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Model Evaluation Based on the Distribution of
Estimated Absolute Prediction Error

Lu Tian, Tianxi Cai, Els Goetghebeur, and L. J. Wei

Abstract

The construction of a reliable, practically useful prediction rule for future response
is heavily dependent on the “adequacy” of the fitted regression model. In this ar-
ticle, we consider the absolute prediction error, the expected value of the absolute
difference between the future and predicted responses, as the model evaluation
criterion. This prediction error is easier to interpret than the average squared er-
ror and is equivalent to the mis-classification error for the binary outcome. We
show that the distributions of the apparent error and its cross-validation counter-
parts are approximately normal even under a misspecified fitted model. When the
prediction rule is ”unsmooth”, the variance of the above normal distribution can
be estimated well via a perturbation-resampling method. We also show how to
approximate the distribution of the difference of the estimated prediction errors
from two competing models. With two real examples, we demonstrate that the
resulting interval estimates for prediction errors provide much more information
about model adequacy than the point estimates alone.
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Summary

The construction of a reliable, practically useful prediction rule for future responses is

heavily dependent on the “adequacy” of the fitted regression model. In this article, we con-

sider the absolute prediction error, the expected value of the absolute difference between the

future and predicted responses, as the model evaluation criterion. This prediction error is

easier to interpret than the average squared error and is equivalent to the mis-classification

error for the binary outcome. We show that the distributions of the apparent error and

its cross-validation counterparts are approximately normal even under a misspecified fitted

model. When the prediction rule is “unsmooth”, the variance of the above normal distri-

bution can be estimated well via a perturbation-resampling method. We also show how to

approximate the distribution of the difference of the estimated prediction errors from two

competing models. With two real examples, we demonstrate that the resulting interval esti-

mates for prediction errors provide much more information about model adequacy than the

point estimates alone.

Keywords: 0.632 resampling; Bootstrap; K-fold cross-validation; Model and variable selec-

tions; Perturbation-resampling; Prediction.
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1. Introduction

One of main goals for fitting data with regression models is to construct reliable, par-

simonious prediction rules for future responses. Often aggregate prediction errors, which

measure the “distance” between the future and predicted outcomes, are utilised to evaluate

the adequacy of a fitted model or compare competing models (Davison & Hinkley, 1997,

Section 6.4). Methods to estimate prediction errors are mainly based on the apparent or

re-substitution error, cross-validation, bootstrap and covariance penalties (Mallows, 1973;

Akaike, 1973; Stein, 1981; Efron, 1983, 1986; Breiman, 1992; Shao, 1993, 1996; Efron &

Tibshirani, 1997; Ye, 1998; Tibshirani & Knight, 1999; Efron, 2004). Recent research in this

area was mostly devoted to reducing bias of the apparent error when the sample size is not

large with respect to the number of unknown parameters in the fitted model (Molinaro et

al., 2005).

For the case with a continuous response variable, generally the prediction error consid-

ered in the literature is the average squared error. This choice is driven by mathematical

convenience rather than physical relevance. Moreover, little effort has been made to study

the distributional properties of the estimated prediction error (Efron & Tibshirani, 1995,

Section 5).

In this article, we consider the case that the sample size is relatively large with respect

to the dimension of the vector of regression parameters. Furthermore, instead of using L2

norm, we consider the average absolute prediction error, the expected value of the absolute

difference between the future and predicted responses to assess model adequacy. For binary

response, this prediction error is the misclassification error. Without assuming that the

fitted model is the true model, we show that the apparent error consistently estimates the

prediction error and the distribution of the standardised apparent error is approximately

normal. We then show that this normal can be approximated well via a perturbation-
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resampling method, especially for unsmooth prediction rules. Based on the above normal

approximation, confidence intervals for the prediction errors are constructed accordingly,

which provide more information about model adequacy than point estimates alone.

In this paper, we also show that the limiting distributions of various cross-validation

estimators for such a prediction error are the same as that of the apparent error. Moreover,

empirically we find that the bias issue of the apparent error even with modest sample sizes

is not alarming. Lastly, we show how to construct interval estimates for the difference of the

prediction errors of two competing fitted models. All the proposals are illustrated with two

real examples.

2. Approximations to the Distribution of Estimated Prediction Error

Let Y be a continuous or binary response variable and X be the vector of its predictors.

Let Z, a p × 1 bounded vector, be a function of X. Also, let {(Yi, Zi), i = 1, · · · , n} be n

independent copies of (Y, Z). For a future, independent subject from the same population

of (Y, Z), suppose that its Z = Z0 and its response Y 0 is predicted based on a regression

model assuming that the conditional mean E(Y |Z) has a parametric form g(β′Z), where

g(·) is a known, strictly increasing, differentiable function and β is the vector of unknown

parameters. Let β̂ be an estimate of β based on the entire data set {(Yi, Zi)} and let

Ŷ (β̂′Z0) be the predicted value for Y 0. For instance, if Y is a continuous variable, one may

let Ŷ (β̂′Z0) = g(β̂′Z0). If Y is a binary variable, one may let Ŷ (β̂′Z0) = I(g(β̂′Z0) ≥ 0.5),

a commonly used binary prediction rule, where I(·) is the indicator function.

