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Abstract

There has been much work on developing statistical procedures for associating
tumor size with the probability of detecting a metastasis. Recently, Ghosh (2004)
developed a unified statistical framework in which equivalences with censored
data structures and models for tumor size and metastasis were examined. Based
on this framework, we consider model checking techniques for semiparametric
regression models in this paper. The procedures are for checking the additive
hazards model. Goodness of fit methods are described for assessing functional
form of covariates as well as the additive hazards assumption. The finite-sample
properties of the methods are assessed using simulation studies.
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ABSTRACT

There has been much work on developing statistical procedures for associating tumor size
with the probability of detecting a metastasis. Recently, Ghosh (2004) developed a unified
statistical framework in which equivalences with censored data structures and models for
tumor size and metastasis were examined. Based on this framework, we consider model
checking techniques for semiparametric regression models in this paper. The procedures are
for checking the additive hazards model. Goodness of fit methods are described for assessing
functional form of covariates as well as the additive hazards assumption. The finite-sample

properties of the methods are assessed using simulation studies.

Key words:  Additive risk; Empirical process; Interval censoring; Regression diagnostic;

Right censoring.
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1. Introduction

Given the morbidity and mortality and associated costs of treating people with cancer,
it is of interest to clinical researchers to determine optimal screening schedules for early
detection of cancer. There has been much work done on developing mathematical models
of screening (Yakovlev and Tsodikov, 1996, Ch. 5). In this area, the natural history of the
disease has been broken down into multiple stages: the disease-free stage, the preclinical
stage and the clinical stage. There has been much development of parametric statistical
procedures using this multi-stage framework (Zelen and Feinleib, 1969; Albert, Gertman
and Louis, 1978; Day and Walter, 1984; Shen and Zelen, 1999).

An alternative approach is to use statistical methods to better understand the relationship
between various aspects of tumor biology and progression. One example of this is the
development of procedures to associate the probability of detecting a metastatic tumor with
tumor size. Solid cancers develop through a process in which tumors originate as a progenitor
cell, which grows to a local lesion that shed cancer cells into the lymphatic system and/or
blood stream (Foulds, 1969). Some of these cells are transported to distant organs and lead
to the development of metastases. In most oncology settings, cancers where metastases have
developed are more likely to be associated with worse clinical prognosis. There have been
proposals for correlating size of tumor with probability of detecting a metastasis (Kimmel
and Flehinger, 1991; Xu and Prorok, 1997, 1998). These authors developed nonparametric
estimation procedures for the distribution of tumor size at which metastatic transitions
occur based on data from a screening trial. A limitation of the methods proposed in the
previous paragraph is that they do not allow for adjustment of covariates. In the cancer
setting, covariates such as the tissue of origin of the tumor or age of the patient can affect
the relationship between tumor size and probability of metastatic spread. Recently, we have
proposed a general hypothesis testing and semiparametric regression framework for analyzing
screening trial data in which tumor size is treated as a failure time variable (Ghosh, 2004).

An important issue in the fitting of any probabilistic model is assessing model adequacy.

Hosted by The Berkeley Electronic Press



While there has been goodness of fit testing developed for mechanistic models of carcinogen-
esis (Gregori et al., 2002), such methods are unavailable for the empirical methods described
in the previous paragraph. In this paper, we will develop goodness of fit methods for as-
sessing the adequacy of semiparametric regression models. The course of this paper is as
follows. In Section 2, we review the results of Ghosh (2004) and describe regression estima-
tion procedures for the additive hazards model under two sets of assumptions. Goodness of
fit methods for assessing functional form of covariates and the additive hazards assumption
are proposed in Section 3. In Section 4, we report the results of some simulation studies.

Finally, we conclude with some brief remarks in Section 5.

2. Statistical Models for Tumor Size Progression

2.1 Notation and model assumptions

Let V denote the size of the tumor, Z a p-dimensional vector of covariates and § be an
indicator of tumor metastasis (i.e., 0 = 1 if metastases are present, 6 = 0 otherwise). We
observe the data (V;,0;,Z;), i = 1,...,n, a random sample from (V,0,Z). For the sake of
completeness, we will now state the model assumptions utilized by Kimmel and Flehinger

(1991):
1. Primary cancers grow monotonically, and metastases are irreversible.

