/ | |S , instead of | | / | |ji
j S

r r
∈

∑ , for 

increasing the ES for each gene in S.  The use of | | / | |ji
j S

r r
∈

∑ , or more generally 

| | / | |
pp

ji
j S

r r
∈

∑ , was motivated by the need to reduce the ES values and the statistical 

significance of sets clustered near the middle of the ranked list (see Figure 1 and Table 1 
in (3)).  Although the modified version of GSEA was aimed at reducing the statistical 
significance of sets not exhibiting biologically relevant correlation with the phenotype, 
serious problems remain with GSEA as demonstrated below. 

The proposed method, SAM-GS
The main aim of analyzing an individual gene-set is to distinguish between the two 
biologic conditions (phenotype) based on multivariate measurements of the expression of 
genes in the gene set.  GSEA tests a null hypothesis that rankings of the genes in a gene 
set according to an association measure with the phenotype categories (e.g., correlation) 
are randomly distributed over the rankings of all genes, using Kolmogorov-Smirnov 
statistic.  SAM-GS, on the other hand, tests a null hypothesis that the mean vectors of 
expressions of genes in a gene set does not differ by the phenotype of interest. 

Our proposed SAM-GS method is based on individual t-like statistics from SAM, 
addressing the small variability problem encountered in microarray data, i.e., reducing 
the statistical significance associated with genes with very little variation in their 
expressions. SAM-GS for an individual gene-set can be summarized in a few steps. 

SAM-GS Steps: 
1) For each of the N genes, calculate the statistic d as in SAM for a single-gene analysis: 

1 2

0

( ) ( )

( )i

x i x i
d

s i s

−
=

+

, 

where the ‘gene-specific scatter’ ( )s i  is a pooled standard deviation over the two groups 
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of the phenotype, and 0s  is a small positive constant that adjusts for the small variability 

encountered in microarray data (1). 

2) Compute the SAMGS test statistic corresponding to set S : 
| |

2

1

S

i
i

SAMGS d
=

=∑

3) Permute the labels of the phenotype D and repeat 1) and 2).  Repeat until all (or a large 
number of) permutations are considered. 

4) Statistical significance for the association of S and D is obtained by comparing the 
observed value of the SAMGS statistic from 2) and its permutation distribution from 3). 
  
Note that SAM-GS initially measures the gene-expression difference across the binary 
phenotype in each gene i of the gene set S using di, where the differences are standardized 
across the genes for their degrees of scatter with the denominators of di’s, {s(i) + s0}.  It 
then summarizes these standardized differences in all the genes in the gene set S by 
SAMGS.  The analysis of multiple gene sets can be accommodated in SAM-GS by 
estimating false discovery rates (FDRs) from p-values of individual sets using the q-value 
method of (6). 

A Simulation Experiment
To illustrate the differences between SAM-GS and GSEA, we compared them on the 
following requisite properties for any method designed to perform a gene-set analysis:  

(a) If the gene set S consists of genes that are consistently not correlated, or are variably 
weakly correlated and not correlated, with the phenotype D (e.g., all genes with small 
values of | |r ), the method should not indicate that S is associated with D.  

(b) If the gene set S consists of a mix of genes with high- and low-correlation with the 
phenotype, such that an appreciable subset of the genes in S are highly correlated with 
the phenotype D (e.g., half of the genes in S with large values of | |r ), the method 
should indicate that S is associated with D.  

(c) The size of the gene set S should not greatly alter the statistical significance in (a) and 
(b).   

We performed two simulations tests to compare the performance of GSEA and SAM-GS. 

Test 1: Sample n  genes by a simple random sampling as a hypothetical gene set 
from a group of genes with low correlation with the phenotype, for example, 
genes with | | 0.4r <  or 0.1.  Test the association of this n-gene set with the 
phenotype.  Repeat 100 times to check property (a).

Test 2: Sample n  genes by a stratified random sampling as a hypothetical gene 
set such that half of the genes in the set are highly correlated with the phenotype, 
for example, with | | 0.6r ≥  or 0.7, and the other half with | | 0.6r <  or 0.7.  Test 
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the association of this n-gene set with the phenotype.  Repeat 100 times to check 
property (b). 

