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Parameter Estimation in Cox Proportional
Hazard Models with Missing Censoring

Indicators

Naomi Brownstein, Eric Bair, Jianwen Cai, and Gary Slade

Abstract

In a prospective cohort study, examining all participants for incidence of the con-
dition of interest may be prohibitively expensive. For example, the “gold stan-
dard” for diagnosing temporomandibular disorder (TMD) is a clinical examina-
tion by an expert dentist. In a large study, examining all subjects in this manner is
infeasible. Instead, it is common to use a cheaper (and less reliable) examination
to screen for possible incident cases and perform the “gold standard” examination
only on participants who screen positive on this simpler examination. Unfortu-
nately, some subjects may leave the study before receiving the “gold standard”
examination. Within the framework of survival analysis, this results in missing
censoring indicators. Motivated by the Orofacial Pain: Prospective Evaluation
and Risk Assessment(OPPERA) study, a large cohort study of TMD, we propose
a method for parameter estimation in survival models with missing censoring in-
dicators. We estimate the probability of being a case for those with no “gold
standard” examination using logistic regression. These predicted probabilities are
used to generate multiple imputations of each missing case status and estimate the
hazard ratios associated with each putative risk factor. The variance introduced by
the procedure is estimated using multiple imputation. We simulate data with miss-
ing censoring indicators and show that our method performs as well as or better
than the competing methods. Finally, we apply the proposed method to analyze
data from the OPPERA study.
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Summary: In a prospective cohort study, examining all participants for incidence of the condition of interest may

be prohibitively expensive. For example, the “gold standard” for diagnosing temporomandibular disorder (TMD) is a

clinical examination by an expert dentist. In a large study, examining all subjects in this manner is infeasible. Instead,

it is common to use a cheaper (and less reliable) examination to screen for possible incident cases and perform the

“gold standard” examination only on participants who screen positive on this simpler examination. Unfortunately,

some subjects may leave the study before receiving the “gold standard” examination. Within the framework of survival

analysis, this results in missing censoring indicators. Motivated by the Orofacial Pain: Prospective Evaluation and

Risk Assessment(OPPERA) study, a large cohort study of TMD, we propose a method for parameter estimation

in survival models with missing censoring indicators. We estimate the probability of being a case for those with no

“gold standard” examination using logistic regression. These predicted probabilities are used to generate multiple

imputations of each missing case status and estimate the hazard ratios associated with each putative risk factor.

The variance introduced by the procedure is estimated using multiple imputation. We simulate data with missing

censoring indicators and show that our method performs as well as or better than the competing methods. Finally,

we apply the proposed method to analyze data from the OPPERA study.
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1. Introduction

Time-to-event analyses are frequently conducted in medicine, actuarial science, and numer-

ous other fields of applied science. There is a well-developed set of survival analysis methods

implemented in standard software. Semi-parametric methods, such as the Cox proportional

hazards model, allow robust estimation of the effects of covariates on the hazard function.

Yet, these methods require the analyst to know not only the time of the event or censoring,

but also the event status, which may not always be available.

Often, the outcome of interest may be difficult to ascertain. For example, in oncology

studies, researchers may want to differentiate between deaths due to cancer and deaths due

to car accidents or other unrelated causes. Investigators may easily record the mortality

of all subjects, but it may be extremely difficult or costly to find out exactly why each

subject died. One possible solution to this problem is delayed event adjudication (Cook and

Kosorok, 2004). This means that possible cases are not identified immediately but screened

using simple methods that may have poor sensitivity or specificity; then, one or more experts

examines the screened candidate cases using a more precise, but also more costly and time-

consuming method to determine the true event status.

When individuals have more than one potential event, Snapinn (1998) recommends screen-

ing out unlikely events and using weights for each potential event and use a weighted partial

likelihood. Each observation is weighted by the probability that the subject had first failed at

the observed time; these probabilities may be known or estimated. Taking this uncertainty

into account reduces bias and increases power. However, estimating the weights depends

upon the presence of a normally distributed diagnostic variable and either knowing or having

experts guess the relative frequency of true endpoints to false endpoints. In addition, the

variance of the method is mentioned but not described in detail.

The study that motivates our work is Orofacial Pain: Prospective Evaluation and Risk
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Assessment (OPPERA), a prospective cohort study to identify risk factors for the onset

of temporomandibular disorders (TMD). A total of 3,263 initially TMD-free subjects were

recruited at four studies sites between 2006 and 2008. A specialized dental examination

(Dworkin and LeResche, 1992) is required for accurately diagnosing TMD. It is impractical

to perform this exam on every participant in such a large study, especially if most study

participants are unlikely to have the condition. Instead, the “gold standard” examination

is performed only on subjects who screen positive on a simpler exam, such as a survey

designed to assess recent orofacial pain (Slade et al., 2012). However, some subjects who

screen positive may be lost to follow-up before receiving the “gold standard” examination.

Subjects who screen positive but fail to return for their follow-up examination may differ

from those who do complete the examination according to known demographic factors. A

time-to-event analysis would then have some subjects with missing censoring indicators,

which are missing at random but not missing completely at random. This setting presents

statistical challenges, which require care in order to avoid bias and maintain efficiency.

Over the past three decades, a variety of estimators of the survival function for time-to-

event data with missing censoring indicators have been proposed. Dinse (1982), Racine-Poon

and Hoel (1984), and Flehinger et al. (1998) propose estimates for competing risk models.

van der Laan and McKeague (1998) first provide an asymptotically efficient nonparametric

estimator of the survival function for standard univariate failure time data with censoring

indicators missing at random. Subramanian and Bean (2008b), Subramanian (2009), and

Subramanian (2011) discuss improving the survival function estimate via bootstrapping and

multiple imputation. Additional research on estimating the survival function include Sub-

ramanian (2004), Subramanian (2006), Subramanian and Bean (2008a), and Subramanian

and Bandyopadhyay (2010). In addition, the logrank test has been generalized for missing

censoring indicators (Goetghebeur and Ryan, 1990; Dewanji, 1992; Tsiatis et al., 2002).
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Less is known about the more difficult problem of fitting a Cox proportional hazard

model in the presence of missing censoring indicators. Progress began in the competing

risk setting. Goetghebeur and Ryan (1995) propose competing risks proportional hazards

regression models using estimating equations assuming that observations are known either

to be censored or to have failed by some cause. They assume proportional hazards for each

failure type and between the two failure types. For the linear transformation model, Gao and

Tsiatis (2005) propose an augmented inverse probability weighted estimator and algorithm

and illustrate its asymptotic and double robustness properties.

For the usual survival setting with only one cause of failure and possibly missing censoring

indicators, McKeague and Subramanian (1998) and Gijbels et al. (2007) propose estimating

functions for the estimation of the parameters in the Cox proportional hazards models.

Subramanian (2000) conducts parameter estimation in the Cox model under the assumption

of proportional censorship. Yet, these methods depend on the MCAR assumption, which may

not be realistic in practice and does not hold for the OPPERA study. Chen et al. (2009)

estimate Cox regression parameters using the EM algorithm and establish their consistency

under basic regularity conditions, including MAR censoring indicators. However, their ap-

proach depends on the assumptions of piecewise constant proportional hazard functions for

the censoring time as well as for the failure time.