To evaluate how well the fitted model predicts this future response Y 0, we consider the

absolute prediction error D0 or a function thereof, where

D0 = E|Y 0 − Ŷ (β̂′Z0)| (2.1)

and the expectation E is with respect to {(Yi, Zi), i = 1, · · · , n} and (Y 0, Z0). Note that

D0 depends on sample size n. To estimate D0, we first consider the so-called “apparent or
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re-substitution error” D̂(β̂), where

D̂(β) = n−1

n∑
i=1

|Yi − Ŷ (β′Zi)| (2.2)

(Davison and Hinkley, 1997, Section 6.4).

To approximate the large sample distribution of {D̂(β̂) − D0}, we need to show that

β̂ is stablised as n increases when the fitted model may not be correctly specified. That

is, β̂ converges to a constant vector in probability, as n → ∞. If we use the parametric

likelihood score function S†(β) to estimate β, under the strong assumption that the equation

E{S†(β)} = 0 has a unique root, generally β̂ converges to this root in probability (White,

1982). Unfortunately, the above uniqueness condition is rather difficult to verify even when

the estimator β̂ exists and is unique for any finite sample size n under the fitted model

(Silvapulle, 1981; Jacobsen, 1989).

In this article, we propose to estimate β via the following simple estimating function

S(β) = n−1

n∑
i=1

Zi{Yi − g(β′Zi)}. (2.3)

We assume that if J is the support of Y, J ⊆ [g(−∞), g(+∞)], E(Y ) < ∞, Z is uniformly

bounded and both the matrix n−1
∑n

i=1 ZiZ
′
i and its limit are positive definite. Furthermore,

when Y is a binary outcome, we assume an additional condition that one cannot find a vector

b such that I(Y1 > Y2) = I(b′Z1 > b′Z2) almost surely. Note that these mild conditions are

needed for consistency of β̂ even when g(β′Z) is the correct form of the true conditional

mean of Y given Z. In Appendix A, without assuming that g(β′Z) is the correct form of the

conditional mean of Y given Z, we show that there is a unique root β̂ to S(β) = 0, almost

surely, and also a unique root β0 to E{S(β)} = 0. We then show that β̂ converges to β0 in

probability, as n →∞.

Now, assume that the conditional density or probability mass function of Y given Z is

continuously differentiable. In Appendix B, we show that D̂(β̂) is a good estimator for D0 in
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the sense that {D̂(β̂)−D0} converges to zero in probability, as n →∞. To make inferences

about D0, one needs a good approximation to the distribution of D̂(β̂). Although D̂(β) is

not differentiable with respect to β, in Appendix B, we show that the distribution of

W = n1/2{D̂(β̂)−D0} (2.4)

is asymptotically Gaussian with mean 0.

Now, if Ŷ (β̂′Z0) = g(β̂′Z0), D0 in (2.1) becomes E|Y 0 − g(β̂′Z0)|. For this case, the

variance of W in (2.4) can be consistently estimated by

n−1

n∑
i=1

η̂2
i , (2.5)

where

η̂i = |Yi − g(β̂′Zi)| − D̂(β̂) + d(β̂)A−1(β̂)Zi{Yi − g(β̂′Zi)},

A(β) = n−1

n∑
i=1

ġ(β′Zi)ZiZ
′
i, (2.6)

ġ(x) = dg(x)/dx, and

d(β) = −n−1

n∑
i=1

sign{Yi − g(β′Zi)}ġ(β′Zi)Zi, (2.7)

the quasi-derivative of D̂(β). The justification of consistency of (2.5) is given in Appendix

B.

If Ŷ (β̂′Z0) is not g(β̂′Z0), for example, when Y is binary and Ŷ (β̂′Z0) = I(g(β̂′Z0) ≥ c),

where c is a pre-specified constant, the variance of W may involve the unknown condi-

tional density or probability mass function of Y given Z, which is difficult to estimate well

nonparametrically, especially when the dimension of Z is large. In general, one may use

a perturbation-resampling technique to obtain an approximation to the distribution of W.

To be specific, let y and z be the observed values of Y and Z, and let Gi, i = 1, · · · , n, be

independent and identically distributed random variables with a known distribution whose
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mean and variance are one. Furthermore, let β∗ be the solution to the equation

S∗(β) = n−1

n∑
i=1

{yi − g(β′zi)}Gi = 0. (2.8)

Note that the only random quantities in S∗(β) are G’s. Next, let D̃(β) and β̃ be the observed

D̂(β) and β̂, respectively, and let

W ∗ = n−1/2

n∑
i=1

{|yi − Ŷ (z′iβ
∗)| − D̃(β̃)}(Gi − 1). (2.9)

It is straightforward to show that for large n, the unconditional distribution of W in (2.4)

can be approximated well by the conditional distribution of W ∗ given the data. This

perturbation-resampling technique has been utilised successfully, for example, by Park &

Wei (2003) and Cai et al. (2005).