2. The cancer samples are characterized by the primary tumor sizes at which metastatic
transitions take place. We will denote Y as the random variable for this quantity. Let

the cdf of Y be denoted by FY.

3. Let A;(z) denote the hazard function for detecting a cancer with metastasis when the
tumor size is . Let A\g(x) denote the hazard function for detecting a cancer with no

metastases when the tumor size is x. Assume that A;(z) > Ao(z).
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In general, F'Y is nonidentifiable. If we assume that cancers are detected immediately when
the metastasis occurs, then F'Y becomes identifiable. Alternatively, if we assume that detec-
tion of the cancer is not affected by the presence of metastases, then FY is identifiable. We
refer to these two situations as Case I and Case II, respectively.

The effect of Z on Y is formulated through the additive risk model:

Ay|Z) = Noly) — BT Z, (1)

where A(y|Z) is the hazard for Y conditional on covariates, A\¢(-) is an unspecified baseline
hazard function and f; is a p X 1 vector of unknown regression coefficients. In the case of
rare events, p in (1) has an interpretation as risk differences associated with a unit change
in the covariates, adjusting for other variables. The use of this model has been argued by
Breslow and Day (1980, pp. 53 — 57).

The major result demonstrated by Ghosh (2004) is the equivalence of (V,4,Z) with
censored data structures from survival analysis. In the Case I situation, V = Y A C and
d = I(Y < (), where C is a random monitoring time, I(A) is the indicator function for
the set A, and a A b is the minimum of two numbers a and b. Thus, V' can be treated as
a right-censored version of Y. For the case II situation, V = C and 6 = I(Y < C). What
this implies is that Y can be treated as interval-censored data subject to monitoring size
V under the Case II assumptions. Based on this equivalence, Ghosh (2004) developed a
comprehensive hypothesis testing and regression framework. Before describing the proposed
goodness of fit procedures, we briefly outline the regression estimation procedures for the

two situations.

2.2 Case I Estimation

Here, the data structure consists of (V;,d;,Z;) (i = 1,...,n), a random sample from
(V,0,Z), where V=Y AC and 6 = I(Y < C). Estimation in model (1) has been previously
developed by Lin & Ying (1994). Define the following processes: N;(t) = I(V; < t,§; = 1)
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and R;(t) = I(V; > t). The following estimating function can be used for estimation of 3 in
(2.1):
=Y [ (7~ 20}V + B3 Zadt) ©)
i=1 Y0
where Z(t) = Y Ri(1)Z;/ 375, R;(t) and 7 > 0 is a constant chosen to satisfy certain
technical conditions. In practice, we can take 7 to be the largest size with an observed

metastasis. Setting (2) equal to zero yields the following estimator for Sy:

Z / ({2 - 2t )}@%lt] [Z / "z —Z(t)}sz-(w] ,

where a®2 = aa”. Asin Lin & Ying (1994), we can apply standard martingale arguments to

show that the limiting distribution of n'/2 (B — Bo) is a p-dimensional normal random vector

with mean zero and variance A"'BA~!, where

— L _ 7 ®2
nh_}rglo n- Z / HZ; — Z(t)}*°dt
and
_ ®2
nh_g)lo n- Z / {Z;(t (1) }¥°dN;(1).
Note that it is easy to consistently estlmate A and B based on sample quantities. Denote

these estimators as A and ]§, respectively.
2.8 Case II Estimation

We now consider the situation where Y is treated as a random variable subject to interval
censoring by V. We now describe the approach of Lin et al. (1998) for estimating 5y in model
(1) using the counting process N;(t) = (1 — &)I(V; < t) for the ith individual, i = 1,...,n
Note that N (t) can potentially take one jump so that its corresponding hazard function is
well-defined. Let dH;(t) denote the hazard and let dN;(t) be the increment corresponding
to N;(t). For dN;(t) to equal one, V; must equal ¢ and the subject must be metastasis free
before ¢. Denote the hazard of the former event be denoted by dA®(¢). Under model (1),

the second event has probability

Pr(Y; > t|Z;) = exp [— /Ot{/\o(u) — BEZ:}du| = exp{—Ao(t) + BT Z; (1)},
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where Ay(t) = fot Ao(u)du and ZF(t) = tZ (i = 1,...,n). Multiplying the probabilities for
these two events yields

dH;(t) = dHy(t) exp{B; Z; (1)}, (3)
where dHy(t) = exp{—A¢(t)}dA®(t). The model in (3) has a form identical to that of the
proportional hazards model (Cox, 1972). Consequently, estimation of 3, can be done based