Cook and Kosorok (2004) estimate parameters in standard Cox proportional hazard models

with observations weighted by their probability of being a true case and provide a formula for

estimation of the variance of the estimators. They showed that estimators are consistent and

asymptotically normally distributed. However, the formula for the variance of their estimator

did not produce reasonable results for the OPPERA study. Alternatively, they also propose

approximating the standard error using bootstrapping.

Every three months, OPPERA study participants are asked to complete a quarterly health
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update (QHU) of recent pain (Slade et al., 2012). Subjects who screen positive are contacted

to schedule a follow-up dental examination, based on the Research Diagnostic Criteria

(RDC) for temporomandibular disorders (Dworkin and LeResche, 1992). This RDC exam is

considered to be the “gold standard” for diagnosing TMD.

The likelihood that a participant will come in for their RDC exam differs based on known

factors such as gender, race, or socio-economic status. This indicates that the censoring

indicators in the OPPERA study are not missing completely at random. Application of

models that assume MCAR censoring indicators may result in biased estimates of hazard

ratios for covariates of interest. More significantly, a subject’s responses to their QHU are

predictive of whether or not they are a case. There is a clear need for new methodology to

effectively answer the research questions of the OPPERA study.

In this paper, we propose a method for parameter and variance estimation in the Cox

regression model with missing censoring indicators. We describe our method in section 2. In

section 3, we report the results of simulations. Finally, in section 4 we apply our method to

the OPPERA study. We conclude with a discussion in section 5.

2. Model

Assume there are n independent subjects. For each subject, i = 1, . . . , n, let Ci and Ti denote

the potential times until censoring and failure, respectively, Vi = min(Ti, Ci), ∆i = I(Ti 6

Ci), Ni(t) = I(Ti < t), Zi a p × 1 vector of covariates and Xi a q × 1 vector of auxiliary

covariates. We assume the hazard for subject i follows a Cox proportional hazards model

λ(t|zi) = λ0(t) exp(β
′zi) (1)

where λ0(t) is an unspecified baseline hazard function. Let ξi denote the indicator that ∆i

is observed and σi = ξi∆i. We observe (Vi, ξi, σi) for i = 1, . . . , n.

In the OPPERA study, Vi is the length of time since subject i is enrolled in the study until
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either he or she screens positive on a QHU and is subsequently diagnosed with TMD or is

lost to follow-up. (Note that the study protocol requests that subjects fill out QHUs until

the end of the study, even if the subject is diagnosed with TMD. For the purposes of this

paper, we do not consider QHUs for subjects who have already been diagnosed with TMD.)

If subject i either screened negative on the last recorded QHU or screened positive on the

QHU and had a negative RDC exam, then ∆i = 0. If subject i screened positive on the QHU

and had a positive RDC exam, then ∆i = 1. If subject i screened positive on the QHU but

did not come in for the RDC exam, then ∆i is missing and ξi = 0. If ∆i is observed, then

ξi = 1. Measured when a participant enrolled in the study, putative risk factors for TMD are

denoted by Zi, and a participant’s responses to their QHU are denoted by Xi. For OPPERA,

we also define Qi = 1 if subject i screens positive on the last QHU and Qi = 0 otherwise.

We assume the censoring indicators are missing at random (MAR) as follows:

P (ξi = 0|Vi,∆i, Xi, Qi = 1) (2)

= P (ξi = 0|Xi, Vi, Qi = 1) = ρ(Xi, Vi)

We model the probability that subject i with a missing censoring indicator is a case by a

logistic regression model based on Xi and Vi, i.e.

p(∆i = 1|Vi, Xi, Zi, ξi = 0, Qi = 1) (3)

= p(∆i = 1|Xi, Vi, Qi = 1) (4)

=
exp(α′Xi + γVi)

1 + exp(α′Xi + γVi)
I(Qi = 1) (5)

That is, we predict the probability that a subject who did not come in for the RDC exam

actually has TMD based on the time of the QHU and their answers on the QHU. In the

OPPERA study, we observed empirically that the probability of having developed TMD was

not associated with baseline covariates once we controlled for the responses on the QHU.

http://biostats.bepress.com/uncbiostat/art34
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Then the predicted probability of being a case is given by

pi = Ê[∆i|ξi, σi, Xi, Zi, Vi;α, β, γ] (6)

= σi + (1− ξi)
exp(α̂′Xi + γ̂Vi)

1 + exp(α̂′Xi + γ̂Vi)
.

Note, if there are repeated measures, we may use a generalized linear mixed model rather

than a logistic regression model. For example, if a majority of subjects repeatedly screen

positive on their QHUs and come in for at least one RDC exam, then we would have multiple

observations per subject. In that case, fitting a mixed model rather than a logistic regression

model would account for correlations between responses of the same subject.

Once we have the predicted failure probabilities, we may use them to create imputed

datasets. We then use the completed data to fit a standard Cox proportional hazards model

and estimate the parameters and their standard errors via multiple imputation.

2.1 Multiple Imputation

One popular method of parameter and standard error estimation is multiple imputation.

Widely available in statistical software, multiple imputation is commonly used by both statis-

ticians and non-statisticians alike. For a comprehensive reference on multiple imputation, see

the review paper of Rubin (1996). Our imputation procedure is as follows:

(i) Estimate predicted probabilities as described in the previous section.

(ii) Retain each observation with observed censoring indicators.

(iii) For each observation with a missing censoring indicator, generate a Bernoulli random

variable with success probability equal to the predicted probability found in step (i).

(iv) Combine the raw and imputed data from steps (ii) and (iii) to form a completed

dataset.

(v) Fit the Cox proportional hazards model to the completed dataset.

(vi) Record each parameter estimate β̂j and covariance matrix Ûj .
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(vii) Repeat steps (ii)-(vi) m times.

Next, we combine all of the estimates. The average parameter estimate is

β̄ =
1

m

m∑

j=1

β̂j , (7)

the within-imputation variance estimate is

Ū =
1

m

m∑

j=1

Ûj , (8)

and the between-imputation variance

B̂ =
1

m− 1

m∑

j=1

(β̂j − β̄)(β̂j − β̄)′. (9)

Finally, the estimated covariance matrix is

ˆV ar(β̄) = Ū + (1 +
1

m
)B̂. (10)

2.2 Estimation of Incidence

We can also estimate incidence rates using Poisson regression instead of Cox regression.

In order to estimate incidence, we estimate the predicted case probabilities as described

previously. Then we impute case status as described in section 2.1 but we fit Poisson

regression models, rather than Cox models, to the completed datasets. Finally, we calculate

the incidence rate based on the estimates of the regression coefficients in the Poisson model.

3. Simulations

We simulated data with missing censoring indicators and compared methods with respect to

bias, coverage, and confidence interval width. In correspondence with the formulae in Bender

et al. (2005) for generating exponentially distributed failure times under the proportional

hazards model with covariates, we generated 1000 survival times. That is, the survival

time for each individual was distributed according to equation (1) where λ0(t) = 1 is the

baseline hazard. For our simulations, the Zi = Xi1 was a single covariate following a normal

distribution with mean 2 and unit variance. In other words, the failure times, Ti followed

http://biostats.bepress.com/uncbiostat/art34
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an exponential distribution with hazard exp(β ′Xi1). We used β ∈ {−0.5,−1.5,−3}. The

censoring times, Ci followed an exponential distribution with mean 5. This yielded about

35%, 75% and 90% censoring, respectively.