Note that the distribution of W ∗ can be easily approximated via a large number, say, M of

realizations from {Gi, i = 1, · · · , n}. For each realized sample {Gi, i = 1, · · · , n}, we compute

the corresponding realized W ∗. The distribution of W can then be approximated based on

these M independent realizations of W ∗, and interval estimates for D0 can be constructed

accordingly. The length of such an interval, coupled with the observed point estimate D̃(β̃)

and the scale of the response variable Y, provides an easily interpretable metric for assessing

the adequacy of the fitted model.

It is interesting to note that if (G1, · · · , Gn) is a multinomial random vector with size

n and marginal cell probabilities of n−1, the resulting W ∗ by replacing Gi − 1 in (2.9) by

Gi is essentially the bootstrap counterpart of W. It is not clear, however, how to justify

analytically whether the bootstrapping provides a good approximation to the distribution

of W under the current setting.

For a small or moderate sample size n with respect to the dimension p of β, D̂(β̂) may

underestimate D0. One remedy to reduce such bias is to use cross-validation procedures to

estimate D0. To this end, first, let us consider the popular K-fold cross-validation. Specifi-

cally, we randomly split the data into K disjoint subsets of about equal size and label them
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as Ik, k = 1, · · · , K. For each k, we use all observations which are not in Ik to obtain an

estimate β̂(−k) for β via (2.3), and then compute the predicted error estimate D̂(k){β̂(−k)}
via (2.2) based on observations in Ik. Then, an average prediction error estimate for D0 is

D̂ = K−1

K∑

k=1

D̂(k){β̂(−k)}. (2.10)

When K is fixed and relatively small with respect to n, for each k = 1, · · · , K, the sizes

of training and validation sets are of order n and {D̂ − D0} converges to 0 in probability.

Furthermore, each D̂(k)(β) is locally linear around β0. It follows from the multivariate central

limit theorem that

W = n1/2{D̂ −D0} (2.11)

is asymptotically normal. In Appendix C, we show that the limiting distribution of W is

the same as that of W. Therefore, the point estimates D̂(β̂) and D̂ may be slightly different,

but, for large n, a confidence interval for the absolute predicted error based on the K-fold

cross-validation method approximately has the same length as that based on the apparent

error.

Now, for a more general cross-validation scheme, let nt and nv be the sizes of the training

and validation sets, where n/nv is approximately a positive integer, and nt and nv → ∞,

as n → ∞. Given the data, we randomly choose a training set, use those observations in

this set to estimate β via (2.3), then compute the corresponding D̂(β̂) in (2.2) based on the

validation set. We repeat this process by taking a fresh random training set at each stage.

Let D̂ be the average D̂(β̂) defined as (2.10), but the summation is over the entire set of

possible training-validation splits. In Appendix D, we show that n1/2(D̂−D0) has the same

limiting distribution as that of W in (2.4). In practice, one may generate a large number of

random splits to approximate D̂. Note that the conventional leave-one-out method does not

belong to the above class of cross-validation procedures.
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An interesting hybrid of cross-validation and apparent error, the 0.632 bootstrap estima-

tor, for estimating the prediction error was proposed by Efron and Tibshirani (1997). This

estimator is essentially a linear combination of the apparent error and a cross-validation

counterpart. If the cross-validation component belongs to the class discussed in the last

paragraph, this combination has the same large sample distribution as W does. However,

since Efron and Tibshirani’s estimator utilises a smooth version of the leave-one-out cross-

validation, it is not clear how to justify its large sample approximation .

3. Comparing Models Based on Estimated Prediction Errors

Suppose that for a fixed vector X of predictors, there are two competing regression

models, say, gj(β̂
′
jZ(j)), j = 1, 2, where the pj-dimensional vector Z(j) is a functions of X

and β̂j is the estimator via (2.3) with the data {(Yi, Z(j)i), i = 1, · · · , n}. The theoretical

and empirical prediction errors D0j and D̂j(βj) are defined by (2.1) and (2.2) accordingly,

j = 1, 2. We are interested in making inferences about, for example, ∆ = D02−D01 to assess

how much improvement Model 1 is over Model 2.

A consistent estimator for ∆ is ∆̂ = D̂2(β̂2) − D̂1(β̂1). It follows from the arguments in

Section 2 that

W∆ = n1/2{∆̂−∆} (3.1)

is asymptotically normal with mean 0. To approximate this normal distribution, one may

use the analytical or perturbation method discussed in Section 2. Specifically, for resampling

method, let β∗j be the solution of

S∗j (βj) =
n∑

i=1

z(j)i{yi − gj(β
′
jz(j)i)}Gi,

j = 1, 2. Also, let

W ∗
j = n−1/2

n∑
i=1

{|yi − Ŷ (z′(j)iβ
∗
j )| − D̃j(β̃j)}(Gi − 1),
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where D̃j and β̃j are the observed values of D̂j and β̂j, respectively. Then, the distribution

of W∆ can be approximated by the conditional distribution of W ∗
∆ = W ∗

2 −W ∗
1 . Confidence

intervals for ∆ based on this normal approximation can then be constructed.