In Test 1, our simple random sampling from the no-or-weak correlation region creates 
gene sets that approximate to the null hypothesis such that their members are consistently 
not correlated with the phenotype (i.e., they have a mixture of genes with correlations 
between –0.1 and 0.1) or are variably weakly correlated and not correlated (correlations 
between –0.4 and 0.4, including many around zero).  These gene sets should not be called 
significantly associated with the phenotype.  In Test 2, as half of the genes in the gene set 
are highly correlated with the phenotype, these gene sets should be identified as 
significantly associated with the phenotype.  

The two tests were performed based on the data from the mouse-microarray kidney 
transplant study.  In this study, we compared two experimental groups of mouse kidney 
transplants: fully MHC mismatched allografts and MHC identical isografts.  A more 
detailed description of the study is given in the Appendix.  Briefly, in both groups, the 
kidneys have undergone the same surgical procedure of transplantation, but in addition 
the allograft develops the histologic lesions of rejection due to the immune response by 
the host, while the isograft does not develop these lesions due to an identical genetic 
background.  We have studied a full timecourse between days 1 and 42 post transplant; 
the alloimmune response is fully developed at days 5-7, and the injury response in the 
isografts also peaks at days 5-6.  To simplify the comparison between rejecting allografts 
and non-rejecting isografts, we have therefore selected the data from days 5 and 7 as the 
basis of this analysis.  A total of 12 samples were analyzed: 3 samples each at day 5 and 
day 7 in allografts, 4 samples in day 5 isografts, and 2 samples in day 7 isografts.  The 
microarray data were obtained by hybridizing RNA to Affymetrix MOE 430 2.0 
microarrays.  These arrays contain 45,099 probesets.  We considered a gene set size n of 
10, 30, 50, and 100. 

Real data analyses
We compared the performance of the two methods, GSEA and SAM-GS, on the analyses 
of biologically defined gene sets using three microarray datasets considered in (3): male 
vs. female lymphoblastoid cells; p53 wild-type vs. mutant cancer cell lines; and ALL vs. 
AML leukemia cells. The comparison used GSEA results for the three examples, 
downloaded from GSEA web-page: http://www.broad.mit.edu/gsea.  To run SAM-GS, 
we downloaded the datasets and gene-set subcatalogs C1 and C2 from the above address.  
The same datasets and subcatalogs were used for both GSEA and SAM-GS. 

We did not analyze the lung adenocarcinoma data of three studies (Boston, Michigan, 
and Stanford studies) in (3) as such an analysis is methodologically problematic: the 
Michigan study included only patients with stage I or III lung adenocarcinoma, whereas 
the Boston and Stanford studies did not restrict the stages; the binary phenotype of 
interest, death, was defined using censored survival data, where the length of follow-up to 
ascertain death varied appreciably both by patient and across studies (the median follow-
up was 49.9, 29.5, and 17.5 months in the Boston, Michigan, and Stanford studies, 
respectively), leading to inconsistent ascertainment of the binary phenotype (death) 
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across patients and studies (patients with a longer follow-up had a higher chance of being 
ascertained to have died); and no adjustment was applied to control for possible 
differences across the studies in treatment, tumor characteristics, and demographics of the 
patients. 

3. Results 
Simulation experiments
We used two simulation tests to check whether GSEA and SAM-GS satisfy the properties 
of gene-set analysis methods described in the Methods Section.  The distribution of the 
Pearson correlation coefficients of all genes with the phenotype in the mouse data is 
given in the Appendix.  To run GSEA, we used the Desktop application downloaded 
from http://www.broad.mit.edu/gsea, and the options specified in (3), that is, the Pearson 
correlation of the gene expressions with the phenotype to rank the genes, and weighted 
ES with the default option 1p = . 

Figure 1 shows the ES walk for one of the sets (GSEA p-value = 0), generated under Test 
1.  The results shown in Table 1 indicate that GSEA does not satisfy requisite properties 
(a) or (b).  Moreover, GSEA does not satisfy property (c), as the performance of the 
method varies greatly with gene-set size. 

[Figure 1 about here.] 
[Table 1 about here.] 