For each observation, we generated a random normal variable, Xi2 ∼ N(∆i, 0.3). Larger

values of Xi2 were more likely to be associated with a failure event. We use Xi2, a continuous

measure of the potential of being as a case, to generate the indicator Qi = I(Xi2 > 0.5).

We created missing censoring indicators under the following classical missing data mech-

anisms of Rubin (1976):

(I) The probability of having a missing censoring indicator depends on an observed

covariate. This is known as missing at random (MAR).

(II) The probability of having a missing censoring indicator depends on the censoring

indicator. This is known as missing not at random (MNAR).

Observations were potentially missing if Qi = 1. For mechanism I, we set censoring

indicators to be missing based on xi1, i.e. they were set to missing with probability

ρi(Xi, Vi) = P (ξi = 0|Xi, Vi, Qi = 1) =
exp(−0.25xi1)

1 + exp(−0.25xi1)
.

For mechanism II, we set 30% of the censored observations and 50% of the failures to have

missing indicators.

Within the framework of OPPERA, for person i, Vi = min(Ti, Ci) corresponds to the

time of the last positive QHU or loss to follow-up, ξi = I(∆i is observed) to the indicator

of whether person i came in for their RDC exam if Qi = 1, ∆i to the indicator of whether

person i was diagnosed with TMD, Xi1 to a risk factor for TMD measured at baseline, Xi2 to

a covariate collected on the last QHU, and Qi as an indicator of whether the person screened

positive on their last QHU.

In OPPERA, Qi = 0 means subject i had a negative last QHU. Assuming subject i was

not a matched control, he or she would not be subjected to an RDC exam, and therefore
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would not be considered a case of TMD. However, about 5% of matched controls had TMD,

i.e. there was a false negative rate of 5%. In order to parallel the set-up of OPPERA, we set

∆i = 0 if Qi = 0; this corresponded to a false negative rate of about 5% for these simulations.

We first fit all observations with observed censoring indicators in each simulated dataset

to a logistic regression model for case status with the covariates Xi1 and Xi2. That is, using

the complete data (i.e. observations with ξi = 1), we fit the logistic regression model for the

event probability conditional on X ′

i = (1, Xi1, Xi2), namely

logit{Pr(∆i = 1|Qi = 1, ξi = 1)} = α′Xi (11)

We output the predicted probabilities, p̂i =
α̂′Xi

1+α̂′Xi

, i = 1, . . . , 1000

To evaluate the performance of our method, we used multiple imputation to create 100

datasets for each simulation as described in Section 2.1. That is, we generated 100 datasets

with identical data for Xi, Ti, Ci, ξi. For each observation i with ξi = 0, we generated failure

indicators ∆̂ij ∼ Bernoulli(p̂i) independently for each imputation j.

We fit a Cox proportional hazards model to each dataset completed by multiple imputation

and recorded the multiple imputation estimates of the regression coefficient and its variance.

These were aggregated using equations (7) and (10) to create confidence intervals for the

multiple imputation estimates.

We compared the performance of our method with the performace of the method of Cook

and Kosorok (2004). For each simulated data set, we calculated the predicted probabilities

p̂i that (unobserved) event i is an event, as described previously. We then fit a weighted

Cox proportional hazards model to the dataset. For observations with missing censoring

indicators we created two new observations with the same failure time and covariates, but

different failure indicators and weights: the first with ∆̂i = 1 and weight p̂i, the second

with ∆̂i = 0 and weight p̂i. We used unit weight for subjects with fully observed data and

recorded the estimated regression coefficient, β̂. We estimated the variance of this estimate

http://biostats.bepress.com/uncbiostat/art34
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by generating 1000 bootstrap replicates of each simulated data set. We recorded the average

parameter estimate,
¯̂
β and percentile confidence intervals (β0.025, β0.975). Here, βα is the α

quantile among the 1000 bootstrap replicates.

We also compared our method to the ideal situation in which all data were observed,

complete case analysis (meaning that we exclude all observations with missing censoring

indicators from the data set), and two ad-hoc methods in which we treat the missing

indicators either all as censored or all as failures. Results under the assumption of MAR

are included in Table 1. We estimated the bias of each method by calculating the mean

difference between the estimated Cox regression coefficient and the true coefficient over the

1000 simulations. We also calculated the mean width of the confidence intervals produced

by each method over the 1000 simulations. Similarly, we calculated the empirical coverage

probability for the confidence intervals produced by each method by dividing the number of

times that the confidence intervals contained the true value of the parameter by 1000. We

also tested if the coverage probabilities differed significantly from the nominal rate and if

the width of the confidence intervals were different between our method and the comparison

methods.

[Table 1 about here.]

The imputed confidence intervals achieved the desired coverage probability in all simulations.

Our multiple imputation method and the method of Cook and Kosorok (2004) produced

unbiased estimates and valid confidence intervals in all the scenarios we considered. The

estimates produced by the other methods showed a small (but statistically significant)

amount of bias and did not always achieve the desired amount of coverage. Our multiple

imputation method also yielded the narrowest confidence intervals in each scenario, although

the method of Cook and Kosorok (2004) produced confidence intervals that were only slightly
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wider. Moreover, for most parameter values, the coverage probabilities for the complete case

and ad hoc methods were significantly different (p < 0.01) from the nominal rate.

In addition, we examined the performance of our proposed methods when we changed the

logistic regression model for ∆i. We investigate two additional types of models: one in which

the model contained a variable unrelated to case status and another when one variable related

to case status is left out. As in the previous simulations, the failure times were generated

by (1), censoring was exponential with mean 5, failure indicators were set to be missing

completely at random or missing at random, Xi2 ∼ N(∆i, 0.3) and Qi = I(Xi2 > 0.5) for

i = 1, . . . , n. We also generatedXi3 ∼ N(0, 1) whereXi1, Xi2, Xi3 were mutually independent.

In the previous simulations, we fit the data to (11) with Xi = {Xi1, Xi2} where Xi1 ∼

N(2, 1). The additional simulations instead used the covariates and parameters as follows:

(1) X̃i = {1, Xi1, Xi2, Xi3}, α̃ = {α̃0, α̃1, α̃2, α̃3}

(2) X̃i = {1, Xi1}, α̃ = {α̃0, α̃1}

That is, rather than fitting model (11) to the data, we modeled the case probability with

logit{Pr(∆i = 1)} = α̃′X̃i. (12)

Results, shown in Appendix A, remained similar under both alternative models. This in-

dicates that the proposed methods are robust to alternative specification of the logistic

regression model.

4. Data Application

In this section, we apply our method to time-to-event data in the Orofacial Pain Prospective

Evaluation and Risk Assessment (OPPERA) study. OPPERA is a prospective cohort study

designed to identify risk factors for first-onset TMD. A total of 3,263 initially TMD-free

individuals were enrolled in OPPERA, which were recruited at four study sites from 2006-
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2008. TMD status was confirmed by an RDC examination (Dworkin and LeResche, 1992).

For more details on the OPPERA study, see Maixner et al. (2011) and Slade et al. (2011).