For the K-fold cross validation method, the estimator D̂2 − D̂1, where D̂j is defined by

(2.10) for Model j, j = 1, 2, may be less biased than ∆̂ for small sample cases. On the other

hand, let Wj be defined by (2.11) based on Model j. The limiting distribution of {W2−W1}
is the same as that of W∆. Similarly, for a general cross-validation or its hybrids discussed

in Section 2, the distribution of the corresponding n1/2{D̂2 − D̂1} can also be approximated

by that of W∆.

4. Examples and Numerical Studies

We use two examples to illustrate the proposed procedures. One is with a continuous

response and the other is with a binary dependent variable. The data of the first example are

from the clinical trial, ACTG 320, conducted by the AIDS Clinical Trials Group to evaluate

the benefit of using a three-drug combination therapy, which includes indinarvir, zidovudine

and lamivudine, for treating HIV infected patients (Hammer et al., 1997). There were

583 patients randomly assigned to this treatment group. Even with this relatively potent

therapy, a significant proportion of patients will not respond to the treatment. Therefore, it

is important to identify early biomarkers, which can predict treatment failure effectively, for

future patients’ care and management.

In this example, we let the response variable Y be the change of CD4 cell counts from

Week 0 to 24, an important measure of the patient’s immune response. This variable is still

one of the major endpoints for modern clinical studies on HIV diseases, especially conducted

in resource-limited countries. Based on ACTG 320, the potential early predictors X for such

Y are age, baseline CD4, baseline HIV-1 RNA, and the changes of CD4 and RNA from

Week 0 to Week 8. Since RNA measure is relatively expensive to obtain, an important and

9
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interesting question is whether early RNA observations are needed to make a “meaningfully

better” prediction of the change of CD4 counts from baseline to Week 24 for a patient treated

by this combination drug. For our analysis, 392 patients in ACTG 320 had baseline and

Week 8 RNA and CD4 measures. The observed Y from these patients range from −100 to

734. To evaluate the added value from early RNA marker values, first, we assume that the

conditional mean of Y given Z has a parametric form of g(β′Z) = β′Z, where Z = (1, X), a

6× 1 vector. With the estimating function (2.3), the point estimate of each component of β̂

with its estimated standard error and corresponding p-value for testing zero covariate effect

are given in Table 1. Note that early changes of RNA values and CD4 counts are highly

statistically significant. For this model, the apparent error D̂(β̂) = 51 with an estimated

standard error of 2.7 based on (2.5). The 0.95 confidence interval of D0 is (46, 56), a rather

tight interval from a clinical point of view.

Next, consider another linear additive model whose Z does not include the baseline or

early change of RNA. For this case, D̂(β̂) = 52 with the estimated standard error of 2.7.

The corresponding confidence interval for the prediction error is (47, 57), which is practically

identical to the previous interval estimate. Moreover, the 0.95 confidence interval for the

difference of the prediction error for the full model with and the one without RNA values

via W∆ in (3.1) is

(−2.0, 0.4). (4.1)

Since this interval estimate is quite tight around 0, it suggests that there is no clinically

meaningful improvement from a model which contains RNA information over the model

without RNA values involved.

With the 10-fold cross-validation method, the point estimates for predicted errors are

52 and 53 for models with and without RNA measures, respectively. The corresponding

0.95 confidence intervals are (47, 57) and (48, 58) based on the variance estimate (2.5) for
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the apparent error. Moreover, these intervals are almost identical to those estimated by

standard nonparametric bootstrap methods via 500 bootstrap samples. For comparison,

we also used a “random” cross-validation discussed in Section 2 with nt = 2n/3 and the

0.632-bootstrap method proposed by Efron and Tibshirani (1997) to evaluate the above two

fitted models. The estimates for the difference of the prediction errors of these models are

−0.50 and −0.63, respectively. To construct interval estimates based on the 0.632 method,

we generated 500 by 500 double bootstrap samples to estimate the variance. The resulting

0.95 confidence interval for the difference of the prediction errors for the aforementioned two

models is (−1.8, 0.6), which is practically identical to interval (4.1).

For the full model with predictors listed in Table 1, the point estimate of the predicted

error is about 51, which is relatively large from a clinical point of view. This, coupled with

very tight interval estimates, suggests that further research may be needed to identify more

potentially important predictors on the top of early CD4 count change. However, it seems

clear that early RNA measures do not add much value for predicting the patient’s immune

response.