The results of these tests illustrate two situations where GSEA fails.  One is where genes 
in a gene set cluster somewhere other than in the high-correlation region (e.g., all 
individual genes could have no or very low correlation with the phenotype but GSEA 
indicates that the total gene set is statistically significantly associated with the 
phenotype).  In short, GSEA will indicate that gene sets with clear clustering are 
statistically significant, regardless of where the clustering occurs.  The other situation is 
where a gene set has a mixture of highly correlated genes and weakly correlated genes.  
This mixture within a gene set seems biologically plausible: not all genes in a phenotype-
associated pathway will show changes in relation to the phenotype.  Indeed, this is the 
basis on which GSEA was originally applied to three lung cancer sets to show that lack of 
consistent genes did not mean lack of common gene sets.  In such mixed situations, 
GSEA has very poor power. 

To check whether SAM-GS satisfies the three requisite properties of a gene-set analysis, 
the same tests were applied as for GSEA, using the same randomly-sampled simulated 
gene sets.  The results of Tests 1 and 2 displayed in Table 1 indicate that SAM-GS 
satisfies properties (a) and (b).  Moreover, SAM-GS satisfies property (c), as its 
performance did not vary with the size of the gene set. 

Gene-set analyses of the three datasets
We compared the performance of the two methods, GSEA and SAM-GS, on the analyses 
of biologically defined gene sets using three microarray datasets considered in (3): male 
vs. female lymphoblastoid cells; p53 wild-type vs. mutant cancer cell lines; and ALL vs. 
AML leukemia cells.  The analysis results by GSEA and SAM-GS are summarized in 
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Table 2.  In the sex-comparison analysis, both methods showed associations (FDR ≤
0.01) with the three Y associated gene sets, the testis-expressed gene set (GSEA FDR = 
0.02), and the gene set with genes that escape X inactivation.  In addition, SAM-GS 
established an association with the chrXp22 gene set (SAM-GS FDR ≤ 0.01 vs. GSEA 
FDR = 1.00).  In the p53-comparison analysis, SAM-GS and GSEA identified a subset of 
gene sets with an FDR ≤ 0.01 that includes the gene sets of hsp27, p53_UP (GSEA FDR 
= 0.013), p53 hypoxia, radiation sensitivity (GSEA FDR = 0.07), and p53 (BioCarta).  
However, SAM-GS identified additional 31 gene sets with an FDR ≤ 0.01, all of which 
had an FDR ≥ 0.49 for GSEA.  These gene sets are shown in Table 3.  In the leukemia-
comparison dataset, the two methods gave even more discrepant results than the p53-
comparison analysis.  GSEA identified only five gene sets with an FDR ≤ 0.25 (none 
with an FDR ≤ 0.01), whereas all of the 182 gene sets were statistically significant (FDR 
≤ 0.01) by SAM-GS.  Note that the single-gene analysis showed that 80% of the single 
genes in this comparison had an FDR ≤ 0.25, which is in line with the gene-set analysis 
results of SAM-GS. 

[Tables 2 and 3 about here.] 

These discrepancies between the two methods are summarized along with the sensitivity 
and specificity of the GSEA p-value ≤ 0.05 and the area under the receiver operating 
characteristic curve of GSEA p-value in predicting the SAM-GS p-value ≤ 0.05 (Table 
2). 

4. Discussion 
GSEA
Our Tests 1 and 2 showed that GSEA does not meet some requisite criteria for a gene-set 
analysis method.  Although the gene sets in Tests 1 and 2 are randomly-sampled 
simulated sets, they are not unrealistic gene sets.  For example, a Test 1 situation was 
encountered in the analysis of the sex dataset, where GSEA gave the “cell-cycle arrest 
genes” a p-value of 0.015 in association with sex (SAM-GS p-value = 0.84).  No gene in 
this gene set has an absolute value of the Pearson correlation of 0.33 or greater, or the 
SAM p-value < 0.06: this clustering is thus identified incorrectly by GSEA as showing a 
significant association, failing Test 1.  A Test 2 situation was encountered, for example, 
in the analysis of the leukemia dataset, where GSEA failed to identify the gene set 
“chr10q24”, even though 13 of the 43 genes in the gene set had absolute values of the 
Pearson correlation of 0.5 or greater (4 genes greater than 0.7) and the chromosomal 
location of the gene set is biologically relevant given the role of HOX11 in T-cell ALL.  
The use of GSEA is subject to appreciable false positive and negative findings, as 
illustrated by the two tests and the results shown in Table 2. 