Upon enrollment in the study, each OPPERA participant was assessed for psychological

distress, previous history of painful conditions, and sensitivity to experimental pain. See

Ohrbach et al. (2011), Fillingim et al. (2011), Greenspan et al. (2011), and Maixner et al.

(2011) for a complete description of the baseline data sets that were collected in OPPERA.

After enrollment each participant was instructed to complete a survey (called a quarterly

health update or QHU) every three months. This questionnaire evaluates the frequency

and severity of pain in the orofacial region during the previous three months. The QHU

also evaluates pain experienced in other bodily regions, use of medications, sleep quality,

psychological distress, and other possible risk factors for TMD. For a complete description

of the QHU, see Slade et al. (2012).

Participants were screened as positive or negative based on whether or not their QHU

responses were indicative of TMD. Participants experiencing at least 2 months with 5 or

more days of orofacial pain and at least one day of pain within the past two weeks or with 5

or more days of pain in the last two weeks were considered positive on the QHU. Participants

who screened positive on a QHU were asked to undergo a follow-up RDC examination by

an expert dentist to determine whether or not they would be classified as an incident case

of TMD.

Of the 3,263 subjects, 2,737 filled out at least 1 QHU, and the remaining 521 did not fill out

any QHUs. The total number of QHUs was 28,400, of which 26,666 corresponded to subjects

not yet diagnosed with TMD. (Subjects diagnosed with TMD continued to complete QHU’s,

but since these additional QHUs were not relevant to our time-to-event analysis, we did not

analyze them.)

There were 1,157 positive QHUs, of which 717 were from individuals free of TMD at the
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time of their QHUs. Among these positive QHU’s, 486 (about 68%) received an RDC exam.

In addition, upon finding a new incident case, investigators asked a matched control to come

in for a clinical examination. Controls were matched on study site, gender, and enrollment

date within 2 weeks. In this manner, RDC exams were conducted on 342 matched controls.

This protocol resulted in 260 positive diagnoses of TMD and 556 negative diagnoses of TMD.

One of the examiners was deemed to be unreliable, so we set all of her RDC exam results to

be missing and imputed them using the methods in this paper. This left 404 positive QHUs

(56%) resulting in valid clinical exams. We then had 177 positive diagnoses of TMD and

530 negative diagnoses. On the individual level, after setting the exams from the unreliable

examiner to missing, there were 514 people who had at least one positive QHU, 401 of which

triggered positive only once, and only 39 of which had more than 2 positive QHUs.

4.1 Hazard Ratios

We applied our method to the OPPERA cohort to adjust for participants with missing RDC

examinations. First, we predict via logistic regression the probability of a subject being

diagnosed as an incident case of TMD given a positive screening on a QHU. Due to the rich

body of information collected in each QHU, we carefully selected a small number of predictor

variables. Specifically, we fit a generalized linear mixed model with a logistic link function

to predict the result of the RDC exam based on each item in the QHU. A mixed model was

used because a sizeable (n=113) minority of subjects screened positive on multiple QHUs.

All models were adjusted for study site and included a random effect term for each subject.

The majority of the variables measured on the QHU were not associated with the result

of the RDC exam. The strongest predictor of a positive RDC exam was a count of facial

symptoms (e.g. stiffness, fatigue, or soreness) in the previous three months. The time elapsed

from baseline to the QHU was also predictive of a positive diagnosis of TMD. Several other

possible predictors of a positive RDC exam were identified, but including these additional
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predictors in the model did not significantly improve the predictive accuracy of the model.

Thus, we predicted the probability of a positive RDC exam based on the count of facial

symptoms, time since baseline, and study site. This model was used to perform multiple

imputation for those who had positive QHUs but did not come in for their RDC exams.

These imputed data sets were used to fit a series of Cox proportional hazards models to

estimate the hazard ratio (and associated confidence interval and p-value) for each predictor

using the methods described in section 2.1. Examples of predictors include perceived stress,

history of comorbid chronic pain conditions and smoking status, among others.

In addition, we examined univariate relationships between the act of coming to the clinic for

an RDC exam and numerous other factors. Differences between those who came in and those

who did not come in were not significant. There were no significant associations between the

baseline variables and the acts of filling out the QHUs or returning for the RDC exam. This

indicates the missingness is likely random.

Table 2 shows the results of applying our method to a subset of the putative risk factors

of TMD measured in OPPERA. Due to the large number of putative risk factors measured

in OPPERA, we only report a subset of these in this table. All continuous variables in the

table were normalized to have mean 0 and standard deviation 1 prior to fitting the Cox

models. (Thus, the hazard ratios for the continuous variables represent the hazard ratios

corresponding to a one-standard deviation increase in the predictor variable.) In Table 2, all

the quantitative sensory testing (QST) and psychosocial variables were continuous, and all

of the clinical variables were dichotomous (and hence were not normalized).

[Table 2 about here.]

Compared to the unimputed results which treated missing censoring indicators as censored

observations, imputation appeared to slightly reduce the hazard ratios for most of the

psychosocial variables that were measured in OPPERA. For instance, Table 2 shows the
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(standardized) hazard ratios for the Pennebaker Inventory of Limbic Languidness (PILL)

score, the neuroticism subscale of the Eyesenk Personality Questionnaire (EPQ), the Spiel-

berger Trait Anxiety Inventory score, the Perceived Stress Scale, and the somatization

subscale of the symptom checklist-90 (SCL90R). (See Fillingim et al. (2011) for a complete

description of these psychosocial instruments.) In each case, the hazard ratios were reduced

after imputation.

A similar pattern was observed after applying our imputation method to the OPPERA

QST data. The mechanical pain aftersensation ratings were strongly associated with first-

onset TMD before imputation, but they were only weakly associated with first-onset TMD

after imputation. The pressure pain algometer ratings were also more weakly associated

with TMD after imputation (and two of three ratings in Table 2 were no longer signifcantly

associated with first-onset TMD at the p < 0.05 level). See Greenspan et al. (2011) for a

more detailed description of these QST measures.

Interestingly, the hazard ratios for the presence of one or more palpation tender points

at the temporalis and masseter were also attenuated after imputation. See Ohrbach et al.

(2011) for a more detailed description of these variables. These tender points were evaluated

as part of the RDC examination using a different protocol than the QST algometer pain

ratings. However, both pain measures (algometer and palpation) were measured at the same

anatomical locations on the jaw. While the palpation ratings were more strongly associated

with first-onset TMD than the algometer ratings both before and after imputation, it is

interesting that different pain sensitivity measures using different protocols at the same

anatomical location were both attenuated by imputation.

The effects of other clinical variables were also attenuated after imputation. For example,

the hazard ratios associated with being unable to open one’s mouth wide in the past month

and having two or more comorbid pain conditions were both noticeably attenuated after
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imputation. However, other clinical variables were more strongly associated with first-onset

TMD after imputation. For example, having a history of at least one of five respiratory

conditions was only weakly associated with first-onset TMD before imputation (HR=1.38,

p=0.04), but the association was much stronger after imputation (HR=1.43, p=0.004).

Also, being a current smoker was not signficantly associated with first-onset TMD before

imputation (HR=1.26, p=0.24) but was associated after imputation (HR=1.49, p=0.02). See

Ohrbach et al. (2011) for a more detailed description of these variables.