We also conducted an extensive simulation study to examine the performance of the

proposed inference procedures based on the apparent error and cross-validation counterparts

under various scenarios. Specifically, we mimicked the above HIV example and generated

data {(Yi, Zi), i = 1, · · · , n} from two linear regression models. The first model relates the

response variable, the CD4 count change from Week 0 to 24, to a linear combination of five

predictors in the aforementioned HIV study with a mean-zero, normal random error term.

The deterministic part of the second model consists of all linear and also quadratic terms

of these predictors. The true values of the model parameters, regression coefficients and

error variances, of these two models are chosen using the least squares estimates with the

observed data from ACTG 320. To generate the data from these two models, first we assume

that the vector X of five predictors is jointly normal whose mean and covariance matrix are
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estimated with the data from the HIV study. Then, for each model, we generated 1000 sets

of {(Yi, Zi), i = 1, · · · , n}, where Zi was generated from the above multivariate normal. For

each realized data set {(Yi, Zi), i = 1, · · · , n}, we fitted the data with two working models.

The first one is a linear, additive regression model with five predictors. The second one is

also a linear, additive model, but with three predictors only: age, CD4 count baseline and

early CD4 count change. For each case, we computed the empirical absolute prediction errors

obtained by the apparent error, 10-fold cross-validation, a “random” cross-validation with

nt = 2n/3 and 0.632 bootstrap method. In Table 2, for each scenario, we report the estimates

of bias and square root mean square error based on 1000 data sets. Note that for the 0.632

bootstrap and “random” cross-validation methods, we generated 100 bootstrap samples and

100 random training and validation sets for each realized data set, respectively. Also, for

each case in Table 2, the “true” value of the prediction error is estimated by another 5000

independent sets {(Y 0, Z0), (Yi, Zi), i = 1, · · · , n}, where (Y 0, Z0) was used to estimate the

prediction error of the model based on {(Yi, Zi), i = 1, · · · , n}. Based on all cases studied, we

find that the apparent error tends to have slightly larger bias and square root mean square

error than the other three procedures. However, it appears that there are no differences

among these methods statistically or clinically.

The second example for illustration is from a prostate cancer study, which examines

whether certain “baseline” bio- and clinical markers are helpful for predicting tumour pene-

tration, a binary response variable (Hosmer & Lemeshow, 2000, Chapter 1). For this study,

potential predictors include age, race, digital rectal exam (no nodule, left nodule, right nod-

ule, and bilobar nodule), detection of capsular involvement in rectal exam (DCI), prostate

specific antigen (PSA), tumour volume obtained from ultra sound (TV) and total Gleason

Score (GS). A total of 376 subjects with complete data are included in this analysis.

For a binary Y, the estimating function (2.3) is the likelihood score function from the

standard logistic regression model. First we fitted the data with an additive logistic regression
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based on the above potential predictors. In Table 3, we present the point estimates of

regression coefficients and their standard error estimates. Note that the PSA is highly

statistically significant. With this model and the binary decision rule: I(g(β̂′Z0) ≥ 0.5), the

apparent error for estimating the misclassification rate is 0.24. With M = 1000 perturbation

samples {Gi} in (2.9), the 0.95 confidence interval for the error rate is (0.19, 0.29). The

corresponding point estimate and 0.95 interval based on the 10-fold cross validation method

is 0.27 and (0.21, 0.33), respectively. The estimates from the “random” cross-validation with

nt = 2n/3 are 0.26 and (0.20, 0.31). With 500 by 500 double bootstrap samples, the 0.632-

bootstrap method gives an estimate of 0.25 and a 0.95 confidence interval of (0.21, 0.30).

Since PSA is a routinely used, but controversial biomarker for diagnosis of prostate

cancer, it is interesting to examine how much accuracy the PSA would add for predicting

tumour penetration. To this end, we fitted the data with another logistic model, which is

identical to the first model, but does not include PSA. With the apparent error, the estimate

∆̂ in (3.1) for the difference of prediction errors between the second and first models is 0.021

with 0.95 confidence interval (−0.02, 0.062). The 10-fold cross-validation estimate is 0.018

with a 0.95 interval of (−0.023, 0.059), while the 0.632-bootstrap estimate is 0.017 and its

0.95 interval is (−0.012, 0.045). These indicate that PSA adds rather modest value, if there

is any, on top of other variables, for predicting tumour penetration.

5. Remarks

In this paper, we derived model evaluation procedures for continuous and binary responses

for which the L1 prediction error is a meaningful, physically interpretable metric. For a

response such as the nominal or ordinal discrete variable, other distance functions between

the predicted and observed may be more appropriate.

In this article, we use a simple estimating function (2.3) to estimate the parameters of

the fitted model, but utilize D̂(β) in (2.2) for model evaluation. It would be ideal to use
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the same criterion for both stages, that is, we estimate β by β̂, which minimizes D̂(β) with

the training set, and then estimate the prediction error with D̂(β̂) with the validation set.

Unfortunately, it is not clear that the resulting β̂ would converge to a constant vector, as n

increases, to justify the large sample approximation distribution of D̂(β̂). Moreover, when

Y is binary, we find that such a minimizer β̂ may not exist.

