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Variable Selection for Case-Cohort Studies
with Failure Time Outcome

Andy Ni, Jianwen Cai, and Donglin Zeng

Abstract

Case-cohort designs are widely used in large cohort studies to reduce the cost
associated with covariate measurement. In many such studies the number of co-
variates is very large, so an efficient variable selection method is necessary. In this
paper, we study the properties of variable selection using the smoothly clipped
absolute deviation penalty in a case-cohort design with a diverging number of pa-
rameters. We establish the consistency and asymptotic normality of the maximum
penalized pseudo-partial likelihood estimator, and show that the proposed variable
selection procedure is consistent and has an asymptotic oracle property. Simula-
tion studies compare the finite sample performance of the procedure with Akaike
information criterion- and Bayesian information criterion-based tuning parame-
ter selection methods. We make recommendations for use of the procedures in
case-cohort studies, and apply them to the Busselton Health Study.
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SUMMARY

Case-cohort designs are widely used in large cohort studies to reduce the cost associated with
covariate measurement. In many such studies the number of covariates is very large, so an ef- 10

ficient variable selection method is necessary. In this paper, we study the properties of variable
selection using the smoothly clipped absolute deviation penalty in a case-cohort design with
a diverging number of parameters. We establish the consistency and asymptotic normality of
the maximum penalized pseudo-partial likelihood estimator, and show that the proposed vari-
able selection procedure is consistent and has an asymptotic oracle property. Simulation studies 15

compare the finite sample performance of the procedure with Akaike information criterion- and
Bayesian information criterion-based tuning parameter selection methods. We make recommen-
dations for use of the procedures in case-cohort studies, and apply them to the Busselton Health
Study.

Some key words: Case-cohort design; Diverging number of parameters; Oracle property; Smoothly clipped absolute 20

deviation; Survival analysis; Variable selection.

1. INTRODUCTION

Large-scale epidemiological studies and disease prevention trials often follow thousands of
subjects for a long period. The assembly of covariates for the entire study cohort can be pro-
hibitively expensive, especially when it requires biological samples or expensive bioassays. 25

Moreover, the rate of the event of interest is usually low in these studies, especially for such
events as cardiovascular disease, stroke, or death. We refer to subjects who develop the event
of interest during the study as cases and the others as noncases. If the covariates were to be
measured for everyone in the study, most of the cost would be spent on noncases, who do not
contribute as much information as cases. To reduce the cost and effort in collecting expensive co- 30

variates without losing much efficiency, Prentice (1986) proposed the case-cohort design, where
the complete covariate information is only obtained from a random subcohort of the sample, plus
all cases.

Various estimation methods have been developed for case-cohort studies under the propor-
tional hazard model (Cox, 1972). Prentice (1986) and Self & Prentice (1988) proposed a pseudo- 35

partial likelihood method that modifies the risk set to account for subcohort sampling. Barlow
(1994) introduced a time-dependent weight to estimate the risk set from the subcohort sample
and developed a robust variance estimator for the regression parameters. Kalbfleisch & Lawless
∗ Ai Ni is currently at Memorial Sloan Kettering Cancer Center
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2 A. NI, J. CAI, D. ZENG

(1988) proposed a more efficient weight that uses the complete covariate history of all cases. Bor-
gan et al. (2000) further studied several types of weights under the stratified case-cohort design.40

Kulich & Lin (2004) established the asymptotic properties of the efficiently weighted estima-
tor (Kalbfleisch & Lawless, 1988). Kang & Cai (2009) extended this estimator to studies with
multivariate failure time outcomes, and Kim et al. (2013) further improved its efficiency in the
presence of multivariate failure time outcomes. In this paper, we focus on the efficient weighting
proposed by Kalbfleisch & Lawless (1988) in a univariate unstratified case-cohort design.45

In large epidemiological studies that use the case-cohort design, many covariates are usually
collected, and one research goal is often to identify a subset related to the event of interest.
With the inclusion of interactions and polynomial terms, the number of candidate covariates
can be very large. As Huber (1973) argued, in the context of variable selection the number of
parameters should be considered as increasing to infinity with sample size n. In this paper, we50

consider the scenario where the model size dn diverges to infinity but at a slower rate than the
sample size. Traditional variable selection methods such as stepwise and best subset selection
are computationally intensive and unstable. Since the introduction of lasso by Tibshirani (1996),
penalty-based variable selection procedures have achieved great success. Under certain regularity
conditions, they can simultaneously select variables and estimate their coefficients. Many penalty55

functions have been proposed, among which the smoothly clipped absolute deviation (Fan &
Li, 2001), adaptive lasso (Zou, 2006), adaptive elastic net (Zou & Zhang, 2009), and minimax
concave (Zhang, 2010) penalties have been shown to possess the oracle property, namely, as
n→∞, the procedure correctly identifies the true model with probability tending to one and
estimates the standard errors of nonzero parameters as efficiently as if the true model is known.60

Fan & Li (2002) applied the smoothly clipped absolute deviation penalty to the proportional
hazard model and proved its oracle property. Cai et al. (2005) further extended the penalized
partial likelihood procedure to multivariate models with a diverging number of parameters, but
to our knowledge, the properties of penalized variable selection have not been studied under the
case-cohort design where not all covariates are fully observed.65

2. PSEUDO-PARTIAL LIKELIHOOD FOR CASE-COHORT DESIGN

Suppose there are n independent subjects in a cohort. Let Zi(t) be the dn × 1, possibly time-
dependent, covariate vector for subject i at time t. Since dn goes to infinity with n, all quantities
that are functions of the covariates depend on n. For notational simplicity, however, we suppress
the subscript n for them. Without loss of generality, we partition the real-valued true paramter70

vector βn0 as (βTn0,I , β
T
n0,II)

T , where βn0,I and βn0,II are the nonzero and zero components of
βn0, respectively. Denote by kn the dimension of βn0,I , which is also allowed to diverge with n
and kn/dn converges to a constant c ∈ [0, 1].

Let T and C be respectively the time to the outcome of interest and the censoring time. Let
X = min(T,C) be the observed time and ∆ = I(T ≤ C) be the censoring indicator, where75

I(·) is an indicator function. We assume that T and C are independent, conditional on Z.
Define for subject i the counting process Ni(t) = I(Xi ≤ t,∆i = 1) and the at-risk process
Yi(t) = I(Xi ≥ t). Let λi(t) denote the hazard function for subject i. Cox (1972) proposed the
proportional hazard model where λi{t | Zi(t)} = λ0(t) exp{βTZi(t)}, in which λ0(t) is an un-
specified baseline hazard function.80

Under the case-cohort design, suppose we randomly select a subcohort of fixed size ñ from the
full cohort. Let ξi denote the indicator for the ith subject being selected into the subcohort, and
let α = ñ/n = pr(ξi = 1) ∈ (0, 1] denote the selection probability for the ith subject. Here we
consider simple random sampling without replacement. Under this sampling scheme (ξ1, ..., ξn)
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Variable selection in case-cohort design 3

are correlated. The covariate histories are not observed for censored subjects outside the sub- 85

cohort. If complete covariate histories are available for all the cases, one can use the following
pseudo-partial likelihood to estimate the regression coefficients β (Kalbfleisch & Lawless, 1988):

˜̀
n(β) =

n∑
i=1

∫ τ

0

[
βTZi(t)− log

∑n

j=1
ρj(t)Yj(t) exp{βTZj(t)}

]
dNi(t), (1)

where τ is the time at the end of study, and ρi(t) = ∆i + (1−∆i)ξiα̂
−1(t), α̂(t) =

∑n
i=1(1−

∆i)ξiYi(t)/{
∑n

i=1(1−∆i)Yi(t)} is a time-dependent estimator of the true sampling probability
α. The corresponding pseudo-partial score equation is 90

˜̀′
n(β) =

n∑
i=1

∫ τ

0

{
Zi(t)−

S̃(1)(β, t)

S̃(0)(β, t)

}
dNi(t) = 0,

where S̃(k)(β, t) = n−1
∑n

i=1 ρi(t)Yi(t)Zi(t)
⊗keβ

TZi(t) for k = 0, 1, 2. For a vector a, a⊗0 =
1, a⊗1 = a, and a⊗2 = aaT .