Another critical problem of GSEA is its relative ranking of genes in a gene set in relation 
to the other genes outside of the gene set.  The use of a relative measure in GSEA, rather 
than an absolute measure, means that important information on the degree of association 
between each gene and the binary phenotype is discarded.  For example, the leukemia 
dataset had 80% of its 10,056 individual genes with an FDR ≤ 0.25.  Regardless of 
whether such clear differences in gene expression across the binary phenotype are 
determined by biology, or by more mundane (and biologically irrelevant) differences in 
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sample collection or handling, a gene-set analysis of this dataset should find that many 
gene sets are associated with the phenotype.  GSEA, however, found only five gene sets 
with an FDR ≤ 0.25 in the leukemia-comparison analysis, inconsistent with the single-
gene analysis results. The cause of the inconsistency is the use of the relative ranking in 
GSEA.  In contrast, SAM-GS found all gene sets in the leukemia dataset to have an FDR 
≤ 0.01. 

A related, perhaps less serious, issue with GSEA is that, when a single gene set is of 
biologic interest, the SAM-GS analysis requires measurement only of the expression of 
the genes in the gene set to construct the test statistic (except the calculation of 0s ), 

whereas GSEA requires measurement of the expression of all genes to provide a relative 
ranking of all genes.  The expression levels of the other genes should not affect the 
inference on a single gene set of interest, if the single set is, indeed, the only biologically 
relevant variable. 

Another problematic aspect of GSEA is that its enrichment score considers genes with 
positive and negative associations with the phenotype in a contradictory manner.  
Specifically, positively associated genes increase the test statistic, whereas negatively 
associated genes decrease it, even if they are all members of a gene set and both are 
associated with the phenotype.  Thus, a gene set with a mix of genes with positive and 
negative associations with the phenotype, although biologically plausible (for instance, 
due to feedback loops in pathways) is not appropriately evaluated for association with the 
phenotype by the enrichment score and, therefore, has an improperly low probability of 
being detected as a phenotype-associated gene set by GSEA. 

A gene-set analysis utilizes existing biologic knowledge that maps single genes into gene 
sets or pathways.  Because of the utilization of existing knowledge in the analysis, a well 
conducted gene-set analysis can be remarkably powerful.  The p53 analysis illustrates 
this point.  Although a very small proportion of individual genes had low p-values in the 
p53 dataset, SAM-GS indicated larger proportions of gene sets with low p-values.  This is 
because a valid gene-set analysis would take into account a tendency among multiple 
genes in a gene set. Thus, even if the association of each gene with the phenotype is only 
moderate, a collection of such genes can be indicated as a phenotype-associated gene set; 
genes in a gene set need not have the same degree and direction of association with the 
phenotype for the gene set to be identified as statistically significant by SAM-GS.  

In addition to the leukemia-comparison analysis discussed above, which showed an 
advantage of SAM-GS over GSEA empirically through the consistency of the gene-set 
analysis results with the single-gene analysis results, the other two DNA-microarray 
analyses (sex- and p53-comparison analyses) provided empirical biologic evidence 
supporting the advantage of SAM-GS over GSEA.  Regarding the sex-comparison 
analysis, Subramanian et al. (3) specifically argue that they would not expect to find 
enrichment for bands on the X chromosome because most X-linked genes are randomly 
silenced in females and, therefore, are unlikely to show a male-female (gene-dose) 
difference.  This argument has general merit; however, in the specific case of the 
chrXp22 gene set, it does not hold because, on the distal portion of the short arm of X, 
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there is a cluster of genes that escape X-inactivation.  Indeed, the top five genes of the 
chrXp22 gene set escape inactivation: two of the five are members of the X-inactivation-
escape gene set whose FDR was ≤ 0.01 by both methods; and the other three have been 
reported to escape X-inactivation (7-9). 