on the partial likelihood. The partial likelihood score function is given by

~ [ SWB.H) &
= i)~ G 1)} N0 (@)
[0 sy
where S®(8,6) = n™! S0 1(V; > 0Z5()% exp{SZ; (D)}, k = 0,1,2, a® = 1,25 =
a,a®? = aa’. The constant 7 > 0 is a truncation time chosen to satisfy certain technical

conditions. Let 3 be the solution from setting (4) equal to 0. Using martingale theory,

n/2(3—f,) converges in distribution to a normal random vector with mean zero and variance

Z(By) = lim,, oo n 'I(By), where

0-% [ (L8 -Setu

This variance can be consistently estimated by I = n='I(3).

3. Goodness of fit methods

We now develop numerical and graphical methods for model checking corresponding to the
estimation procedures in Sections 2.1 and 2.2 by extending the simulation-based procedure
of Lin, Wei and Ying (1993). We will primarily be interested in checking the functional form
for the covariates Z and assessing the additive hazards assumption. While such methods
have been considered by Kim and Lee (1998) and Ghosh (2002), the methods are different.
In particular, Kim and Lee (1998) considered two-sample goodness of fit tests to test time-
invariant regression effects in the additive risk with right-censored data, which corresponds
to the Case I situation. However, they did not consider methods for assessing functional form
of covariates. Ghosh (2002) developed model checking techniques in the situation where the
monitoring times themselves depend on covariates. For the case II scenario, the monitoring

sizes do not depend on covariates.
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3.1 Case 1 Methodology

Here we assume that metastases are detected immediately after they occur so that Y is a
right-censored random variable. We first consider assessing the functional form of covariates.
Since
t
Mi(t) = Ni(t) - /0 Ri(u){dho(u) — Bl Zidu}  (i=1,...,n)
are martingales, goodness of fit methods for assessing functional form can be based on ]\//_Ti(t),

where

—~

W) = 80 - [ R B ) — )

0
and Ao(t; 8) = SO, fot{dNi(u) + Ri(u)BTZidu}/ Y7 Rj(u). Let Zj (i = 1,...,m;j =
1,...,p) denote the jth component of Z; and M, = ]E(T) The functional form of the
jth component of Z can be graphically assessed by plotting ]\/4\Z versus Zj;. If there are
systematic deviations from 0, then this indicates misspecification of the functional form for
the jth component of Z. We can construct more formal tests for the functional form by
considering cumulative sums of the ]\//TZ against values of the covariates. For j = 1,...,p,
define W;(z) by
W;(z) =n 2 znjf(zﬁ < 2)M;.)

i=1
Let (Gy,...,G,) be n ii.d. realizations from a N(O 1) distribution,

=30 [ S

and
Q@) =n"" Z/ {1(Z;i < z) — l(u, 2) }Ri(u) Z;du.
i=1 70
Under the null hypothesis that the jth component of Z is correctly specified in (2.1), we

show in Appendix A.1. that the distribution of W;(z) can be approximated by the zero-mean

Gaussian process

/\

—nl/QZ/ (I(Z5: < 2) — U(u, 2)} dNi ()G

I¢ QT(I)K*In*V?Z /0 {Z; — Z(t)}dN;(u)G
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The distribution of W]() can be easily simulated by repeatedly generating random samples
{G;}. One can plot W,(-) for the observed data, along with a few realizations from Wj(-), to
assess how unusual the observed residual pattern is. A more objective test can be constructed
with the Kolmogorov-Smirnov type statistic s; = sup,, |W;(z)|; a p-value can be derived using
the simulation method of Lin et al. (1993). By arguments of Appendix 3 of that paper,
it can be shown that this test is consistent against departures from the null hypothesis of
correct functional specification for the jth covariate.

To check of the assumption of additive hazards with respect to the jth covariate in (1),

we consider the standardized score process U} (t):
U5 (1) = B *n U558, 1),

J 13

where U;(3,1) is the jth component of
nooat
U=y / [, — Z(u)} {dN(u) + Ri(w) 57 Zudu},
i=1 Y0
and ]§;]1 is the jth diagonal element of B2, j =1,...,p. Let

L) =ntY /O Ro(u){Zs(u) — Z(u)}dho(u: B).