3. VARIABLE SELECTION WITH A PENALIZED PSEUDO-PARTIAL LIKELIHOOD

3·1. Penalized Pseudo-Partial Likelihood
We define a penalized pseudo-partial likelihood as 95

Q̃n(β) = ˜̀
n(β)− n

dn∑
j=1

Pλnj
(|βj |), (2)

where Pλnj
(|βj |) is a nonnegative penalty function with Pλnj

(0) = 0. The nonnegative tuning
parameter λnj controls the model complexity. We use the smoothly clipped absolute deviation
penalty (Fan & Li, 2001) with covariate-specific tuning parameters λnj , which allows differ-
ent regression coefficients to have different penalty functions. The smoothly clipped absolute
deviation penalty is

Pλnj
(θ) =


λnjθ, θ ≤ λnj ,
− θ2−2aλnjθ+λ

2
nj

2(a−1) , λnj < θ ≤ aλnj ,
(a+1)λ2nj

2 , θ > aλnj ,

for some a > 2 and θ > 0. The first derivative of the penalty is

P ′λnj
(θ) = λnjI(θ ≤ λnj) +

(aλnj − θ)+
a− 1

I(θ > λnj).

3·2. Regularity Conditions
For each n, we define

S(k)
n (βn, t) =

1

n

n∑
i=1

Yi(t)Zi(t)
⊗keβ

T
nZi(t), k = 0, 1, 2,

s(k)n (βn, t) = E{S(k)
n (βn, t)}, k = 0, 1, 2,

en(βn, t) = s(1)n (βn, t)/s
(0)
n (βn, t), 100
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4 A. NI, J. CAI, D. ZENG

Vn(βn, t) =
S
(2)
n (βn, t)S

(0)
n (βn, t)− S(1)

n (βn, t)
⊗2

S
(0)
n (βn, t)2

,

Ṽn(βn, t) =
S̃
(2)
n (βn, t)S̃

(0)
n (βn, t)− S̃(1)

n (βn, t)
⊗2

S̃
(0)
n (βn, t)2

,

In(βn) = E

{∫ τ

0
Vn(βn, t)S

(0)
n (βn, t)dΛ0(t)

}
,

Γn(βn) = var{n−1/2 ˜̀′
n(βn)}.

We require the following regularity conditions:105

Condition 1.
∫ τ
0 λ0(t)dt <∞ and E{Y (τ)} > 0;

Condition 2. | Zij(0) | +
∫ τ
0 |dZij(t)| < C1 <∞ almost surely for some constant C1, i =

1, ..., n, and j = 1, ..., dn;

Condition 3. there exists a neighborhood Bn of βn0 such that for all βn ∈ Bn and t ∈
[0, τ ], ∂s(0)n (βn, t)/∂βn = s

(1)
n (βn, t), and ∂2s(0)n (βn, t)/∂βn∂β

T
n = s

(2)
n (βn, t). The functions110

s
(k)
n (βn, t) (k = 0, 1, 2) are continuous and bounded, and s(0)n (βn, t) is bounded away from zero

on Bn × [0, τ ];

Condition 4. there exist positive constants C2, C3, C4, and C5 such that

0 < C2 < λmin{In(βn0)} ≤ λmax{In(βn0)} < C3 <∞,
0 < C4 < λmin{Γn(βn0)} ≤ λmax{Γn(βn0)} < C5 <∞,

where λmin(·) and λmax(·) are the minimum and maximum eigenvalues of a matrix;

Condition 5. min1≤j≤kn |βnj0|/λnj →∞ as n→∞; and115

Condition 6. lim infn→∞ lim infθ→0+ P
′
λnj

(θ)/λnj > 0 for j = 1, ..., dn.

Condition 1 ensures a finite baseline cumulative hazard and a non-empty risk set at the end of
the study. Condition 2 requires the stochastic process of each time-dependent covariate to have
bounded variation almost surely. Condition 3 essentially requires exp{βTnZi(t)} to be integrable
under a diverging dimension so that integration and differentiation with respect to S(k)

n (βn, t)120

(k = 0, 1) can be interchanged. Condition 4 ensures that the covariance matrices of the score
function under both regular and case-cohort designs are positive definite and have uniformly
bounded eigenvalues for all n. It assumes a non-singular Hessian matrix of the objective func-
tion used for variable selection. The same condition has been assumed in the variable selection
literature (Peng & Fan, 2004; Cai et al., 2005; Cho & Qu, 2013). Condition 5 specifies the rate at125

which the proposed procedure can distinguish nonzero parameters from zero ones. As n→∞,
the size of nonzero parameters detectable by the procedure can approach zero, but at a slower
rate than the tuning parameter. This condition is required for the development of the asymptotic
properties of the proposed procedure, and has been assumed by many authors (Peng & Fan, 2004;
Wang et al., 2009; Cho & Qu, 2013; Fan & Tang, 2013). In real-world biomedical research, there130

usually exists a fixed minimum clinically important effect size. Any effect smaller than this size
can be effectively treated as zero. Thus, Condition 5 is a reasonable requirement. Condition 6 im-
plies that those zero parameters, whose finite sample estimates are about the scale of λnj’s, will
be automatically shrunk to zero. This helps to achieve the oracle property of variable selection.
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Variable selection in case-cohort design 5

3·3. Asymptotic Properties 135

Throughout this paper we use Op(·) and op(·) to denote probability order relations and
O(·) and o(·) to denote almost sure order relations. Let an = max1≤j≤kn{|P ′λnj

(|βnj0|)|} and
bn = max1≤j≤kn{|P ′′λnj

(|βnj0|)|}. We first prove the existence of a penalized pseudo-partial

likelihood estimator that converges at rate Op{d1/2n (n−1/2 + an)}, and then establish its oracle
property. The proofs of Theorem 1 and 2 are provided in the Appendix. 140

THEOREM 1. Under Conditions 1 to 5, if bn → 0 and d4n/n→ 0 as n→∞, then
with probability tending to one there exists a local maximizer β̂n of Q̃n(βn) = ˜̀

n(βn)−
n
∑dn

j=1 Pλnj
(|βnj |), such that ‖β̂n − βn0‖ = Op{d1/2n (n−1/2 + an)}.