The differences in the results of the p53-comparison analysis illuminate biologically 
relevant performance differences between the two methods.  It is appropriate to ask 
whether the 31 additional pathways identified by SAM-GS over GSEA are plausibly 
associated with the presence vs. absence of p53.  Of the 31 gene sets, 11 actually involve 
p53 directly as a member.  A further 6 gene sets directly involve the extrinsic and 
intrinsic apoptosis pathways (10), 3 involve the cell-cycle machinery, and 3 involve 
cytokines and/or JAK/STAT signaling (11).  Each of these 12 gene sets, then, is in a 
direct, well-established relationship with aspects of p53 signaling.  Of the remaining 8 
gene sets, 6 have plausible, if less well established, links with p53.  In the Ck1 pathway, 
cdk5 phosphorylates p53 so the presence vs. absence of p53 is likely to modify 
profoundly the effectiveness of this pathway (12).  Ets1 (ets pathway) has been shown to 
be essential, in mouse embryonic stem cells, to maintain the ability to undergo UV-
induced, p53-dependent apoptosis.  Ets1, more broadly, may be necessary for p53-
dependent gene transactivation (13).  Akt and p53 are, respectively, essential to the 
transduction of anti-apoptotic and pro-apoptotic pathways.  There is an integrated 
negative feedback loop whereby p53-dependent down regulation of Akt promotes cell 
death but cell survival signals will recruit Akt, leading to activation of Mdm2 and the 
inhibition of p53-dependent apoptosis (14).  This may account, in part, for the association 
between the presence vs. absence of p53 and differences in the SA-TRKA receptor 
pathway.  Proline oxidase is induced by p53 and mediates apoptosis via a calcineurin-
dependent pathway (15).  Coproporphyrinogen oxidase (CPO) is a key compound of the 
MAP 00860 porphyrin/chlorophyll metabolism gene set.  It catalyzes a rate-limiting step 
in heme biosynthesis and may contribute to mitochondrial redox balance.  It has recently 
been shown to be regulated by p53 (16).  Finally, the Wnt and p53 pathways have also 
been shown to be linked via pro-apoptotic Dkk1, a wnt antagonist (17). 

SAM-GS

Regarding the form of SAMGS test statistic, 
| |

2

1

S

i
i

d
=

∑  is simply the L2-norm of the t-like-

statistic vector 1 2 | |( , , , )sd d d d= L , the length of the line segment joining the two 

phenotypes’ mean gene-expression vectors of a gene set S.  Our null hypothesis is that the 
mean vectors of expressions of genes in a gene set S do not differ by the phenotype of 
interest (i.e., this line-segment length is zero), a two-sample multivariate mean test in 
statistics.  The classical multivariate statistics method for a two-sample mean test, 
Hotelling’s 2T , addresses this question, but it cannot be applied when 1 2| | 2S n n> + − , 

where 1n  and 2n  are the sample sizes in the two groups defining the phenotype D.  We 

would like to emphasize that this condition is often unmet in gene-set analyses of DNA 
microarray data. Dempster (4,5) introduced a test statistic for comparing highly 
multivariate samples of two groups, an alternative for Hotelling’s T2, when the number of 
multivariate measurements is large, relative to the sample sizes. Using Dempster’s test in 
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the context of microarray data, a potential candidate for a test statistic to be used in Step 2 
of SAM-GS, would be the weighted Dempster’s (WD) statistic: 

| | | |
2 2

1 1

/ [ ]
S S

i i
i i

WD d E d
= =

=∑ ∑ , 

where 
| |

2

1

[ ]
S

i
i

E d
=

∑  in the denominator is the average of ( 1 2 2+ −n n ) statistically-

independent quantities that have the same mean and variance as the numerator 
| |

2

1

S

i
i

d
=

∑
under the null hypothesis, created by an orthonormal transformation of multivariate gene 
expressions in the set S. This test statistic seems to have the advantage of taking into 
account the multivariate structure of the gene expression measurements in a gene set by 
dividing the numerator, the L2-norm of the mean-vector difference, by its approximate 
expectation. However, since a permutation-based test is used, the denominator of WD 
statistic is unnecessary: as Dempster (5) stated, a permutation test based on the numerator 
only is equivalent to using the quotient.  Given the computational simplicity and the use 
of permutation in SAM-GS, the L2-norm used in SAMGS is preferred over WD. 