When Yi, i = 1, · · · , n, are continuous event times, but possibly censored, it is not clear

how to estimate the prediction error D0 in (2.1), especially when the support of the censoring

is much shorter than that of the event time. On the other hand, if one is interested in

predicting certain t-year survival probability, it seems possible to develop model evaluation

procedures using similar approaches taken in this article for handling the case with binary

outcome.

Suppose that there are two predictors, say, an inexpensive X(1) and expensive or invasive

X(2). An important and interesting question is when we need X(2) after observing X(1) to

improve the prediction of a future Y 0. Further research on this topic is highly warranted.

Appendix A: Existence and Uniqueness of the Root to the Estimating

Function

First, we show that under the mild conditions imposed on g(·), Y and Z in Section 2,

there is a unique root to the equation E{S(β)} = 0. To this end, for a given p−dimensional

unit vector b (‖b‖ = 1), let d(t; b) = b′E{S(tb)}, a function in t ∈ R. Here, we show that if

for any given b,

d(∞, b)d(−∞, b) < 0, (A.1)

then the estimating equation E{S(β)} = 0 has at least one solution. Now, if β = 0 is not a

solution, we show first that d(t; b) always has a unique solution in t for any given unit vector b.

Since ḋ(t; b) = −E{ġ(b′Zt)(b′Z)2} < 0, d(t; b) is a strictly decreasing function in t. It follows

that d(∞, b) < 0 and d(−∞, b) > 0, and d(t; b) = 0 has a unique solution, say, t0(b) by the
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continuity of d(t; b). We then define a map H from the unit sphere Sp−1 = {b | ‖b‖ = 1} to

Rp: H(b) = E[S{t0(b)b}]. Since b′H(b) = d{t0(b); b} = 0, H(b) induces a continuous vector

field on the unit sphere Sp−1.

When p = 3, 5, · · · , it follows from Hairy Ball Theorem (Hatcher, 2002, Theorem 2.28,

Sec. 2.2) that there exists a vector b0 such that H(b0) = 0, that is, H{t0(b0)b0} = 0 and

t0(b0)b0 is a solution to the equation E{S(β)} = 0.

Now, consider the case that p is an even number. Note that H(b) = H(−b) due to the fact

that d(t; b) = −d(−t;−b) ⇒ t0(b) = −t0(−b). When p = 2, it is trivial to show that there is

a b0 ∈ S1 such that H(b0) = 0. When p = 4, 6, · · · , consider all vectors b = (0, b2, · · · , bp) on

the p− 1 dimensional unit sphere. They form a p− 2 dimensional unit sphere Sp−2. For any

given b = (0, b2, · · · , bp), construct a circle S1
b = {e = (b1, rb2, · · · , rbp) | r ∈ [−1, 1], ‖e‖ = 1},

containing b. For a given e = (b1, rb2, · · · , rbp)
′ ∈ S1

b , we decompose H(e) into a sum of two

orthogonal vectors, Hp−2(e) and H1(e), where Hp−2(e) = (0, h2(e) − d(e)b2, · · · , hp(e) −
d(e)bp)

′, H1(e) = (h1(e), d(e)b2, · · · , d(e)bp)
′, d(e) = b2h2(e) + · · · + bphp(e), and H(e) =

(h1(e), · · · , hp(e))
′. Note that H1(e) is a continuous vector field on S1

b and satisfies H1(e) =

H1(−e). Therefore, for any b = (0, b2, · · · , bp), there exists a unit vector e0(b) ∈ S1
b such that

H1{y0(b)} = 0. Also, note that Hp−2 : b → Hp−2{e0(b)}, induces a continuous vector field on

Sp−2. Since p−2 = 2, 4 · · · , it follows from Hairy Ball Theorem that there exists a unit vector

b∗ such that Hp−2{e0(b
∗)} = 0. Therefore, H{e0(b

∗)} = Hp−2{e0(b
∗)} + H1{e0(b

∗)} = 0.

Lastly, since g(·) is strictly increasing and E(ZZ ′) is strictly positive definite, the root is

unique to the equation.

Now, one needs to check Condition (A.1). For a continuous response variable Y , if EZY <

∞ and J ⊂ [g(−∞), g(+∞)], then d(∞, b) = limt→∞ E[b′Z{Y − g(b′Zt)}] = E[I(b′Z >

0)b′Z{Y − g(+∞)}] + E[I(b′Z < 0)b′Z{Y − g(−∞)}] < 0. Similarly, d(−∞, b) > 0. For a

binary Y , if limt→∞ g(±t) = ±1 and pr(Y1 > Y2|b′Z1 > b′Z2) < 1 for all b, then d(∞; b) =

E{I(b′Z > 0)b′Z(Y − 1) + I(b′Z < 0)b′ZY } < 0 and d(−∞; b) > 0.
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To show that there is a unique solution to the estimating equation S(β) = 0, almost

surely, one simply replaces the expectation E in d(t; b) = b′E[Z{Y − g(tb′Z)}] defined in

the beginning of this section with the expected value taken under the empirical distribution

generated by the data {(Yi, Zi), i = 1, · · · , n}.
Lastly, since S(β) is monotone in β, it converges to E{S(β)} uniformly in any compact

set of β0 in probability. It follows that β̂ converges to β0 in probability, as n →∞.