From Theorem 1 one can obtain a (n/dn)1/2-consistent penalized pseudo-partial likelihood
estimator, provided that an = O(n−1/2), which is the case for the smoothly clipped absolute 145

deviation penalty under Condition 5. This consistency rate is the same as that of the maximum
likelihood estimator for the exponential family (Portnoy, 1988). For Theorem 2, we define

Σn = diag{P ′′λ1n(|βn01|), ..., P ′′λknn
(|βn0kn |)}, (3)

Bn = {P ′λ1n(|βn01|)sgn(βn01), ..., P
′
λknn

(|βn0kn |)sgn(βn0kn)}T . (4)

THEOREM 2. Under Conditions 1 to 6, if bn → 0, d5n/n→ 0, λnj → 0, λnj(n/dn)1/2 →∞,
and an = O(n−1/2) as n→∞, the (n/dn)1/2-consistent local maximizer β̂n = (β̂Tn,I , β̂

T
n,II)

T

must satisfy that β̂n,II = 0 with probability tending to one and for any nonzero kn × 1 constant
vector un with ‖un‖ = 1,

n1/2uTnΓ
−1/2
n11 (In11 + Σn){β̂n,I − βn0,I + (In11 + Σn)−1Bn} → N(0, 1)

in distribution, where Σn and Bn are defined in (3) and (4) respectively, In11 consists of the first 150

kn × kn components of In(βn0), and Γn11 consists of the first kn × kn components of Γn(βn0).

Due to the diverging dimension of βn0,I , Theorem 2 establishes the asymptotic normality of
some linear combination of standardized estimators. However, by choosing a particular un, it
can give the asymptotic distribution for each individual estimator. Thus, it provides a theoretical
basis for inference on individual coefficients. The matrix In(βn0) can be consistently estimated
by În(β̂n) = n−1

∑n
i=1

∫ τ
0 Ṽn(β̂n, t)dNi(t). The estimator of matrix Γn(βn0) is given in the

Supplementary material. For the smoothly clipped absolute deviation penalty, an = 0, Σn = 0,
and Bn = 0 for large n under Condition 5. Therefore, the result of Theorem 2 reduces to

n1/2uTnΓ
−1/2
n11 In11(β̂n,I − βn0,I)→ N(0, 1)

in distribution as n→∞. The conditions d4n/n→ 0 and d5n/n→ 0 in the above theorems de-
scribe the divergence rate of dn relative to the sample size. They do not impose any one-to-one
relationship between finite dn and n.

4. CONSIDERATIONS IN PRACTICAL IMPLEMENTATION 155

4·1. Local Quadratic Approximation and Variance Estimation
Since the smoothly clipped absolute deviation penalty function is not differentiable at the ori-

gin, in practical implementation the Newton–Raphson algorithm cannot be directly applied to
maximize (2). Instead, we use a modified Newton–Raphson algorithm with a local quadratic

Hosted by The Berkeley Electronic Press



6 A. NI, J. CAI, D. ZENG

approximation to the penalty function. The unpenalized pseudo-partial likelihood (1) can be160

seen as a special case of the penalized pseudo-partial likelihood (2) with Pλnj
(|βnj |) = 0 for

all j = 1, ..., dn. Applying Theorem 1 with λnj = 0 for all j = 1, ..., dn, we know there exists
a (n/dn)1/2-consistent maximizer of (1). The concavity of (1) ensures that the maximizer is
unique. We use this maximizer as the initial value β(0)n for the modified Newton–Raphson al-
gorithm. If |β(0)nj | is less than a pre-specified small positive constant cj , then we set β̂nj = 0.165

Otherwise, the penalty function is locally approximated by a quadratic function, Pλnj
(|βnj |) ≈

Pλnj
{|β(0)nj |}+ P ′λnj

{|β(0)nj |}{2|β
(0)
nj |}−1[β2nj − {β

(0)
nj }2], which has the same value and first

derivative as the original penalty at β(0)nj . It follows that P ′λnj
(|βnj |) ≈ [P ′λnj

{|β(0)nj |}/|β
(0)
nj |]βnj .

This approximation is local in the sense that it is only good in the neighborhood of β(0)nj . With the
approximated penalty function, one Newton–Raphson step is performed and the updated nonzero170

estimate is used as the new initial value. The process is iterated until convergence or until all pa-
rameters are estimated as zero. Hunter & Li (2005) showed that the local quadratic approximation
is an extension of the expectation-maximization algorithm and has the same properties.

The sandwich estimate of the covariance matrix for β̂n can be directly obtained from the
last iteration of the above algorithm as ˆcov(β̂n) = {˜̀′′n(β̂n)− nΣλ(β̂n)}−1nΓ̂n(β̂n){˜̀′′n(β̂n)−175

nΣλ(β̂n)}−1, where Σλ(βn) = diag{P ′λ1n{|β
(0)
n1 |}/|β

(0)
n1 |, ..., P ′λdnn

{|β(0)ndn
|}/|β(0)ndn

|}. The sand-
wich estimate of the covariance matrix is only applicable to the nonzero parameter estimates.

4·2. Selection of Tuning Parameters
The tuning parameter λ in the smoothly clipped absolute deviation penalty function Pλ(·) con-

trols the magnitude of the penalty on each regression coefficient and thereby controls the com-
plexity of the selected model. Typical methods of selecting tuning parameters are data-driven
procedures such as K-fold cross-validation and generalized cross-validation (Craven & Wahba,
1979). We follow Fan & Li (2002) and Cai et al. (2005) and use generalized cross-validation.
The effective number of parameters measures the degrees of freedom in a regularized regression
model (Hastie et al., 2009). For the proportional hazards model, the effective number of param-
eters is defined as e(λ1n, ..., λdnn) = tr[{˜̀′′n(β̂n)− nΣλ(β̂n)}−1 ˜̀′′

n(β̂n)] (Fan & Li, 2002). The
generalized cross-validation statistic is defined as

GCV(λ1n, ..., λdnn) =
−˜̀

n(β̂n)

n{1− e(λ1n, ..., λdnn)/n}2
,

which is guaranteed to be positive since the log-pseudo-partial likelihood in the numerator is
negative. The optimal tuning parameters are chosen as argmin(λ1n,...,λdnn)

GCV(λ1n, ..., λdnn).180

This dn-dimensional optimization problem is difficult to solve in practice. We follow Cai et al.
(2005) and take λnj = λnŝe{β(0)nj }, where ŝe{β(0)nj } is the estimated standard error of the unpe-
nalized pseudo-partial likelihood estimator used in Section 4·1. Then the optimization problem
reduces to a one-dimensional search for the optimal λn.

When e(λn)/n is small, as is the case under the conditions for Theorems 1 and 2,185

we can write log GCV(λn) = log{−˜̀
n(β̂n)/n} − 2 log{1− e(λn)/n} ≈ log{−˜̀

n(β̂n)/n}+
2e(λn)/n. This expression is analogous to the Akaike information criterion (Akaike, 1973),
so we denote log GCV(λn) as AIC(λn), and define λAIC

n = argminλnAIC(λn). Following
the idea of the Bayesian information criterion (Schwarz, 1978), we define another tuning pa-
rameter selection criteria, where the optimal tuning parameter, denoted by λBIC

n , minimizes190

BIC(λn) = log{− ˜̀
n(β̂n)/n}+ log(n)e(λn)/n. Wang et al. (2007) and Zhang et al. (2010)

http://biostats.bepress.com/mskccbiostat/paper32



Variable selection in case-cohort design 7

showed in linear and generalized linear models with a finite number of parameters that λAIC
n

overfits the model with a positive probability whereas λBIC
n consistently identifies the true model.