The L1-norm of 1 2 | |( , , , )sd d d d= L , 
1

| |
S

i
i

d
=

∑ , can be considered, similar to Chung and 

Fraser (18) who proposed the L1-norm as an alternative to Dempster’s use of the L2-norm.  
While one might expect the two norms to give similar performances overall, since the L1-
norm would be less sensitive to extreme values than the L2-norm, the L1-norm may be 
less powerful in detecting a gene-set with a small number of genes being strongly 
associated with the phenotype.  Test 2 simulation above confirmed this point: as the 
proportion of genes in a gene set that are correlated with the phenotype ( | | 0.6r ≥ ) 
becomes smaller than approximately 30%, the two norms performs differently and the L1-
norm is less powerful in detecting the gene set being associated with the phenotype (data 
not shown). 

To account for multiple comparisons (statistical testing of many hypotheses) when 
multiple gene sets are to be tested, SAM-GS takes the same approach as SAM, estimating 
a q-value, an upper limit for the FDR, for each gene set.  The q-value of a gene set can be 
determined solely from the p-values of all gene sets tested (6).  The collection of p-values 
of all gene sets contains information, not only on the statistical significance of each gene 
for its association with the phenotype, but also on the proportion of gene sets that are not 
associated with the phenotype, the “null gene-set proportion.”  Note that the null gene-set 
proportion is determined by biology: the phenotype is either biologically associated or 
not associated with each gene set.  However, the p-value is a function of sample sizes and 
noise levels in gene-expression measurements as well as the degree of underlying 
biological associations.  Thus, even if a strong biologic association between a gene set 
and the phenotype exists, because of small sample sizes and/or high measurement noise 
levels (features of many DNA microarray observations and experiments), the p-value of 
the gene set can be large.  This is another aspect of the p53 analysis discussed above, 
where many gene sets have low FDR estimates in spite of the fact that the p-values are 

Hosted by The Berkeley Electronic Press



10

not correspondingly low: this is due to an estimated small null gene-set proportion which 
lowers FDR estimates. 

In conclusion, GSEA has some serious problems as a method for gene-set analysis, 
potentially leading to unnecessarily high false-positive and false-negative discovery rates.  
SAM-GS, based on the SAM t-like statistic, on the other hand, is statistically sound and 
has advantages, as illustrated in this paper, from both statistical and empirical biologic 
perspectives. 

An Excel Add-In for performing SAM-GS is available for public use at 
http://www.ualberta.ca/~yyasui/homepage.html.  

http://biostats.bepress.com/cobra/art16
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Figure 1.  An illustration of a statistically-significant GSEA result with 100 genes 

selected at random from weakly correlated genes with | | .4r < . 
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Table 1. Performance of GSEA and SAM-GS in testing the statistical significance (p-
value ≤ 0.05) of hypothetical gene sets in relation to the phenotype in a mouse-
microarray study. 

Set Size 

Test

Pearson correlation 

of genes in the gene set with 

the phenotype 

Methods 

10 30 50  100 

GSEA 61% 100% 100% 100%
| | .1r <

SAM-GS 0% 0% 0% 0% 

GSEA 0% 42% 76% 99% 

1 

| | .4r <

SAM-GS 0% 0% 0% 0% 

GSEA 1% 6% 15% 21% Half of genes with | | .6r ≥ , 

other half with | | .6r < . SAM-GS 100% 100% 100% 100%

GSEA 9% 22% 39% 74% 
2 

Half of genes with | | .7r ≥ , 

other half with | | .7r < . SAM-GS 100% 100% 100% 100%

http://biostats.bepress.com/cobra/art16



15

Table 2. Results of the analyses of three real datasets by GSEA and SAM-GS 

# of gene sets 

with FDR ≤ 0.01 

# of gene sets 

with FDR ≤ 0.25 

Dataset 

% of probes 

with 

FDR* ≤ 0.25 
GSEA SAM-GS GSEA SAM-GS 

Sensitivity/ 

Specificity 

(AUC†) 

of GSEA‡

Sex 0.1% 4 5 6 5 0.78 / 0.98 (0.94) 

p53 0.3% 3 36 6 308 0.21 / 0.94 (0.68) 