SN B-1/2
Ui (t) = Bj;

Q@AY /0 (2 — Z() VN, (w)G |

and Z;(t) is the jth component of Z;(t) (j = 1,...,p). We prove this result in the Appendix.
As with W\J(), the process (7]*() is very easy to simulate from. Graphical assessments of the
additive hazards assumption follows from a plot of U7 (-) and several realizations from U HOP
We can conduct a test of the null hypothesis of no violation of additive hazards for the jth

covariate based on h; = sup, [U;(t)[. A p-value for this test statistic can be computed by

9
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simulation, similar to that for s;. This test will be consistent against any deviations from the
null hypothesis of additive hazards for the jth covariate. An overall test of additive hazards
for model (1) can be based on sup, ||[U(83,t)|| or sup, _1[U;(t)]. Similar to hy, these tests

are consistent against any nonadditive hazards alternative.
3.2 Case 2 Methodology

Let us first consider the problem of assessing the functional form of the covariates in (1).
Since
t
Xt) = 8(0) — [ Rulu) exp{Zi)dHo(w) =L,
0

are martingales, goodness of fit methods for assessing functional form can be based on

X0 = 80— [ Rit) ool BT )} ),

and Hy(t; 8) = 30, fo dN;(u)/S©(B,u). The functional form of the jth component of Z
can be graphically assessed by plotting X; = XZ(T*) versus Z;;. We can construct more
formal tests for the functional form by considering cumulative sums of the X; against values

of the covariates. For j = 1,...,p, define W(x) by

*1/221 (Z;; <o)X

Define the following:

n

S(B,t,x) =n""> " Ry(t) exp{B7Z;(t)}1(Z;; < x),

i=1
and

SW(B,u)
5O(8,u)

Under the null hypothesns that the jth component of Z is correctly specified in (1), it can

B(6,2) = n" Z / ) exp (3721 M (25 < ) { Z10) = G5 b s ).

be shown that the distribution of W](a:) can be approximated by the zero-mean Gaussian

T I n—1/2 S(B,U,ﬂ:) \T. u .
\ E / { Zj < = SO(B ) G } dN;(u)G;
LRT(E AT, 2 * () — S(l)(B,u) V. (1) G,
B (5, 2)1 ;:1/0 {ZZ( ) 75(0)(3,11)}&\[1( )G

process

10
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A proof of this result can be found in Appendix A.2. One can plot W;(-) for the observed
data, along with a few realizations from W;‘(-), to assess how unusual the observed residual
pattern is. A more formal test can be constructed with 3; = sup, |[W;(z)|. Using arguments
similar to those in Appendix 3 of Lin et al. (1993), it can be shown that this test is
consistent against departures from the null hypothesis of proper functional specification for
the jth covariate. The p-value for this statistic can be approximated by Pr(S' §;), where
S; = sup, |W; (x)]; it is done using the simulation-based method of Lin et al. (1993).

To check of the assumption of additive hazards with respect to the jth covariate in (1),

we consider the standardized score process U;(t):

U;(t) = @;)Y2n 1208, 1),
where ﬁj(ﬁ,t) is the jth component of
i n ot SO@B,u)) -
U(s,t) = /{Z;‘u—i’}d]\fiu,
6.0=3 [ {70~ Gagg y
and ij_jl is the jth diagonal element of I71, j = 1,...,p. Let

J(B,t) = n_IZ/ ) % 25 (u){ 25 (u) = 8O (8,u) /SO (8, u) ydHo(u; B).

The null distribution of U5 (t) can be approximated by that of U; (t), where

n t M2 u .
Us(t) = (1;31)1/2 [n—l/z Z/O { si(u) — ?(O) Eg’u; } dN;(u)G;
nopr WG u)) -
—JT(B, )1 1n =12 Z/O {Zj(u) — :(O)EE’ u; } dN;( )G] :

and Sj(l)(ﬁ, t) is the jth component of S(!)(3,t). Graphical assessment of W;(-) is easy. We
can conduct a test of the null hypothesis of no violation of additive hazards for the jth
covariate based on h; = sup, |U;(t)|. An overall test of additive hazards for model (1) can
be based on sup, |U(, t)|| or sup, > |U]* (t)|. As with W (z), p-values are straightforward
to calculate. Consistency of these tests from departures against the null hypotheses follows

from Lin et al. (1993).