Appendix B: Large Sample Properties of D̂(β̂)

First, we show that D̂(β̂) − D0 converges to 0 in probability, as n → ∞. Since the

conditional density or probability mass function of Y 0 given Z0 is continuously differentiable,

E|Y 0− Ŷ (β′Z0)| is continuously differentiable in β. Moreover, since g(·) is strictly increasing

and Z is bounded, it follows from a uniform law of large numbers (Pollard, 1990, Chapter

8) that supβ∈Ω

∣∣D̂(β) − E|Y 0 − Ŷ (β′Z0)|
∣∣ goes to 0, where Ω is a compact parameter set

containing β0. This, coupled with the convergence of β̂ to β0, implies that {D̂(β̂)−E|Y 0 −
Ŷ (β̂′Z0)|} converges to 0 in probability.

To derive the large sample distribution of D̂(β̂), first, since g(·) is differentiable,

n1/2(β̂ − β0) ' n−1/2

n∑
i=1

[E{A(β0)}]−1Zi{Yi − g(β′0Zi)}, (B.1)

where A(β) is defined by (2.6). Furthermore, it follows from a functional central limit

theorem (Pollard, 1990, Chapter 10) that n1/2[D̂(β) − E{D̂(β)}], a process in β, converges

weakly to a zero mean Gaussian process and thus is stochastic equi-continuous in β. This,

coupled with the fact that E{D̂(β)} is differentiable in β and (B.1), implies that n1/2{D̂(β̂)−
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D0} is asymptotically equivalent to

n1/2{D̂(β0)−D0}+ E{d(β0)}n1/2(β̂ − β0)

' n−1/2

n∑
i=1

(
|Yi − Ŷ (β′0Zi)| −D0 + E{d(β0)}[E{A(β0)}]−1Zi{Yi − g(β′0Zi)}

)

= n−1/2

n∑
i=1

ηi, (B.2)

where d(β) is defined by (2.7). Thus, n1/2{D̂(β̂) −D0} converges in distribution to a zero-

mean normal random variable. Moreover, η̂ for the variance estimate (2.5) is obtained by

replacing all the theoretical quantities for η in (B.2) with their empirical counterparts.

Appendix C: Large Sample Properties of D̂

For each partition Ik, n1/2{D̂(k)(β̂(−k))−D0} is asymptotically equivalent to n−1/2
∑n

i=1

I(ξi = k)
{|Yi − Ŷ (β̂′(−k)Zi)| − D0

}
, where {ξi; i = 1, · · · , n} are n exchangeable discrete

random variables uniformly distributed over {1, 2, · · · , K}, independent of the data, and

satisfy that
∑n

i=1 I(ξi = k) = n/K, k = 1, · · · , K. It follows from Lemma 4.2 of Wellner &

Zhan (1996) and the standard large sample expansion of a smooth estimating function that

β̂(−k) − β0 =
K

n(K − 1)
[E{A(β0)}]−1

n∑
i=1

I(ξi 6= k)Zi{Yi − g(β′0Zi)}+ op(n
−1/2).

Here and in the sequel, op(·) is with respect to the probability measure generated under

{ξi, i = 1, · · · , n} and {(Yi, Zi), i = 1, · · · , n}. Then using the same argument in Appendix

B, one can show that n1/2{D̂(k)(β̂(−k))−D0} is asymptotically equivalent to

n1/2{D̂(k)(β0)−D0}+ E{d(β0)}n1/2(β̂(−k) − β0),

which is asymptotically equivalent to n−1/2
∑n

i=1 ηki, where

ηki = I(ξi = k)K
{
|Yi − Ŷ (β′0Zi)| −D0

}
+

I(ξi 6= k)
K

K − 1
E{d(β0)}[E{A(β0)}]−1Zi{Yi − g(β′0Zi)}.
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It follows that n1/2(D̂ − D0) ' n−1/2
∑n

i=1(
∑K

k=1 K−1ηki). Since
∑K

k=1 I(ξi = k) = 1 and
∑K

k=1 I(ξi 6= k) = K − 1, it is straightforward to show that

n−1/2

n∑
i=1

(
K∑

k=1

K−1ηki

)
= n−1/2

n∑
i=1

(
|Yi − Ŷ (β′0Zi)| −D0+

E{d(β0)}[E{A(β0)}]−1Zi{Yi − g(β′0Zi)}
)
.

This implies that n1/2(D̂ −D0) is asymptotically equivalent to n1/2{D̂(β̂)−D0}.