4.2 Incidence Rates

Another important aim of the OPPERA study is to calculate incidence rates of first-onset

TMD. In table 3, we calculated incidence rates in two ways. First we treated all missing

censoring indicators as censored. Second, we implemented the multiple imputation method

in this paper. Overall rates with multiple imputation increased by nearly 2/3 compared to the

unimputed rates and by 64% for females and 72% for males. Rates for whites and Hispanics

were 99% and 193% higher with imputation. Thus, the incidence rate of first-onset TMD is

underestimated without imputation.

[Table 3 about here.]

5. Discussion

Motivated by the research questions and framework of the OPPERA study, we presented

a computationally efficient method to adjust for missing censoring indicators in time-to-

event data using logistic regression and multiple imputation. Logistic regression is used

to estimate the failure probability for subjects with missing censoring indicators. Then,

the values are imputed and standard errors are estimated via multiple imputation. This

framework is important in studies where failure status may be unknown, e.g. with interim

event adjudication.
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Magder and Hughes (1997) used a similar approach to estimate parameters in a logistic

regression model given observed covariates when the outcome variable is measured with

uncertainty by incorporating information about sensitivity and specificity. Their approach

utlizes the EM algorithm to update the predicted probabilities and parameter estimates and

iterating until convergence. Our assumption of MAR data renders iteration unnecessary.

In fact, we conducted additional simulations, which found that our one-step procedure of

estimating the predicted probabilities was nearly equivalent to the iterative procedure.

In all of the simulations, multiple imputation was the most desirable method, with the

narrowest valid confidence intervals and no significant bias. In particular, the method of

Cook and Kosorok (2004) produced slightly wider confidence intervals in each simulation

we considered. It is unclear if this finding is true in general, perhaps due to a slight bias-

variance trade-off or if it is specific to the simulation scenarios we considered. In any event,

the differences were extremely small, so the performance of the two methods appears to be

comparable for most practical purposes.

However, we believe our method nevertheless has several possible advantages over the

method of Cook and Kosorok (2004). First, we programmed their variance estimator and

did not get reasonable results for the OPPERA study. Secondly, bootstrapping is much

more intensive computationally than our multiple imputation approach. Calculating boot-

strap confidence intervals generally requires at least 1000 bootstrap replicates (Efron and

Tibshirani, 1993), whereas as few as 10 imputed data sets may be sufficient for multiple

imputation (Little and Rubin, 2002). Although the difference in the computing time of the

two methods is small for a single fitted model, many such models will need to be fitted in the

course of the OPPERA study. OPPERA has already collected data on approximately 3000

genetic markers and has plans to collect data on approximately a million genetic markers in a

genome-wide association study. Thus, at least 3000 (and potentially as many as a million) Cox
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models will need to be fit, and our proposed method may allow for a significant decrease in

computing time. Moreover, our method can also be easily implemented in popular statistical

software packages (such as SAS) without additional programming.

The assumption of missing at random seems reasonable for the OPPERA study. However,

our methodology can be generalized for non-ignorable missing censoring indicators by using

the the EM-algorithm to fit a logistic regression model, estimate predicted probabilities, refit

the data to a model weighted by the predicted probabilities and iterating until convergence.

This is a topic of future study.

Additionally, our methodology may easily be extended to other survival models, such as

Poisson regression. We conducted simulations (Table 12 in the Appendix) that produced

similar results for Poisson regression compared to the Cox model. In particular, estimates

for failure rates were biased when missing censoring indicators were treated as censored and

unbiased when we employed the methodology in this paper.

In the OPPERA dataset, hazard ratios, confidence intervals, and p-values changed no-

ticeably for a number of variables. Although some of the results remained qualitatively

unchanged based on whether or not our methodology was utilized, we note that even small

changes in hazard ratios are important. In addition, estimated incidence rates were signifi-

cantly increased after imputation. Since the results of OPPERA may become normative in

the orofacial pain literature, precise calculation of the incidence rate of TMD and the hazard

ratios associated with putative risk factors is important. Thus, imputation is recommended.
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Appendix Overview of Simulations

In this appendix, we provide the results of additional simulations. We investigate the per-

formance of the method under a variety of missing data mechanisms as well as when we

specify alternative logistic regression models for the probability of being a case given that

the participant screened positive on the simple examination.

Recall that we created missing censoring indicators under the following classical missing

data mechanisms of Rubin (1976):

(I) The probability of having a missing censoring indicator is independent of the data.

This is known as missing completely at random (MCAR).

(II) The probability of having a missing censoring indicator depends on an observed

covariate. This is known as missing at random (MAR).

(III) The probability of having a missing censoring indicator depends on the censoring

indicator. This is known as missing not at random (MNAR).

For mechanism I, we randomly set 40% of the censoring indicators, ∆i = I(Ti < Ci), to

be missing. For mechanism III, we investigated two secarios.

(A) In the first, we set 30% of the censored observations and 50% of the failures to have

missing indicators.

(B) In the second, we set 20% of the censored observations and 60% of the failures to have

missing indicators.

Appendix Simulations Under MCAR

[Table 4 about here.]

When the data were MCAR, our method had less bias on average than the complete case

method depended on the true parameter value. Not only did our method have adequate

coverage, but it had the most narrow confidence intervals of the methods with adequate
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coverage. As in other simulations, the method treating all missing indicators as failures had

poor coverage and introduced extreme bias. The complete case method and the method that

treat all missing censoring indicators as censored were valid, but had much wider confidence

intervals than our method.

However, note that the complete case method would not be applicable to the OPPERA

study. According to the OPPERA protocol, participants who do not screen positive on the

QHU are automatically considered censored. Only participants who screen positive on the

QHU (i.e. those with Q = 1) may potentially have missing censoring indicators.

Appendix Additional Simulations Under MAR

In order to more closely parallel the OPPERA study, we simulated data for which we

randomly set to missing 40% of the censoring indicators for those with Q = 1. This setup

corresponds to the still strict assumption that the probability that a participant completes

an RDC exam depends only on whether or not their QHU was positive. Results are included

in Table 5. All methods had a negligible amount of bias in these scenarios except for the

complete case method and the method that treated all missing indicators as failures. In

these simulations, the complete case method also displayed extreme bias and poor coverage.

This indicates that a complete case analysis would not be appropriate for a study such as

OPPERA.

[Table 5 about here.]

Appendix Alternative Logistic Regression Models

We investigated alternate logistic regression models for the probability of being a case given

covariates. Recall that we originally modeled the probability of being a case as

p(∆i = 1|Xi, α) =
exp(α′Xi)

1 + exp(α′Xi)
(A.1)
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The alternative models were of the form (A.1) but used the covariates

(1) Xi = {Xi1, Xi2, Xi3}

(2) Xi = {Xi1}

The original logistic model had the covariate Xi = {Xi1, Xi2} where Xi1 ∼ N(0, 2), Xi1 ∼

N(0,∆i), Xi3 ∼ N(0, 1) are mutually independent for j = 1, 2, 3 and i = 1, . . . , n.

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]
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Appendix Simulations Under MNAR

[Table 10 about here.]

[Table 11 about here.]