Such a result has not been established in the Cox proportional hazards model to our best knowl-
edge. In the simulation section that follows, we investigate the performance of λAIC

n and λBIC
n . 195

Following Fan & Li (2001), we set the second tuning parameter a in the penalty function to 3.7
in our simulation.

In practice, researchers can perform a grid search to identify λAIC
n and λBIC

n . The lower limit
of the search range is zero and the upper limit is the smallest λn that gives an empty model.
From our simulation experience, the upper limit rarely exceeds 2. Moreover, the model selection 200

results are fairly robust to the fineness of the search grid.

5. NUMERICAL STUDY AND APPLICATION

5·1. Simulation Study
Independent failure times are generated from the proportional hazards model. We set the

baseline hazard λ0(t) = 2 and the model dimension dn = [5n
1/5−1/500
c ] to reflect its depen- 205

dence on sample size, where nc is the expected number of cases for a given censoring rate
and [x] rounds x to the nearest integer. We relate the model dimension to the number of
cases rather than the sample size directly because the former better represents the amount
of information in the dataset. We follow Tibshirani (1997) and consider two scenarios for
the true parameter: a few large effects and many small effects. In the first scenario, βn0 = 210

(0.35, 0, 0, 0.6, 0, 0,−0.8, 0, 0, 0.6, 0, 0,−0.8, 0, 0, ...). Thus a third of the components of βn0
are nonzero and the smallest nonzero effect in absolute value is 0.35, which corresponds to a
hazard ratio of 1.4. In the second scenario, all components of βn0 equal 0.1, which corresponds
to a hazard ratio of 1.1. In both scenarios, we generate the design matrix Z as a mixture of
correlated binary and continuous variables. First, a dn-dimensional multivariate standard normal 215

variable Z∗ is generated with corr(Z∗i , Z
∗
j ) = 0.5|i−j|. Then the first three components of Z∗

are kept continuous while the next three components are dichotomized at zero, and this pattern
is repeated for the rest of Z∗. Thus, half of the covariates become binary with parameter 0.5.
Censoring times Ci are generated from a uniform distribution U(0, c), with c adjusted to achieve
the desired censoring percentage. 220

Various sample sizes, censoring rates, and noncase-to-case ratios are considered for both sce-
narios. Performance of the penalized variable selection with tuning parameter λAIC

n and λBIC
n is

assessed. As a benchmark, we include the hard threshold variable selection procedure, where the
unpenalized full model is fit and the components of the unpenalized estimates with a significant
Wald test at 0.05 level are included in the final model. We also include the oracle procedure 225

where the correct subset of covariates is used to fit the model. As the censoring rate is typically
high in case-cohort studies, we set it to 80% and 90%, with 1000 replications for each setting.

We define model error for a given model as ME(µ̂) = E{E(T | z)− µ̂(z)}2. Under the
proportional hazard model with constant baseline hazard λ0, ME(µ̂) = λ−20 E{exp(−β̂Tn z)−
exp(−βTn0z)}2. The relative model error of a given model is defined as the ratio of its model 230

error to that of the unpenalized full model. We use the median and the median absolute deviation
of the relative model error to evaluate the prediction performance of different procedures. We
also calculate the average number of parameters correctly estimated as zero, the average number
of parameters erroneously estimated as zero, and the overall rate of identifying the true model
as measures of variable selection performance. Point estimates, empirical and model-based stan- 235
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8 A. NI, J. CAI, D. ZENG

dard errors, and the empirical 95% confidence interval coverages are calculated for βn01 = 0.35
in the first scenario.

Table 1 summarizes the simulation results under the scenario of a few large effects. The pe-
nalized method with tuning parameter λBIC

n has by far the best performance in all settings in
terms of the relative model error and the rate of identifying the true model. The inferior perfor-240

mance of λAIC
n is apparently due to overfitting as shown by the low average number of correctly

identified zero parameters; this is consistent with the theoretical findings of Wang et al. (2007)
and Zhang et al. (2010). For both λAIC

n and λBIC
n , more noncases in the case-cohort and lower

censoring rate are associated with better prediction and variable selection performance. Table
2 summarizes the parameter estimation of βn01 = 0.35 under the same settings as Table 1, but245

only using simulation replications where βn01 is correctly identified as nonzero. Conditional on
β̂n1 6= 0, all procedures produce approximately unbiased point and standard error estimates and
the coverage is close to the nominal level. The normality of the sampling distributions of β̂n1
was assessed by Q-Q plots; see the Supplementary Material. The sampling distribution of β̂n1 is
a mixture of a point mass at zero and a left-truncated distribution that is well approximated by a250

truncated normal distribution. As the rate of identifying the true model increases, the point mass
at zero vanishes and the sampling distribution of β̂n1 becomes normal.

Table 3 summarizes the simulation results under the scenario of many small effects where all
βn0 = 0.1. In this scenario the oracle model is just the unpenalized full model with the relative
model error being unity by definition, which is not very informative and hence not included in255

the table. With many small but nonzero effects, none of the three methods can identify all the
effects with a high probability, reflected by the near-zero rate of identifying the true model for
all settings, which is not shown in the table. The inference results are not satisfactory either;
they are not shown due to space limitations. Nevertheless, λAIC

n produces the smallest relative
model error, suggesting that it has the best prediction performance among the three methods.260

Moreover, λAIC
n correctly identifies the largest number of small effects as nonzero. The Bayesian

information criterion tends to select sparse models, so it may not perform as well as the Akaike
information criterion when there are many small nonzero parameters. The relative model error is
not comparable across different settings because it depends on the model error of the full model,
which has large variation under this scenario.265

5·2. Analysis of Busselton Health Study
We use the proposed variable selection procedures to analyze the Busselton Health Study data

(Cullen, 1972; Knuiman et al., 2003). The study is a series of cross-sectional health surveys con-
ducted in the town of Busselton in Western Australia. Every 3 years from 1966 to 1981, general
health information for adult participants was collected by questionnaire and clinical visits. In270

this analysis we are interested in identifying risk factors for stroke. In particular, the main risk
factor of interest is the serum ferritin level. We also consider several other risk factors in the
variable selection process: age, body mass index, blood pressure treatment, systolic blood pres-
sure, cholesterol, triglycerides, hemoglobin, and smoking status. All variables were measured
at baseline. The full cohort of this analysis consists of 1401 subjects aged 40 to 89 years who275

participated in the Busselton Health Survey in 1981 and had no history of diagnosed coronary
heart disease or stroke at that time. Subjects were followed until December 31, 1998, and their
time to stroke, if one took place, was recorded. They were treated as censored if they left West-
ern Australia during the follow-up period. There were 118 incidences of stroke in the full cohort
during the follow-up period. To reduce costs and preserve stored serum, a case-cohort design280

was used where the serum ferritin level was only measured for a randomly selected subcohort
plus all stroke cases. The random subcohort size was 450, and the case-cohort size was 513.

http://biostats.bepress.com/mskccbiostat/paper32



Variable selection in case-cohort design 9

Table 1. Model selection performance with a few large effects

Noncase : Case = 1:1 Noncase : Case = 2:1
RME Zero Parm. RITM RME Zero Parm. RITM

Method α median (MAD) C I (%) α median (MAD) C I (%)
n = 3000, 80% censored, dn = 18