Leukemia 79.9% 0 182 5 182 0.06 / NA§ (NA§) 

* FDR = False discovery rate estimate 
† AUC = Area under the ROC curve 
‡ Taking SAM-GS p≤0.05 as the target to be predicted 
§ All gene sets in the leukemia dataset had p≤0.05 
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Table 3. The 31 gene sets for which SAM-GS and GSEA strongly disagreed (SAM-GS 
FDR ≤ 0.01, but GSEA FDR ≥ 0.49) in the p53-comparison analysis 

GSEA SAM-GS p53 LINK 
Gene Set 

FDR p-value FDR p-value  

ATM Pathway 0.87 0.21 ≤ 0.01 < 0.001 Pathway member 

BAD Pathway 0.57 0.04 ≤ 0.01 < 0.001 Apoptosis 

Calcineurin Pathway 0.84 0.13 ≤ 0.01 < 0.001 p53-induced proline oxidase mediates apoptosis via 

a calcineurin-dependent pathway (15) 

Cell cycle regulator 0.90 0.29 ≤ 0.01 < 0.001 Cell cycle 

Mitochondria pathway 0.88 0.32 ≤ 0.01 < 0.001 Apoptosis 

p53 signaling pathway 0.51 0.01 ≤ 0.01 < 0.001 Pathway member 

Raccycd Pathway 0.83 0.56 ≤ 0.01 < 0.001 Cell cycle 

SA_TRKA_RECEPTOR 0.83 0.34 ≤ 0.01 < 0.001 Integrated negative feedback loop between Akt and 

p53 (14) 

bcl2family and reg. network 0.83 0.42 ≤ 0.01 0.001 Apoptosis 

Cell cycle arrest 0.98 0.49 ≤ 0.01 0.001 Cell cycle 

Ceramide Pathway 0.88 0.30 ≤ 0.01 0.001 Apoptosis 

DNA DAMAGE SIGNALLING 0.85 0.23 ≤ 0.01 0.002 Pathway member 

SIG_IL4RECEPTOR_IN_B_LYMPHOCYTES 0.93 0.27 ≤ 0.01 0.002 Cytokines; JAK/STAT signaling 

Cell cycle Pathway 0.89 0.72 ≤ 0.01 0.003 Pathway member 

G2 Pathway 0.81 0.50 ≤ 0.01 0.003 Pathway member 

Chemical Pathway 0.53 0.04 ≤ 0.01 0.005 Pathway member 

Drug resistance and metabolism 0.86 0.08 ≤ 0.01 0.005 Pathway member 

G1 Pathway 0.81 0.37 ≤ 0.01 0.005 Pathway member 

Breast cancer estrogen signaling 1.00 0.85 ≤ 0.01 0.006 Pathway member 

Ca_nf_at_signaling 0.78 0.08 ≤ 0.01 0.007 Apoptosis (and cytokines) 

Cytokine Pathway 0.53 0.05 ≤ 0.01 0.007 Cytokines 

ST_Interleukin_4_Pathway 0.84 0.07 ≤ 0.01 0.007 Cytokines; JAK/STAT signaling 

CR_DEATH 0.86 0.31 ≤ 0.01 0.008 Pathway member 

MAP00860: Porphyrin & chlorophyll metabolism 0.92 0.29 ≤ 0.01 0.010 CPO regulated by p53 (16) 

Ck1 Pathway 0.49 0.02 ≤ 0.01 0.011 Cdk5 phosphorylates p53 (12) 

Hivnef Pathway 0.95 0.48 ≤ 0.01 0.011 Apoptosis 

Ets Pathway 0.79 0.45 ≤ 0.01 0.012 Ets1 required for p53 transcriptional activation in 
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UV-induced apoptosis (13) 

ST_Wnt_Ca2_cyclic_GMP_Pathway 0.80 0.13 ≤ 0.01 0.012 At least one known link between wnt and p53 (17) 

Chrebp Pathway 0.84 0.42 ≤ 0.01 0.013 unknown 

GPCRs_Class_A_Rhodopsin-like 0.60 0.04 ≤ 0.01 0.013 unknown 

ST_Fas_Signaling_Pathway 0.80 0.52 ≤ 0.01 0.013 Pathway member 
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