When the data were MNAR, bias increased for all methods. In particular, the complete case

method consistently displayed a high amount of bias and did not achieve the desired coverage

rate. For our imputation method and the method of Cook and Kosorok, bias increased and

coverage decreased as the true parameter value increased. This indicates that when the MAR

assumption is violated, our method as well as the method of Cook and Kosorok may not be

valid. On the other hand, even when the data was not missing at random, our provided an

improvement in terms of bias and coverage over the complete case method and the method

that treats all missing subjects as failures.

Appendix Simulations for Poisson Regression

We investigated the performance of our method if the desired time-to-event analysis was a

Poisson regression model rather than a Cox model. Poisson models are commonly used to

estimate incidence rates, which were desired in the OPPERA study. The following section

details the simulations.

The simulations were identical to those in the main paper, with the exception of fitting the

imputed data to Poisson regression models rather than to Cox proportional hazards models.

That is, we fit the data from imputation j = 1, . . . , m to the model

log(dN
(I)
ij ) = α+ βxi1 + log(Yi)

We measured the bias, defined as β̂ minus the true value, where β ∈ −0.5,−1.5,−3.

The Cook and Kosorok method does not immediately generalize to Poisson regression.

Consequently, we only compared our method to the unachievable ideal of no missing data,

the complete case method, and the two ad-hoc methods.
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As in previous simulations, our method had coverage close to the nominal rate. None of the

other methods had proper coverage for all of the simulations. Multiple imputation yielded

the least bias of all the methods besides the unacheivable ideal of observing all data and

produced more narrow confidence intervals than the complete case method and the method

that treats all missing censoring indicators as censored. In conclusion, our method is the

only valid method to estimate incidence rates.

[Table 12 about here.]
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Table 1

Simulation Results for MAR

β Method Bias SE (Bias) Width SE (Width) Coverage MC Error

-0.5 Full Data 0.0001 0.0005 0.1668 0.0001 0.943 0.007
Complete Case -0.0049 0.0007 0.2213 0.0001 0.951 0.007
Treat all as Censored 0.0963 0.0007 0.2189 0.0001 0.566 0.007
Treat all as Failures 0.0039 0.0006 0.1701 0.0001 0.939 0.007
Cook & Kosorok 0.0004 0.0006 0.1736 0.0001 0.945 0.007
Multiple Imputation 0.0004 0.0006 0.1717 0.0001 0.937 0.007

-1.5 Full Data -0.0048 0.0011 0.3182 0.0002 0.930 0.007
Complete Case -0.0786 0.0015 0.4388 0.0004 0.897 0.007
Treat all as Censored 0.1004 0.0014 0.4269 0.0003 0.832 0.007
Treat all as Failures 0.0641 0.0011 0.3158 0.0002 0.853 0.007
Cook & Kosorok -0.0051 0.0011 0.3384 0.0004 0.940 0.007
Multiple Imputation -0.0052 0.0011 0.3310 0.0002 0.943 0.007

-3 Full Data -0.0301 0.0025 0.7627 0.0009 0.957 0.007
Complete Case -0.2212 0.0037 1.0990 0.0017 0.903 0.007
Treat all as Censored 0.0759 0.0035 1.0549 0.0016 0.928 0.007
Treat all as Failures 0.5633 0.0024 0.6365 0.0006 0.120 0.007
Cook & Kosorok -0.0325 0.0027 0.8846 0.0016 0.942 0.007
Multiple Imputation -0.0333 0.0027 0.8060 0.0011 0.947 0.007

**: denotes that the empirical bias (coverage probability) is significantly different from 0
(0.95) with p < 0.01.
***: denotes that the empirical bias (coverage probability) is significantly different from 0
(0.95) with p < 0.001.
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Table 2

Results from the OPPERA Study

Consider All MCIs as Censored Multiple Imputation

HR LCL UCL P HR LCL UCL P

Clinical Variable

In the last month
3.26 1.83 5.84 <0.0001 2.45 1.42 4.22 0.0012

could not open mouth wide
Has two or more comorbid 3.08 2.26 4.21 <0.0001 2.50 1.90 3.29 <0.0001
chronic pain disorders
History of 5 respiratory conditions 1.38 1.01 1.87 0.0408 1.45 1.13 1.87 0.0040
Smoking: current 1.26 0.86 1.84 0.2403 1.49 1.07 2.09 0.0199
Smoking: former 1.87 1.22 2.87 0.0041 1.65 1.12 2.43 0.0106
One or more palpation tender

1.83 1.32 2.52 0.0002 1.54 1.18 2.02 0.0017
points: right temporalis
One or more palpation tender

1.60 1.14 2.25 0.0064 1.48 1.12 1.97 0.0060
points: left temporalis
One or more palpation tender

1.85 1.35 2.53 0.0001 1.63 1.25 2.12 0.0003
points: right masseter
One or more palpation tender

1.70 1.23 2.35 0.0013 1.53 1.17 2.01 0.0021
points: left masseter

Quantitative Sensory Testing Variable

Pressure pain threshold: temporalis 1.26 1.07 1.49 0.0065 1.16 1.01 1.33 0.0335
Pressure pain threshold: masseter 1.23 1.04 1.45 0.0170 1.15 1.00 1.32 0.0576
Pressure pain threshold: TM joint 1.25 1.05 1.48 0.0106 1.14 1.00 1.30 0.0555
Mechanical pain aftersensation:

1.23 1.09 1.38 0.0006 1.15 1.03 1.28 0.0123
512mN probe, 15 s
Mechanical pain aftersensation:

1.20 1.07 1.34 0.0020 1.12 1.01 1.25 0.0328
512mN probe, 30 s

Psychosocial Variable

PILL Global Score 1.52 1.35 1.71 <0.0001 1.46 1.31 1.62 <0.0001
EPQ-R Neuroticism 1.39 1.21 1.60 <0.0001 1.26 1.12 1.42 0.0002
Trait Anxiety Inventory 1.43 1.25 1.64 <0.0001 1.35 1.21 1.52 <0.0001
Perceived Stress Scale 1.35 1.17 1.55 <0.0001 1.30 1.16 1.47 <0.0001
SCL 90R Somatization 1.44 1.31 1.58 <0.0001 1.40 1.29 1.52 <0.0001
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Table 3

Estimated TMD Incidence Rates (in Percentages) With and Without Imputation

No MI MI Percent Change

Overall 2.23 3.70 66

Males 1.87 3.22 72
Females 2.46 4.03 64

White 1.70 3.37 99
Black 4.20 5.32 27
Hispanic 1.17 3.44 193
Other 1.10 1.80 63
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Table 4

Simulation Results for MCAR

β Method Bias SE (Bias) Width SE (Width) Coverage MC Error

-0.5 Full Data -0.0010 0.0006 0.1671 0.0001 0.930 0.007
Complete Case -0.0042 0.0007 0.2218 0.0001 0.956 0.007
Treat all as Censored -0.0021 0.0007 0.2212 0.0001 0.947 0.007
Treat all as Failures 0.0932 0.0005 0.1525 0.0001 0.323 0.007
Cook & Kosorok -0.0005 0.0006 0.1784 0.0002 0.939 0.007
Multiple Imputation -0.0006 0.0006 0.1714 0.0001 0.935 0.007