HT 0.25 0.67 (0.21) 11.2 0.0 45.4 0.50 0.65 (0.21) 11.3 0.0 52.1
SCAD(AIC) 0.63 (0.20) 10.7 0.0 30.3 0.49 (0.22) 11.5 0.0 61.6
SCAD(BIC) 0.39 (0.20) 12.0 0.2 83.7 0.37 (0.18) 12.0 0.0 95.2
Oracle 0.34 (0.16) 12.0 0.0 100.0 0.36 (0.17) 12.0 0.0 100.0

n = 3000, 90% censored, dn = 15

HT 0.11 0.88 (0.30) 9.2 0.5 25.1 0.22 0.75 (0.29) 9.3 0.2 42.7
SCAD(AIC) 0.92 (0.14) 6.4 0.1 1.2 0.82 (0.20) 7.6 0.0 8.3
SCAD(BIC) 0.74 (0.38) 9.3 0.5 33.3 0.49 (0.30) 9.8 0.3 63.9
Oracle 0.32 (0.18) 10.0 0.0 100.0 0.33 (0.17) 10.0 0.0 100.0

n = 6000, 90% censored, dn = 18

HT 0.11 0.71 (0.24) 11.1 0.1 39.6 0.22 0.64 (0.21) 11.3 0.0 48.4
SCAD(AIC) 0.89 (0.12) 7.9 0.0 1.2 0.80 (0.16) 9.5 0.0 9.4
SCAD(BIC) 0.49 (0.24) 11.5 0.1 58.6 0.38 (0.18) 11.9 0.0 87.8
Oracle 0.36 (0.17) 12.0 0.0 100.0 0.33 (0.15) 12.0 0.0 100.0

n = 10000, 90% censored, dn = 20

HT 0.11 0.69 (0.20) 12.1 0.0 36.4 0.22 0.65 (0.20) 12.2 0.0 48.0
SCAD(AIC) 0.88 (0.14) 8.9 0.0 1.2 0.80 (0.18) 10.2 0.0 8.0
SCAD(BIC) 0.47 (0.21) 12.5 0.0 60.8 0.39 (0.18) 12.9 0.0 92.8
Oracle 0.34 (0.15) 13.0 0.0 100.0 0.35 (0.17) 13.0 0.0 100.0

α: subcohort sampling probability; RME: relative model error; MAD: median absolute deviation; C: average
number of 0 parameters correctly identified as 0; I: average number of nonzero parameters incorrectly identi-
fied as 0; RITM: rate of identifying true model; HT: hard threshold; SCAD(AIC): smoothly clipped absolute
deviation with λAIC

n ; SCAD(BIC): smoothly clipped absolute deviation with λBIC
n .

Table 5 summarizes the baseline characteristics of the full cohort and the subcohort. The aver-
age ferritin level is not available for the full cohort due to the case-cohort design. The summary
statistics of the baseline characteristics are similar between the full cohort and sub-cohort, sug- 285

gesting that the subcohort is representative of the full cohort.
We apply the hard threshold method and penalized variable selection with tuning parameter,

λAIC
n and λBIC

n to the Busselton Health Study. In order to avoid missing any potentially important
effects, we also include the quadratic terms of all continuous covariates as well as interactions
between ferritin and all covariates in the initial model. The total number of parameters is 28. All 290

continuous covariates are standardized using the means and standard deviations from the subco-
hort in Table 4. To decrease their skewness we log-transform ferritin and triglycerides values be-
fore standardization. The tuning parameter selector identifies λAIC

n = 0.244 and λBIC
n = 0.305.

Table 5 shows the models identified by the three methods. Due to space limitations, only terms
that are selected by at least one method are shown. The use of λAIC

n selects seven terms and λBIC
n 295

selects four. Both methods select age, sex, blood pressure treatment, and squared systolic blood
pressure as important risk factors for stroke. The use of λAIC

n additionally selects the linear term
of systolic blood pressure, linear and squared terms of triglycerides. The hard threshold method
only selects age and blood pressure treatment.
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10 A. NI, J. CAI, D. ZENG

Table 2. Estimation performance for βn01 = 0.35 with a few large effects

Noncase : Case = 1:1 Noncase : Case = 2:1
Method nc β̂n1 see sem 95% CIe nc β̂n1 see sem 95% CIe

(×10−2) (×10−2) (×10−2) (×10−2)
n = 3000, 80% censored, dn = 18

HT 998 0.36 7.00 6.66 92.6 1000 0.35 5.85 5.55 92.7
SCAD(AIC) 1000 0.35 6.68 5.95 92.0 1000 0.35 5.28 4.87 92.7
SCAD(BIC) 991 0.35 5.96 5.88 94.8 1000 0.35 5.12 4.84 93.3
Oracle 1000 0.35 6.06 5.89 94.5 1000 0.35 5.08 4.84 93.5

n = 3000, 90% censored, dn = 15

HT 888 0.40 10.9 11.0 92.8 971 0.37 9.26 9.20 94.4
SCAD(AIC) 981 0.38 11.9 10.2 89.8 997 0.36 9.24 8.29 92.2
SCAD(BIC) 916 0.38 10.3 9.83 92.5 964 0.36 8.19 8.04 94.7
Oracle 1000 0.36 10.8 9.87 92.1 1000 0.35 8.37 8.05 93.8

n = 6000, 90% censored, dn = 18

HT 992 0.37 8.27 7.95 92.5 1000 0.36 7.01 6.53 92.2
SCAD(AIC) 1000 0.36 8.40 7.32 91.2 1000 0.36 6.73 5.92 91.0
SCAD(BIC) 992 0.36 7.68 7.09 92.5 996 0.35 6.06 5.74 93.8
Oracle 1000 0.35 7.64 7.10 93.0 1000 0.35 6.03 5.74 94.0

n = 10000, 90% censored, dn = 20

HT 1000 0.36 6.51 6.29 93.2 1000 0.35 5.27 5.10 94.4
SCAD(AIC) 1000 0.36 6.31 5.83 91.6 1000 0.35 5.11 4.63 94.0
SCAD(BIC) 1000 0.36 5.93 5.67 94.0 1000 0.35 4.55 4.50 94.8
Oracle 1000 0.36 5.74 5.67 95.0 1000 0.35 4.53 4.50 94.8

nc: number of simulation replications where β̂n1 6= 0; see: empirical standard error; sem: model-based standard
error; 95% CIe: empirical 95% confidence interval coverage; HT: hard threshold; SCAD (AIC): smoothly
clipped absolute deviation with λAIC

n ; SCAD (BIC): smoothly clipped absolute deviation with λBIC
n . Results in

this table are based on replications where β̂n1 6= 0.

To shed some light on which model provides the best fit to the data, we performed five-fold300

cross-validation. The average log-pseudo-partial likelihood from the test datasets is used as the
validation statistic. The hard threshold method and penalized variable selection with λAIC

n or
λBIC
n give validation statistics of −621.5, −627.7, and −614.0, respectively. Therefore, we con-

sider the model with λBIC
n as the best fit to the Busselton data. According to this model, increased

age, maleness, blood pressure treatment, and increased systolic blood pressure are associated305

with higher risk of stroke. There is no evidence that serum ferritin level is associated with stroke.