11
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4. Simulation Studies

To assess the small-sample properties of the proposed methods, extensive simulation studies
were conducted. In the ones reported here, we consider only a single covariate Z. We
considered sample sizes n = 50,100 and 200. For each simulation setting, 1000 samples were
generated, and 1000 resamplings were used to calculate p-values for each sample. Censoring
was generated using three scenarios: an independent uniform (0,2), (0,3) and (0,5) random
variable.

The methods for assessing functional form were considered first. For the simulation
studies reported here, n/5 subjects were assigned to one of five dose groups. The covariate
Z takes values 0,1,2,3 and 4. Failure times were generated from (1) with A\o(¢) = 1.0 and
B = 0.05. The sizes of s; and 5; were assessed by using Z in the estimation procedures.
To examine the powers of these statistics, the covariate Z* was used in estimation, where
Z* =11if Z > 2 and 0 otherwise. The results of these numerical studies are summarized in
Tables 1 and 2.

Based on these results, we find that the proposed methods perform reasonably well, at
least for moderately larger sample sizes. For smaller sample sizes, the statistics tend to
be somewhat unstable in terms of achieving the proper level of significance. This behavior
diminishes in larger sample sizes. The method has good power. The reason s; has better
power than §; because there is inherently more information available in the Case I scenario
relative to the Case II situation.

Next, the procedures for assessing additive hazards were studied. In the ones reported

here, Z is a 01 treatment indicator. Failure times were generated from the following model:

A(t]Z) = Xo(t) — B(H)Z. (5)

To assess the size of the h; and hy, we set A\o(t) = 1.0 and S(t) = 0.5. Power of these
statistics was examined by setting Ao(f) = 2¢ and S(t) = —6¢. The results are given in Table

2. We find that the proposed test statistics yield reasonable sizes, although the tests tend

12
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to be anticonservative in smaller samples. This behavior diminishes for larger sample sizes.

The proposed methods have good power as well.
5. Discussion

In this article, we have proposed model checking procedures for semiparametric regression
models in cancer screening procedures. The model is based on a framework proposed by
Kimmel and Flehinger (1991). Ghosh (2004) shows that this framework corresponds to
treating tumor size as either a right-censored or as an interval-censored random variable.
Based on this result, he develops semiparametric regression modelling procedures. It is
important to have methods to assess goodness of fit for the resulting model fits, which was
the goal of the work here.

Gregori et al. (2002) develop goodness of fit procedures using the method of Hjort (1990).
While the goodness of fit idea is similar in spirit to that proposed here, the model being
fit is substantially different. The model of Gregori et al. (2002) arises from a mechanistic
model for tumor progression (Tsodikov and Yakovlev, 1996). Our model involves different

assumptions from theirs.
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Appendix
A.1. Derivations of Asymptotic Results for Case I situation

We assume the usual regularity conditions as in Lin and Ying (1994). Consider the following

multiparameter process:

Witz) =n 2y / 212 < )T (),

where I(Z; < z) takes a value of 1 if all the j components of Z; are less than z and 0
otherwise. If f(Z) = 1 and ¢ = 7, the jth component of W(t, z), W;(t,2), is /Wj(z) If

z = oo and f(Z) = Z, then W;(t, z), suitably normalized, yields U7 (t). To demonstrate

15

Hosted by The Berkeley Electronic Press



the weak convergence of W;(z) and U (t), it thus suffices to prove the weak convergence of

W (t, z) for t € [0, 7]. Taylor series expansion and standard algebraic manipulations yield
noot
W(t,z)=n""?)" / {f(Z)I(Z; < 2) — H(u, 2)} dM;(u) — G(t, 2)n'"*(B — Bo) + op(1),
i=1 70
where H(t,2) = n ™t 30, [0 Ri(w) f(Z:)I(Z: < 2)/ S0, Ri(u),
nooet
Glt,z)=n"Y / {J(Z)I(Z; < 2) - H(u, 2)} Ri(u)Zydu,
i=1 70
and op(1) denotes a random variable that converges to zero in probability. By the uniform
strong law of large numbers (Pollard, 1990, p. 41) and the strong consistency of 3, H and G
converge to deterministic functions, h and g say. By application of the martingale central

limit theorem (Fleming and Harrington, 1991, Theorem 5.3.5) and the iid representation for
nl/Q(g— Bo), we have that