-1.5 Full Data -0.0008 0.0010 0.3185 0.0002 0.966 0.007
Complete Case -0.0056 0.0014 0.4261 0.0003 0.948 0.007
Treat all as Censored -0.0025 0.0014 0.4229 0.0003 0.950 0.007
Treat all as Failures 0.8277 0.0007 0.2036 0.0001 0.000 0.007
Cook & Kosorok 0.0002 0.0011 0.3455 0.0004 0.946 0.007
Multiple Imputation 0.0000 0.0011 0.3307 0.0002 0.951 0.007

-3 Full Data -0.0190 0.0025 0.7574 0.0008 0.952 0.007
Complete Case -0.0321 0.0036 1.0255 0.0016 0.942 0.007
Treat all as Censored -0.0205 0.0035 1.0070 0.0015 0.950 0.007
Treat all as Failures 2.5225 0.0009 0.2216 0.0001 0.000 0.007
Cook & Kosorok -0.0199 0.0027 0.9029 0.0020 0.949 0.007
Multiple Imputation -0.0210 0.0028 0.7951 0.0010 0.936 0.007
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Table 5

Additional Simulation Results for MAR

β Method Bias SE (Bias) Width SE (Width) Coverage MC Error

-0.5 Full Data -0.0010 0.0006 0.1671 0.0001 0.930 0.007
Complete Case -0.0543 0.0008 0.2210 0.0001 0.825 0.007
Treat all as Censored -0.0021 0.0007 0.2212 0.0001 0.947 0.007
Treat all as Failures 0.0041 0.0006 0.1703 0.0001 0.929 0.007
Cook & Kosorok -0.0012 0.0006 0.1742 0.0001 0.934 0.007
Multiple Imputation -0.0012 0.0006 0.1722 0.0001 0.938 0.007

-1.5 Full Data -0.0008 0.0010 0.3185 0.0002 0.966 0.007
Complete Case -0.1329 0.0014 0.4283 0.0003 0.759 0.007
Treat all as Censored -0.0025 0.0014 0.4229 0.0003 0.950 0.007
Treat all as Failures 0.0849 0.0011 0.3147 0.0002 0.790 0.007
Cook & Kosorok -0.0006 0.0011 0.3411 0.0004 0.951 0.007
Multiple Imputation -0.0006 0.0011 0.332 0.0002 0.957 0.007

-3 Full Data -0.0190 0.0025 0.7574 0.0008 0.952 0.007
Complete Case -0.2342 0.0037 1.0336 0.0016 0.883 0.007
Treat all as Censored -0.0205 0.0035 1.0070 0.0015 0.950 0.007
Treat all as Failures 0.6626 0.0025 0.6165 0.0006 0.047 0.007
Cook & Kosorok -0.0232 0.0028 0.8775 0.0016 0.940 0.007
Multiple Imputation -0.0240 0.0028 0.7996 0.0010 0.937 0.007
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Table 6

Alternative model of type (1), MCAR

β Method Bias SE (Bias) Width SE (Width) Coverage

-0.5 Full Data -0.0011 0.0013 0.1670 0.0002 0.949
Complete Case -0.0018 0.0017 0.2162 0.0003 0.953
Treat all as Censored -0.0009 0.0017 0.2156 0.0002 0.962
Treat all as Failures 0.0904 0.0012 0.1507 0.0001 0.338
Cook & Kosorok -0.0012 0.0014 0.1818 0.0003 0.953
Multiple Imputation -0.0013 0.0014 0.1764 0.0002 0.947

-1.5 Full Data -0.0039 0.0026 0.3187 0.0005 0.957
Complete Case -0.0031 0.0034 0.4143 0.0009 0.952
Treat all as Censored -0.0028 0.0034 0.4121 0.0008 0.947
Treat all as Failures 0.8141 0.0017 0.2026 0.0002 0
Cook & Kosorok -0.0042 0.0029 0.3596 0.0010 0.937
Multiple Imputation -0.0048 0.0029 0.3499 0.0007 0.947

-3 Full Data -0.0146 0.0061 0.7586 0.0021 0.943
Complete Case -0.0240 0.0081 0.9998 0.0036 0.956
Treat all as Censored -0.0241 0.0081 0.9859 0.0032 0.957
Treat all as Failures 2.5119 0.0021 0.2206 0.0002 0
Cook & Kosorok -0.0224 0.0067 0.8779 0.0037 0.934
Multiple Imputation -0.0264 0.0068 0.8442 0.0027 0.952
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Table 7

Alternative model of type (1), MAR

β Method Bias SE (Bias) Width SE (Width) Coverage

-0.5 Full Data 0.0002 0.0006 0.1669 0.0001 0.939 0.007
Complete Case -0.0033 0.0008 0.2212 0.0001 0.936 0.007
Treat all as Censored 0.0987 0.0007 0.2188 0.0001 0.568 0.007
Treat all as Failures 0.0038 0.0006 0.1702 0.0001 0.935 0.007
Cook & Kosorok 0.0006 0.0006 0.1739 0.0001 0.940 0.007
Multiple Imputation 0.0006 0.0006 0.1718 0.0001 0.937 0.007

-1.5 Full Data -0.0092 0.0010 0.3195 0.0002 0.954 0.007
Complete Case -0.0805 0.0015 0.4388 0.0004 0.890 0.007
Treat all as Censored 0.0958 0.0014 0.4275 0.0003 0.848 0.007
Treat all as Failures 0.059 0.0010 0.3173 0.0002 0.883 0.007
Cook & Kosorok -0.0092 0.0011 0.3407 0.0004 0.944 0.007
Multiple Imputation -0.0094 0.0011 0.3323 0.0002 0.947 0.007

-3 Full Data -0.0157 0.0026 0.7559 0.0008 0.942 0.007
Complete Case -0.2083 0.0039 1.0920 0.0017 0.905 0.007
Treat all as Censored 0.0929 0.0036 1.0463 0.0015 0.924 0.007
Treat all as Failures 0.5830 0.0025 0.6307 0.0006 0.101 0.007
Cook & Kosorok -0.0165 0.0028 0.8851 0.0016 0.940 0.007
Multiple Imputation -0.0161 0.0028 0.7986 0.0010 0.941 0.007
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Table 8

Alternative model of type (2), MCAR

β Method Bias SE (Bias) Width SE (Width) Coverage MC Error

-0.5 Full Data -0.0022 0.0005 0.1669 0.0001 0.959 0.007
Complete Case -0.0554 0.0007 0.2209 0.0001 0.845 0.007
Treat all as Censored -0.0025 0.0007 0.2210 0.0001 0.943 0.007
Treat all as Failures 0.0037 0.0005 0.1701 0.0001 0.952 0.007
Cook & Kosorok -0.0022 0.0006 0.1740 0.0001 0.953 0.007
Multiple Imputation -0.0021 0.0006 0.1723 0.0001 0.956 0.007

-1.5 Full Data -0.0045 0.0010 0.3183 0.0002 0.961 0.007
Complete Case -0.1311 0.0013 0.4253 0.0003 0.794 0.007
Treat all as Censored -0.0034 0.0013 0.4209 0.0003 0.963 0.007
Treat all as Failures 0.0810 0.0010 0.3145 0.0002 0.818 0.007
Cook & Kosorok -0.0038 0.0011 0.3478 0.0004 0.964 0.007
Multiple Imputation -0.0041 0.0011 0.3379 0.0002 0.965 0.007