6. DISCUSSION

One potential limitation of the theorems presented in this study is that they only establish
the consistency and oracle property for a local maximizer of the penalized objective function.
Due to its non-concavity, there may be multiple maximizers for the penalized objective function.310

However, based on Section 3.5 of Fan & Li (2001) and the small bias in the estimates in Table
2, it is reasonable to assume that the maximizer identified using the unpenalized estimator as the
initial value is the (n/dn)1/2-consistent local maximizer described in Theorems 1 and 2.

In this paper the quantity α̂(t) used in the weight function ρ(t) is calculated at each failure time
point, and so is time-dependent. When cases are rare, α̂(t) is almost constant across t. However,315

http://biostats.bepress.com/mskccbiostat/paper32



Variable selection in case-cohort design 11

Table 3. Model selection performance with many small effects (all βn0 = 0.1)
Noncase : Case = 1:1 Noncase : Case = 2:1

RME Nonzero RME Nonzero
Method α median (MAD) estimates α median (MAD) estimates

n = 3000, 80% censored, dn = 18

HT 0.25 2.90 (1.50) 4.0 0.50 3.59 (1.82) 5.2
SCAD(AIC) 1.79 (0.88) 6.0 3.15 (1.59) 5.5
SCAD(BIC) 5.62 (2.39) 1.3 8.94 (3.46) 1.1

n = 3000, 90% censored, dn = 15

HT 0.11 1.89 (1.00) 2.6 0.22 2.91 (1.63) 3.5
SCAD(AIC) 0.99 (0.29) 6.0 1.67 (0.78) 5.4
SCAD(BIC) 2.48 (1.23) 1.8 4.92 (2.08) 1.5

n = 6000, 90% censored, dn = 18

HT 0.11 2.82 (1.45) 3.4 0.22 3.48 (1.69) 4.5
SCAD(AIC) 1.08 (0.28) 8.6 1.41 (0.54) 8.3
SCAD(BIC) 3.17 (1.52) 3.0 5.36 (2.47) 2.6

n = 10000, 90% censored, dn = 20

HT 0.11 3.85 (2.02) 6.0 0.22 4.49 (2.37) 7.7
SCAD(AIC) 1.26 (0.39) 11.6 1.84 (0.81) 11.4
SCAD(BIC) 4.91 (2.49) 4.7 8.38 (3.75) 4.2

α: subcohort sampling probability; RME: relative model error; MAD: median absolute deviation; Nonzero es-
timates: average number of parameters not estimated as 0; HT: hard threshold; SCAD (AIC): smoothly clipped
absolute deviation with λAIC

n ; SCAD (BIC): smoothly clipped absolute deviation with λBIC
n .

Table 4. Baseline characteristics of the Busselton Health Study
Full cohort (n=1401) Subcohort (ñ=450)

Variables Mean (SD) or % Mean (SD) or %
Age (yrs) 58.0 (10.8) 58.9 (10.9)
Body mass index 25.9 (3.9) 25.9 (4.0)
Blood pressure treatment (%) 17.2 18.4
Systolic blood pressure (mmHg) 132.2 (20.0) 132.9 (20.2)
Cholesterol (mmol/L) 6.14 (1.14) 6.24 (1.17)
Triglycerides (mmol/L) 1.52 (0.97) 1.55 (0.97)
Hemoglobin (g/100ml) 141.9 (12.0) 142.0 (11.5)
Smoking (%)

Never 49.5 51.6
Former 32.4 32.0
Current 18.1 16.4

Ferritin (µg/L) – 148.1 (140.8)
log(ferritin) – 4.57 (1.01)

using time-dependent α̂(t) is more general and allows the sampling probability to vary with time
t. Therefore, we use α̂(t) in the paper. A potential practical issue is that α̂(t) may not be reliable
if the number of noncases in the random subcohort becomes very small, though this is highly
unlikely due to the use of case-cohort design for studies of rare disease. In the unlikely situation
where there is no noncase left in the subcohort, α̂(t) is not well-defined. To avoid computational 320

difficulties, one can define (1−∆)ξ/α̂(t) = 0 if α̂(t) = 0. In fact, when α̂(t) = 0, 1−∆ is
necessarily 0 for all subjects remaining in the subcohort.
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Table 5. Estimated coefficients and standard errors from Busselton Health Study data
Hard threshold SCAD (AIC) SCAD (BIC)

Variable β̂ (ŝe) β̂ (ŝe) β̂ (ŝe)
Age (yrs) 0.92 (0.27) 0.87 (0.15) 0.85 (0.14)
Sex (1=female) 0 (–) −0.61 (0.26) −0.65 (0.25)
Blood pressure treatment 0.83 (0.34) 0.83 (0.29) 0.89 (0.25)
Systolic blood pressure 0 (–) 0.21 (0.15) 0 (–)
Systolic blood pressure2 0 (–) 0.092 (0.067) 0.16 (0.044)
log(triglycerides) 0 (–) −0.24 (0.18) 0 (–)
log2(triglycerides) 0 (–) 0.18 (0.093) 0 (–)

All continuous covariates were standardized using the means and standard deviations based on the random sub-
cohort before the variable selection procedure.
SCAD (AIC): smoothly clipped absolute deviation with λAIC

n ; SCAD (BIC): smoothly clipped absolute devia-
tion with λBIC

n .

There is a strong line of research on the convergence of and post-selection inference of pe-
nalized estimators (Leeb & Pötscher, 2005; Leeb & Pötscher, 2006; Pötscher & Leeb, 2009). In
particular, Pötscher & Leeb (2009) showed that the penalized estimators are not uniformly con-325

sistent, and that their asymptotic distributions are non-normal if the true parameter lies within
a shrinking neighborhood of zero with rate (dn/n)1/2. The lack of local regularity is a theoret-
ical limitation of the penalized variable selection methods. However, in this paper Condition 5
together with the requirement that λnj(n/dn)1/2 →∞ for all j ensures that the nonzero param-
eters are uniformly larger than O{(dn/n)1/2}, and therefore avoids the aforementioned irreg-330

ularity. Our simulation study suggests that the performance of the proposed variable selection
method depends on the true effect size. In practice, since these sizes are unknown, we suggest
conducting penalized variable selection with both Akaike and Bayesian information criteria-
based tuning parameter selection, and then using cross-validation to choose the best model, as
done in Section 5·2. Theoretical justification of these model selection approaches will be further335

investigated. Moreover, the regularity conditions required for our asymptotic results may not
be testable under finite samples. Therefore, it will be important to replicate findings from one
particular finite data analysis. One possibility to examine the consistency of findings is to use
bootstrap data or apply resampling-based variable selection approach such as stability selection
(Meinshausen & Bühlmann, 2010).340

In the Busselton data analysis we standardized all continuous covariates, for several reasons.
First, this makes the regression coefficients comparable. Second, it reduces the correlation be-
tween the linear and quadratic terms and between the main effect and interaction terms, which
generally results in more robust and precise parameter estimates. More importantly, penalized
regression procedures are not invariant to covariate scaling, and standardization makes the penal-345

ization fair for all covariates (Tibshirani, 1997). For these reasons, we recommend standardizing
continuous covariates before carrying out penalized regression.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proofs of Lemmas, the
estimation of the covariance matrix Γn(βn0), and the Q-Q plots of the estimate β̂n1 under the
simulation scenario of a few large effects. 355

APPENDIX

Proof of Theorems
Throughout the proofs, we write ˜̀′

n(βn0)j = ∂ ˜̀
n(βn0)/∂βnj , ˜̀′′

n(βn0)jk = ∂2 ˜̀
n(βn0)/∂βnj∂βnk,

and ˜̀′′′
n (βn0)jkl = ∂3 ˜̀

n(βn0)/∂βnj∂βnk∂βnl. We also let Ṽnjk(βn0, t), Vnjk(βn0, t), S̃(2)
njk(βn0, t), and

S
(2)
njk(βn0, t) be the (j, k)th component of corresponding matrices. For a matrix A = {aij}, (i, j = 360

1, ..., n), the norm is defined as ‖A‖ = (
∑n
i=1

∑n
j=1 a

2
ij)

1/2. The following lemma will be used repeat-
edly.