Wi(t, z) =n"/? i\h(t, z) + op(1),

i=1
where
¢
U(t, 2) = / (F(Z)1(Z: < 2) — h(w)} dMi(u)
)T ) (u)
— g t Z A~ / { i T'(O) )}dMZ(U,),
and r®)(8,1) is the limit of n=* Y7 R;(t)Z¥*, k = 0,1. The multivariate central limit

theorem implies that W (¢, z) converges in finite distribution to a Gaussian process with
mean zero and covariance function o (¢, ¥, z,2') = E{VU(t,2)¥, (¢, 2')"}. By the arguments
in the Appendix of Lin et al. (2000), W (t, z) is tight. The finite dimensional convergence
and tightness of W (¢, z) imply its weak convergence. The weak convergence of W;(z) and
U (t) are established.

Note that by the martingale structure of M;(t) (i = 1,...,n), its variance is E{N;(¢)}.
Let W(t, 2) = n~/2 S Ui(t, 2)G;, where

Fi(t, 2) = / (F(Z)(Z; < 2) — H(u, 2)} dN(u)
. S RWE
G(t,z)" A~ /{Z 2:JIR()}dN,().

16
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Conditional on the data {V;,0;,Z;}, the random components in ﬁ/\(t, z) are {G;}. By
the multivariate central limit theorem, W(t, z), conditional on the data, converges in fi-
nite dimensions to a mean-zero Gaussian process with covariance function o (¢,t, z,2') =
nty \/I\!,-(t, z)\/I\li(t’, 2")T. By the strong consistency of 3, f]o(t) and repeated applications
of the uniform strong law of large numbers (Pollard, 1990, p. 41), ¢ — o almost surely. If
ﬁ/\(t, z) is tight, then /W(t, z) has the same limiting distribution as W (¢, z). The components
of {I\li(t, z) are compositions of monotone functions in ¢. Since the class of monotone func-
tions is manageable (Pollard, 1990, p. 41), it follows by the functional central limit theorem
(Pollard, 1990, p. 41) that /V[7(t, z) is tight. This shows that the null distribution of W (t, z)

can be approximated by that of W(t, z).
A.2. Derivations of Asymptotic Results for Case II situation

Regularity conditions, similar to those in Andersen and Gill (1982, Theorem 4.1) are im-
posed for {V;,6;,Z;}, i = 1,...,n. The strong consistency of B, ﬁo, and I follows from the
arguments in the Appendix of Lin et al. (2000).

As in the previous section, we consider a generalization of the goodness of fit processes

utilized in §3.2:
nooat
W(t,z) =n"Y? Z/ F(Z:)(Z; < 2)dM;(u).
i=1 Y0

Reductions to W;(z) and Uj(t) are straightforward. It thus suffices to prove the weak con-

vergence of W (t, z) for t € [0, 7*]. Utilizing arguments similar to those in Appendix A.1.,

(e =3 [ 5@1, <)~ PGS L ait) ~ By 4 ' ),

where S¢(8,u,z) =n~" Y " | Ri(u) exp{87Z; (u)}f(Z:)I(Z; < =),

By(B,t,2) =n"" ) / t Ri(u)e? %W f(Z:)(Z; < 2){Z}(u)—SD(B,u)/SO (8, u) }dHy (u; B),

and * is on the line segment between [, and 3 The uniform strong law of large numbers

(Pollard, 1990, p. 41) and the strong consistency of 3 and flg(t) yield the convergence
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of Sy and By to deterministic functions sy and by, respectively. An iid representation of
n'/2(B — By) follows from Rebdolledo’s inequality (Fleming and Harrington, 1991, Ch. 5).
This fact and the martingale central limit theorem (Fleming and Harrington, 1991, Theorem

5.3.5) yield

W(t,z) =n"/? zn:\lli(t, z) + op(1),

=1

where

bt = [ {rzgra < o - 2D o)

byt [ {2100 - S5 aviw),

and s®) (8, 1) is the limit of S*®)(3,),k = 0,1. By arguments as in Appendix A.1., W (t, 2)
converges weakly.
Let W*(t,2) = n~1/2 3" W,(t, 2)G;, where
. -
Wi(t2) = [ @)1 < 2) - LD b avw
0 SO(B,u)

SM (B, u)

SO(F, u) } ANi(u).