Appendix D: Large Sample Properties of D̂

For a “random” cross-validation with nv = n/K and nt = n(K − 1)/K, where K is

a positive integer, consider the random vector ξ = (ξ1, · · · , ξn)′ defined in Appendix C. It

is straightforward to show that the random variable D̂ is equivalent to Eξ(D̂), where the

expectation is with respect to ξ only. Then, for the corresponding K-fold cross validation, it

follows from Lemma 4.2 of Wellner & Zhan (1996) and the standard large sample expansion

around β̂ that

β̂(−k) − β̂ =
K

n(K − 1)
[E{A(β0)}]−1

n∑
i=1

I(ξi 6= k)Zi{Yi − g(β̂′Zi)}+ op(n
−1/2).

Furthermore, one can also show that n1/2{D̂(k)(β̂(−k))− D̂(β̂)} is asymptotically equivalent

to

n1/2{D̂(k)(β̂)− D̂(β̂)}+ E{d(β0)}n1/2(β̂(−k) − β̂) ' n−1/2

n∑
i=1

η∗ki,

where

η∗ki = I(ξi = k)K
{
|Yi − Ŷ (β̂′Zi)| − D̂(β̂)

}
+

I(ξi 6= k)
K

K − 1
E{d(β0)}[E{A(β0)}]−1Zi{Yi − g(β̂′Zi)}.

It follows that n1/2{D̂ − D̂(β̂)} ' n−1/2
∑n

i=1(
∑K

k=1 K−1η∗ki). Since
∑K

k=1 I(ξi = k) = 1 and
∑K

k=1 I(ξi 6= k) = K − 1, n−1/2
∑n

i=1

(∑K
k=1 K−1η∗ki

)
= 0. This implies that E{n1/2|D̂ −
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D̂(β̂)|} → 0. Therefore, for any ε > 0,

pr
(
n1/2|EξD̂ − D̂(β̂)| > ε

)
≤ pr

(
Eξ

{
n1/2|D̂ − D̂(β̂)|

}
> ε

)

≤ ε−1E(Y,Z)

[
Eξ

{
n1/2|D̂ − D̂(β̂)|

}]
→ 0,

where E(Y,Z) in the last term is the expectation with respect to {(Yi, Zi), i = 1, · · · , n}. It

follows that n1/2(D̂−D0) is asymptotically equivalent to n1/2{D̂(β̂)−D0}.
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Table 1. Estimates of the regression parameters with their standard errors and

corresponding p-values for testing zero covariate effects for the AIDS example

Age Baseline RNA RNA Change Baseline CD4 CD4 Change

Estimate -0.55 0.08 -12.06 0.03 0.68

Std Error 0.35 5.53 2.80 0.07 0.10

P-value 0.12 0.99 0.00 0.72 0.00
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Table 2. Bias and square root mean square error (SMSE) for apparent error (AE), 10-fold

cross-validation (CV10), ”random” cross-validation with nt = 2n/3 (CV-1/3), and 0.632

bootstrap method

Bias SMSE

n True error AE CV10 CV-1/3 0.632 AE CV10 CV-1/3 0.632

True model I & Fitted model I

200 57.61 -1.62 0.23 0.57 0.02 3.45 3.16 3.19 3.11

400 57.23 -0.91 -0.01 0.17 -0.10 2.32 2.18 2.18 2.16

600 57.04 -0.60 0.00 0.12 -0.06 1.84 1.77 1.77 1.76

True model II & Fitted model I

200 58.35 -1.27 -0.04 0.19 -0.17 3.40 3.22 3.24 3.21

400 58.08 -0.64 -0.04 0.08 -0.10 2.34 2.27 2.27 2.26

600 58.04 -0.47 -0.06 0.01 -0.10 1.81 1.76 1.76 1.76

True model I & Fitted Model II

200 57.71 -1.61 0.27 0.63 0.07 3.47 3.20 3.25 3.15

400 57.31 -0.91 0.02 0.20 -0.07 2.35 2.22 2.21 2.19

600 57.13 -0.51 0.11 0.22 0.04 1.84 1.80 1.80 1.78

True model II & Fitted model II

200 57.81 -1.15 0.11 0.34 -0.03 3.26 3.13 3.14 3.10

400 57.49 -0.57 0.06 0.17 -0.01 2.28 2.24 2.24 2.22

600 57.47 -0.39 0.02 0.10 -0.02 1.82 1.80 1.79 1.79
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Table 3. Estimates of the regression parameters with their standard errors and

corresponding p-values for testing zero covariate effects for the prostate cancer example

Age Race DCI PSA TV GS
Nodule in Rectal Exam

Left Right Bilobar

Estimate -0.01 -0.65 0.49 0.03 -0.01 0.96 0.73 1.51 1.39

Std Error 0.02 0.47 0.45 0.01 0.01 0.17 0.34 0.37 0.47

P-value 0.56 0.17 0.27 0.00 0.13 0.00 0.03 0.00 0.00
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