LEMMA 1. Let Wn(t) and Gn(t) be two sequences of processes with bounded variation almost surely,
and Gn(t) progressively measurable and cadlag. For some constant τ , assume that sup0≤t≤τ ‖Wn(t)−
W (t)‖ → 0 in probability for some bounded process W (t), Wn(t) is monotone on [0, τ ], and Gn(t) 365

converges to a zero-mean process with continuous sample paths in the metric space BV [0, τ ], the

bounded variation function space in [0, τ ]. Then both sup0≤t≤τ

∥∥∥∫ t0{Wn(s)−W (s)}dGn(s)
∥∥∥ and

sup0≤t≤τ

∥∥∥∫ t0 Gn(s)d{Wn(s)−W (s)}
∥∥∥ converge to zero in probability as n→∞.

The proof of this lemma follows straightforwardly from that of Lemma 1 in Lin (2000) by noticing that
a process with bounded variation can be decomposed into two monotone processes. 370

We also need the following lemmas, whose proofs are provided in the Supplementary material.

LEMMA 2. Let ξ = (ξ1, ..., ξn) be a random vector containing ñ ones and n− ñ zeros, with each
permutation equally likely. Let Xni(t)(i = 1, ..., n) be a triangular array of real-valued random pro-
cesses on [0, τ ] with E{Xni(t)} = µn(t), var{Xni(0)} <∞ and var{Xni(τ)} <∞ for all i and n. Let
Xn(t) = {Xn1(t), ..., Xnn(t)} and ξ be independent. Suppose that almost all paths of Xni(t) have fi- 375

nite variation. Then n−1/2
∑n
i=1 ξi{Xni(t)− µn(t)} converges weakly to a tight zero-mean Gaussian

process and therefore n−1
∑n
i=1 ξi{Xni(t)− µn(t)} converges in probability to zero uniformly in t.

LEMMA 3. Given that ξ is independent of ∆ and Y (t), n1/2{α̂−1(t)− α−1} converges weakly to a
zero-mean Gaussian process.

LEMMA 4. Under Conditions 1 to 3, for any nonzero dn × 1 constant vector un with 380

‖un‖ = C <∞ and ‖un‖0 = cn > 0 where ‖ · ‖0 denotes the number of nonzero compo-
nents of a vector, n1/2{S̃(0)

n (βn0, t)− S(0)
n (βn0, t)}, (n/cn)1/2uTn{S̃

(1)
n (βn0, t)− S(1)

n (βn0, t)}, and
n1/2c−1n uTn{S̃

(2)
n (βn0, t)− S(2)

n (βn0, t)}un all converge weakly to tight zero-mean Gaussian processes.

LEMMA 5. Under Conditions 1 to 4, for any nonzero dn × 1 constant vector un with ‖un‖ = 1,
n−1/2uTnΓ

−1/2
n (βn0)˜̀′

n(βn0) converges to a standard normal distribution, where Γn(βn0) is the covari- 385

ance matrix of n−1/2 ˜̀′
n(βn0).

LEMMA 6. Under Conditions 1 to 4, n−1/2{˜̀′′n(βn0)jk + nIn(βn0)jk} is Op(1) for j, k = 1, ..., dn,
where In(βn0)jk is the (j, k)th component of In(βn0) as defined in Section 3·2.

LEMMA 7. Under Conditions 1 to 6, if d4n/n→ 0, λnj → 0, and λnjn1/2d
−1/2
n →∞, with probabil-

ity tending to one, for any given βn,I satisfying ‖βn,I − βn0,I‖ = O(d
1/2
n n−1/2) and any constant C, we 390

have Q̃n{(βTn,I , 0T )T } = max‖βn,II‖≤Cd1/2n n−1/2 Q̃n{(βTn,I , βTn,II)T }.

Hosted by The Berkeley Electronic Press



14 A. NI, J. CAI, D. ZENG

Proof of Theorem 1. Let βn0 be the true parameters, and αn = d
1/2
n (n−1/2 + an). It suffices to show

that, for any ε > 0 and any constant vector un with ‖un‖ = C, there exists a large enough C such that
pr{sup‖un‖=C Q̃n(βn0 + αnun) < Q̃n(βn0)} ≥ 1− ε. This implies that there exists a local maximizer
β̂n such that ‖β̂n − βn0‖ = Op(αn). Since Pλnj (0) = 0 and Pλnj (·) ≥ 0, we have395

Q̃n(βn0 + αnun)− Q̃n(βn0)

≤ {˜̀n(βn0 + αnun)− ˜̀
n(βn0)} − n

kn∑
j=1

{Pλnj (|βn0j + αnunj |)− Pλnj (|βn0j |)} = I1 − I2.

We first consider I1. By Taylor expansion we have

I1 = αnu
T
n

˜̀′
n(βn0) +

1

2
α2
nu

T
n

˜̀′′
n(βn0)un +

1

6
α3
n

n∑
i=1

dn∑
j,k,l=1

˜̀′′′
i (β∗n)jklunjunkunl = I11 + I12 + I13,

where β∗n lies between βn0 and βn0 + αnun. From Lemma A5 we have ˜̀′
n(βn0)j = Op(n

1/2) for j =
1, ..., dn. Therefore,

|I11| = |αnuTn ˜̀′
n(βn0)| ≤ αn‖un‖‖˜̀′n(βn0)‖ = αn‖un‖Op{(dnn)1/2} = ‖un‖Op(α2

nn).

The term I12 can be written as α2
nu

T
n{˜̀′′n(βn0) + nIn(βn0)}un/2− α2

nu
T
nnIn(βn0)un/2 =

J1 − J2. By the Cauchy–Schwarz inequality and ˜̀′′
n(βn0)jk + nIn(βn0)jk = Op(n

1/2)

for j, k = 1, ..., dn, and Lemma A6, we have |J1| ≤ α2
n‖un‖2‖˜̀′′n(βn0) + nIn(βn0)‖/2 =400