- Bf(B’ l Z)Tiil /OT {Z:(u) -

Note that conditional on the data {Vj, §;, Z;}, the random components in W (t, z) are {G;}.
By arguments from Appendix A.1., the null distribution of W (t, z) can be approximated by
that of W*(t, z).
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Table 1. Empirical sizes of s and §;

Case 1 Case 11
n o U(0,5) U(0,3) U(0,2) U(0,5) U(0,3) U(0,2)
50 0.05 0.05 0.05 0.04 0.04 0.03 0.03
0.10 0.09 0.08 0.08 0.11 0.09 0.08
0.15 0.14 0.14 0.13 0.13 0.12 0.12
0.20 0.20 0.18 0.18 0.21 0.19 0.18
100 0.05 0.04 0.05 0.05 0.05 0.04 0.05
0.10 0.09 0.09 0.09 0.09 0.08 0.09
0.15 0.15 0.15 0.14 0.15 0.14 0.14
0.20 0.19 0.19 0.19 0.19 0.18 0.19
200 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.10 0.10 0.09 0.09 0.10 0.09 0.09
0.15 0.14 0.14 0.15 0.15 0.14 0.15
0.20 0.19 0.19 0.20 0.20 0.19 0.20

Note: « denotes level of significance.

Table 2 Empirical powers of s1 and §;

Case 1 Case 11
n o U(0,5) U(0,3) U(0,2) U(0,5) U(0,3) U(0,2)
50 0.05 0.80 0.68 0.65 0.70 0.68 0.65
0.10 0.84 0.79 0.77 0.74 0.69 0.67
0.15 0.87 0.80 0.73 0.77 0.63 0.70
0.20 0.91 0.88 0.85 0.81 0.78 0.75
100 0.05 0.87 0.85 0.83 0.75 0.71 0.69
0.10 0.89 0.87 0.84 0.69 0.65 0.71
0.15 0.92 0.88 0.87 0.82 0.77 0.74
0.20 0.96 0.92 0.90 0.86 0.80 0.78
200 0.05 0.90 0.87 0.85 0.80 0.77 0.73
0.10 0.92 0.90 0.85 0.82 0.80 0.75
0.15 0.95 0.92 0.89 0.85 0.82 0.77
0.20 0.98 0.9 0.92 0.88 0.85 0.80

Note: a denotes level of significance used in determining power.
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Table 3. Empirical sizes of by and hy

Case 1 Case 11
n o U(0,5) U(0,3) U(0,2) U(0,5) U(0,3) U(0,2)
50 0.05 0.05 0.04 0.04 0.05 0.05 0.04
0.10 0.09 0.09 0.09 0.09 0.08 0.09
0.15 0.13 0.13 0.13 0.16 0.16 0.15
0.20 0.23 0.21 0.20 0.21 0.22 0.21
100 0.05 0.05 0.05 0.04 0.04 0.05 0.04
0.10 0.08 0.09 0.09 0.10 0.09 0.10
0.15 0.15 0.14 0.15 0.15 0.14 0.14
0.20 0.19 0.18 0.19 0.18 0.19 0.18
200 0.05 0.04 0.05 0.04 0.05 0.05 0.05
0.10 0.10 0.09 0.10 0.10 0.09 0.10
0.15 0.14 0.14 0.15 0.14 0.14 0.15
0.20 0.19 0.19 0.20 0.20 0.19 0.19

See note to Table 1.

Table 4. Empirical powers of hy and hy

Case I Case 11
n o U(0,5) U(0,3) U(0,2) U(0,5) U(0,3) U(0,2)
50 0.05 0.80 0.77 0.75 0.45 0.43 0.42
0.10 0.84 0.81 0.77 0.47 0.44 0.43
0.15 0.85 0.83 0.79 0.58 0.52 0.47
0.20 0.89 0.85 0.81 0.61 0.55 0.52
100 0.05 0.85 0.83 0.81 0.48 0.46 0.45
0.10 0.88 0.86 0.83 0.52 0.50 0.48
0.15 0.90 0.87 0.86 0.62 0.58 0.55
0.20 0.93 0.90 0.88 0.63 0.59 0.57
200 0.05 0.89 0.87 0.83 0.54 0.52 0.50
0.10 0.92 0.90 0.86 0.57 0.55 0.53
0.15 0.94 0.92 0.89 0.60 0.59 0.56
0.20 0.96 0.93 0.90 0.67 0.65 0.61
See note to Table 2.
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