-3 Full Data -0.0190 0.0025 0.758 0.0008 0.952 0.007
Complete Case -0.2373 0.0035 1.0341 0.0016 0.871 0.007
Treat all as Censored -0.0250 0.0034 1.0082 0.0014 0.947 0.007
Treat all as Failures 0.6623 0.0025 0.6172 0.0006 0.052 0.007
Cook & Kosorok -0.0240 0.0028 0.8803 0.0016 0.935 0.007
Multiple Imputation -0.0264 0.0028 0.8242 0.0010 0.945 0.007
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Table 9

Alternative model of type (2), MAR

β Method Bias SE (Bias) Width SE (Width) Coverage MC Error

-0.5 Full Data -0.0043 0.0006 0.1668 0.00014 0.934 0.007
Complete Case -0.0101 0.0007 0.2209 0.0001 0.951 0.007
Treat all as Censored 0.0914 0.0007 0.2186 0.0001 0.617 0.007
Treat all as Failures -0.0013 0.0006 0.1700 0.0001 0.949 0.007
Cook & Kosorok -0.0047 0.0006 0.1741 0.0001 0.934 0.007
Multiple Imputation -0.0047 0.0006 0.1719 0.0001 0.950 0.007

-1.5 Full Data -0.0019 0.0010 0.3186 0.0002 0.951 0.007
Complete Case -0.0765 0.0015 0.4391 0.0004 0.908 0.007
Treat all as Censored 0.1009 0.0014 0.4273 0.0003 0.841 0.007
Treat all as Failures 0.0643 0.0011 0.3165 0.0002 0.861 0.007
Cook & Kosorok -0.0043 0.0011 0.3446 0.0004 0.947 0.007
Multiple Imputation -0.0046 0.0011 0.3368 0.0002 0.944 0.007

-3 Full Data -0.0296 0.0026 0.7606 0.0009 0.948 0.007
Complete Case -0.2178 0.0038 1.1013 0.0018 0.903 0.007
Treat all as Censored 0.0827 0.0035 1.0555 0.0015 0.933 0.007
Treat all as Failures 0.5783 0.0025 0.6334 0.0006 0.097 0.007
Cook & Kosorok -0.0294 0.0028 0.8812 0.0016 0.937 0.007
Multiple Imputation -0.0314 0.0028 0.8269 0.0011 0.951 0.007
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Table 10

Simulation Results for MNAR, scenario A

β Method Bias SE (Bias) Width SE (Width) Coverage MC Error

-0.5 Full Data -0.0021 0.0006 0.1671 0.0001 0.938 0.007
Complete Case -0.0755 0.0008 0.2424 0.0004 0.778 0.007
Treat all as Censored -0.0022 0.0008 0.2421 0.0001 0.942 0.007
Treat all as Failures 0.0023 0.0006 0.1705 0.0001 0.942 0.007
Cook & Kosorok -0.0054 0.0006 0.1760 0.0001 0.940 0.007
Multiple Imputation -0.0054 0.0006 0.1732 0.0001 0.943 0.007

-1.5 Full Data -0.0030 0.0011 0.3185 0.0002 0.942 0.007
Complete Case -0.1744 0.0016 0.4691 0.0004 0.717 0.007
Treat all as Censored -0.0049 0.0015 0.4623 0.0004 0.947 0.007
Treat all as Failures 0.0646 0.0011 0.3172 0.0002 0.875 0.007
Cook & Kosorok -0.0206 0.0011 0.346 0.0004 0.921 0.007
Multiple Imputation -0.0207 0.0011 0.3362 0.0002 0.939 0.007

-3 Full Data -0.0289 0.0026 0.7611 0.0009 0.948 0.007
Complete Case -0.3308 0.0040 1.1490 0.0018 0.824 0.007
Treat all as Censored -0.0339 0.0039 1.1060 0.0016 0.935 0.007
Treat all as Failures 0.5242 0.0026 0.6487 0.0007 0.181 0.007
Cook & Kosorok -0.0737 0.0029 0.9026 0.0018 0.898 0.007
Multiple Imputation -0.0748 0.0029 0.8195 0.0011 0.938 0.007
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Table 11

Simulation Results for MNAR, scenario B

-0.5 Full Data -0.0021 0.0006 0.1671 0.0001 0.938 0.007
Complete Case -0.0998 0.0009 0.2713 0.0002 0.687 0.007
Treat all as Censored -0.0016 0.0009 0.2707 0.0001 0.943 0.007
Treat all as Failures 0.0009 0.0006 0.1707 0.0001 0.943 0.007
Cook & Kosorok -0.0094 0.0006 0.1783 0.0001 0.933 0.007
Multiple Imputation -0.0094 0.000 0.1747 0.0001 0.934 0.007

-1.5 Full Data -0.0030 0.0011 0.3185 0.0002 0.942 0.007
Complete Case -0.2278 0.0018 0.5289 0.0005 0.618 0.007
Treat all as Censored -0.0046 0.0017 0.5169 0.0004 0.958 0.007
Treat all as Failures 0.0444 0.0011 0.3201 0.0002 0.910 0.007
Cook & Kosorok -0.0398 0.0012 0.3534 0.0004 0.902 0.007
Multiple Imputation -0.0399 0.0012 0.3417 0.0002 0.922 0.007

-3 Full Data -0.0289 0.0026 0.7611 0.0009 0.948 0.007
Complete Case -0.4316 0.0046 1.3085 0.0023 0.781 0.007
Treat all as Censored -0.0464 0.0044 1.2434 0.002 0.932 0.007
Treat all as Failures 0.3661 0.0027 0.6850 0.0007 0.451 0.007
Cook & Kosorok -0.1180 0.0030 0.9425 0.0021 0.870 0.007
Multiple Imputation -0.1189 0.0030 0.8395 0.0012 0.928 0.007
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Table 12

Simulation Results for Poisson Models, MAR

β Method Bias SE (Bias) Width SE (Width) Coverage MC Error

-0.5 Full Data -0.0011 0.0006 0.1593 0.0001 0.945 0.007
Complete Case -0.0051 0.0008 0.2112 0.0001 0.946 0.007
Treat all as Censored 0.0963 0.0008 0.2090 0.0001 0.569 0.007
Treat all as Failures 0.0021 0.0006 0.1624 0.0001 0.948 0.007
Multiple Imputation -0.0010 0.0006 0.1639 0.0001 0.949 0.007

-1.5 Full Data -0.0029 0.0010 0.2867 0.0002 0.951 0.007
Complete Case -0.0786 0.0014 0.3996 0.0004 0.887 0.007
Treat all as Censored 0.1033 0.0013 0.3876 0.0003 0.815 0.007
Treat all as Failures 0.0617 0.0010 0.2866 0.0002 0.845 0.007
Multiple Imputation -0.0040 0.0011 0.2981 0.0002 0.959 0.007

-3 Full Data -0.0135 0.0022 0.5984 0.0008 0.940 0.007
Complete Case -0.2086 0.0033 0.8727 0.0015 0.850 0.007
Treat all as Censored 0.1062 0.0031 0.8361 0.0012 0.904 0.007
Treat all as Failures 0.4954 0.0025 0.5568 0.0006 0.120 0.007
Multiple Imputation -0.0112 0.0024 0.6302 0.0009 0.938 0.007
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