‖un‖2Op(α2
nn

1/2dn) = ‖un‖2op(α2
nn). By spectral decomposition of In(βn0) and Condi-

tion 4, |J2| ≥ α2
n‖un‖2nλmin{In(βn0)}/2 ≥ ‖un‖2(α2

nn)C2/2. Under Conditions 1 to 3,
∂Ṽnjk(β∗n, t)/∂βnl has bounded variation in t for i = 1, ..., n, j, k, l = 1, ..., dn. Therefore ˜̀′′′

i (β∗n)jkl =

−
∫ τ
0
∂Ṽnjk(β∗n, t)/∂βnldNi(t) is Op(1). Along with αn = d

1/2
n (n−1/2 + an), d4n/n→ 0 and

d2nan → 0, we have |I13| = Op(d
3/2
n )nα3

n‖un‖3 = Op{d2n(n−1/2 + an)}nα2
n‖un‖3 = ‖un‖3op(α2

nn).405

Therefore, for large enough ‖un‖, |J2| dominates |I11|, |J1|, and |I13|.
We now consider I2. By Taylor expansion and the Cauchy–Schwarz inequality

|I2| =
∣∣∣∣n kn∑

j=1

P ′λnj
(|βn0j |)sgn(βn0j)αnunj +

1

2
n

kn∑
j=1

P ′′λnj
(|βn0j |)α2

nu
2
nj{1 + o(1)}

∣∣∣∣
≤ n

∣∣∣∣ kn∑
j=1

P ′λnj
(|βn0j |)αnunj

∣∣∣∣+
1

2
n

∣∣∣∣ kn∑
j=1

P ′′λnj
(|βn0j |)α2

nu
2
nj{1 + o(1)}

∣∣∣∣
≤ nαnank

1/2
n ‖un‖+

1

2
nα2

nbn‖un‖2{1 + o(1)}

= ‖un‖Op(α2
nn).

The last equality holds because an = Op(αnd
−1/2
n ) and bn → 0 under Condition 5. Therefore, |J2| domi-

nates |I2| for large enoughC. Since J2 is negative, it follows that for large enoughC, Q̃n(βn0 + αnun)−
Q̃n(βn0) is negative with probability tending to one as n→∞. This completes the proof of Theorem 1.410

Proof of Theorem 2. The assertion that β̂n,II = 0 with probability tending to one as n→∞ follows
directly from Lemma A7. To prove the second assertion, we first show that

n1/2uTnΓ
−1/2
n11 [(In11 + Σn)(β̂n,I − βn0,I){1 + op(1)}+Bn] = n−1/2uTnΓ

−1/2
n11

˜̀′
n1(βn0) + op(1),

(A1)

where ˜̀′
n1(βn0) consists of the first kn components of ˜̀′

n(βn0). Since β̂n,I is the maximum penalized
pseudo-partial likelihood estimator, ∂Q̃n(β̂n)/∂βn,I = 0. By Taylor expansion of ∂Q̃n(β̂n)/∂βn,I at415
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βn0,I and the fact that β̂n,II − βn0,II = 0 with probability tending to one, we have

˜̀′
n1(βn0) + ˜̀′′

n1(βn0)(β̂n,I − βn0,I) + (β̂n,I − βn0,I)T ˜̀′′′
n1(β∗n)(β̂n,I − βn0,I)/2

− nBn − nΣ∗∗n (β̂n,I − βn0,I) = 0 (A2)

with probability tending to one, where ˜̀′′
n1(βn0) consists of the first kn × kn components of ˜̀′′

n(βn0),
˜̀′′′
n1(β∗n) consists of the first kn × kn × kn components of ˜̀′′′

n (β∗n), β∗n lies between β̂n and βn0, Σ∗∗n = 420

Σn(β∗∗n ), β∗∗n lies between β̂n and βn0. Rearranging (A2) we have

{˜̀′′n1(βn0)− nΣ∗∗n }(β̂n,I − βn0,I)− nBn

= −˜̀′
n1(βn0)− 1

2
(β̂n,I − βn0,I)T ˜̀′′′

n1(β∗n)(β̂n,I − βn0,I). (A3)

Denote νn = (β̂n,I − βn0,I)T ˜̀′′′
n1(β∗n)(β̂n,I − βn0,I). Multiply both sides of (A3) by n−1/2uTnΓ

−1/2
n11 ,

n1/2uTnΓ
−1/2
n11

{
1

n
˜̀′′
n1(βn0)− Σ∗∗n

}
(β̂n,I − βn0,I)− n1/2uTnΓ

−1/2
n11 Bn 425

= −n−1/2uTnΓ
−1/2
n11

˜̀′
n1(βn0)− n−1/2uTnΓ

−1/2
n11 νn/2. (A4)

By the Cauchy–Schwarz inequality, ‖νn‖ ≤ ‖β̂n,I − βn0,I‖2
∑n
i=1{

∑kn
j,k,l=1

˜̀′′′
i1(β∗)2jkl}1/2. As shown

in the proof of Theorem 1, ˜̀′′′
i1(β∗)jkl = Op(1), so ‖νn‖ = Op{(dn/n)nk

3/2
n } = Op(d

5/2
n ). By spectral

decomposition of Γ
−1/2
n11 , d5n/n→ 0, and Condition 4,

1

2
n−1/2uTnΓ

−1/2
n11 νn ≤

‖un‖‖νn‖
2

n−1/2λmax(Γ−1/2n ) = Op(d
5/2
n n−1/2) = op(1). (A5)

The inequality in (A5) holds by the Cauchy–Schwarz inequality and the Cauchy interlacing inequal- 430

ity of symmetric matrices. Moreover, uTnΓ
−1/2
n11 n−1 ˜̀′′

n1(βn0)(β̂n,I − βn0,I) = uTnΓ
−1/2
n11 {n−1 ˜̀′′

n1(βn0) +

In11(βn0)}(β̂n,I − βn0,I)− uTnΓ
−1/2
n11 In11(βn0)(β̂n,I − βn0,I) = J1 − J2. By the Cauchy–Schwarz in-

equality and Lemma A6, we have |J1| ≤ ‖uTnΓ
−1/2
n11 ‖‖n−1 ˜̀′′

n1(βn0) + In11(βn0)‖‖β̂n,I − βn0,I‖ =

‖uTnΓ
−1/2
n11 ‖‖β̂n,I − βn0,I‖Op(dnn−1/2). Also, we have |J2| ≥ ‖uTnΓ

−1/2
n11 ‖‖β̂n,I − βn0,I‖λmin(In11) ≥

‖uTnΓ
−1/2
n11 ‖‖β̂n,I − βn0,I‖λmin(In). Then, by Condition 4 we have 435∣∣∣∣J1J2

∣∣∣∣ ≤ ‖uTnΓ
−1/2
n11 ‖‖β̂n,I − βn0,I‖Op(dnn−1/2)

‖uTnΓ
−1/2
n11 ‖‖β̂n,I − βn0,I‖λmin(In)

= Op(dnn
−1/2) = op(1).

Therefore, J1 = op(J2) and uTnΓ
−1/2
n11 n−1 ˜̀′′

n1(βn0)(β̂n,I − βn0,I) = −uTnΓ
−1/2
n11 In11(βn0)(β̂n,I −

βn0,I){1 + op(1)}. Since β̂n converges to βn0 in probability, it follows that

uTnΓ
−1/2
n11

{
1

n
˜̀′′
n1(βn0)− Σ∗∗n

}
(β̂n,I − βn0,I)

= −uTnΓ
−1/2
n11 {In11(βn0) + Σn} (β̂n,I − βn0,I){1 + op(1)}. (A6)

By (A4), (A5), and (A6), we have that (A1) holds. By Lemma A5, n−1/2uTnΓ
−1/2
n11

˜̀′
n1(βn0) con- 440

verges to the standard normal distribution. Therefore, n1/2uTnΓ
−1/2
n11 (In11 + Σn){β̂n,I − βn0,I + (In11 +

Σn)−1Bn} → N(0, 1) in distribution. This proves the second assertion of Theorem 2.
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