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Locally Efficient Estimation of Regression
Parameters Using Current Status Data

Chris Andrews, Mark J. van der Laan, and James M. Robins

Abstract

In biostatistics applications interest often focuses on the estimation of the distri-
bution of a time-variable T. If one only observes whether or not T exceeds an ob-
served monitoring time C, then the data structure is called current status data, also
known as interval censored data, case I. We consider this data structure extended
to allow the presence of both time-independent covariates and time-dependent co-
variate processes that are observed until the monitoring time. We assume that the
monitoring process satisfies coarsening at random.

Our goal is to estimate the regression parameter beta of the regression model T
= Z*beta+epsilon where the conditional density of the error epsilon given Z is
assumed to have location parameter equal to zero. Because of the curse of dimen-
sionality no globally-efficient nonparametric estimator with good practical perfor-
mance at moderate sample sizes exists. We present an estimator of the parameter
beta that attains the semiparametric efficiency bound if we correctly specify (a) a
model for the monitoring mechanism and (b) a lower dimensional model for the
conditional distribution of T given the covariates. In addition, our estimator is
robust to model misspecification. If only (a) is correctly specified, the estimator
remains consistent and asymptotically normal. We conclude with a simulation
experiment and a data analysis.



1 Introduction

1.1 Regression with Current Status Data

Consider a study in which interest lies in the distribution of a random variable, T , that is

never observed. Rather, for each individual, we observe at a random monitoring (censoring)

time, C, whether T exceeds C. This data structure (C, ∆ = I(T ≤ C)) is called current status

data. Our goal is to estimate the parameter vector β of the regression model T = Z>β + ε

where Z is a vector of time-independent covariates. The conditional distribution of the error

ε given Z has location parameter equal to zero but has an otherwise unrestricted conditional

distribution. In addition to Z, additional time-independent covariates and time-dependent

covariate processes up till monitoring time C, denoted by L(C) = {L(s) : s ≤ c}, may be

available. These covariates explain any dependence between the time T and the monitoring

time C and might be used to improve estimation of β. The observed data then is (C, I(T ≤
C), Z, L(C)). Our regression model includes the accelerated failure time model because we

can transform the chronological variables (e.g., T = log(T∗) and C = log(C∗)).

Note that we do not specify a parametric family for the error distribution. Furthermore,

we do not assume that the error ε is independent of Z. Rather, we only assume that the

conditional distribution of ε given Z has a specified location parameter equal to zero. That

is, in order to make β identifiable, we assume

E[K(ε) | Z] = E[K(T − Z>β) | Z] = 0 (1)

where K(·) is a known, monotone function. If K(ε) = ε, then equation (1) implies the

conditional mean given Z of the error distribution is zero. However, estimation of the mean is

quite difficult with current status data because the distribution of the monitoring mechanism

must extend as far as the tails of the distribution of T . Thus other measures of center may

be advantageous or necessary.

The conditional median model is obtained when K(ε) = I(ε < 0) − 1/2. Our estimators

require a smoother K(·) than this because the median is not
√

n-estimable. A convenient

family is K(·) = 2Φ(·)− 1 where Φ is a (typically symmetric, mean zero) continuous distri-

bution function. If the mass of Φ is concentrated near zero, we have a “smoothed median”;

if Φ has large variance, we have a trimmed mean. We propose to choose a K with compact

support [−τ, τ ] for some user supplied τ .
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As an example, consider the following idealized mouse tumorigenicity experiment designed

to investigate the relationship between the time, T , until the development of liver adenoma

and the dose level, Z, of a suspected tumorigen. Suppose study mice are randomly allocated

to dose groups and that liver adenomas are never, in themselves, the primary cause of an

animal’s death. Therefore, each mouse is sacrificed (monitored) at a random time C; at

autopsy it is determined whether a tumor has developed before C. In such studies, it is easy

to collect daily measurements of the weight of each mouse prior to sacrifice. Let L(u) be the

weight at time u and let L = L(·) be the entire weight process. Only the weight process up

to time C is observed. Thus for each mouse Y = (C, ∆ = I(T ≤ C), Z, L(C)) is observed,

which we consider as a censored observation of the full data X = (T, Z, L). Because mice

with liver adenomas tend to lose weight, L(C) and T are associated.

One reasonable monitoring scheme is to increase the hazard of monitoring shortly after

a mouse begins to lose weight. If the time of sacrifice can be made closer to the time of

tumor onset then the variance of the estimator is lower. This monitoring scheme introduces

dependence between C and T . Estimators that ignore this dependence will be biased. Col-

lecting information on a surrogate process and allowing the censoring time to depend on it

is a superior design to carcinogenicity experiments that require independent censoring.

In the mouse experiment the dependence between C and T is only through the observed

covariates. That is, the hazard of censoring at time t, given the full (unobserved) data

X = (T, Z, L), is only a function of Z and the observed portion of the covariate process, L(t):

λC(t | X) = λC(t | Z, L(t)). (2)

This implies G(· | X), the conditional distribution function of C, satisfies coarsening at

random (Robins, 1993). Coarsening at random (CAR) was originally formulated by Heitjan

and Rubin (1991) and generalized by Jacobsen and Keiding (1995) and Gill, et al. (1997).

Our proposed estimator of β is consistent and asymptotically normal if we succeed in

consistently estimating λC(· | X) at a suitable rate under the assumption (2). One such case

is the idealized experiment described above where λC(t | Z, L(t)) is known by design because it

is under the control of the investigator (so estimation of λC(t | Z, L(t)) is not even necessary).

In general, a correctly specified semiparametric model that admits a consistent estimator for

λC(t | Z, L(t)) can be used. In this paper, we emphasize modelling λC(t | Z, L(t)) by a
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time-dependent Cox proportional hazards model:

λC(t | Z, L(t)) = λ0(t) exp(η>V (t)), (3)

where V (t) is a function of (Z, L(t)). van der Laan and Robins (1998) explain why modelling

the monitoring mechanism under CAR is a sensible approach to fight the curse of dimen-

sionality in high dimensional models. Our model for the observed data distribution is now

specified since the observed data distribution PFX ,G of Y is indexed by the full data distri-

bution FX , which needs to satisfy the regression model (1), and the conditional distribution

G(· | X), which needs to satisfy a semiparametric model such as (3).

To have identifiability of β, we need to assume the conditional density function g(· | X)

of the monitoring process is located correctly relative to the support of T and the location

parameter K. A sufficient condition is that g(c | X) must be bounded away from zero when

both K ′(c − Z>β) and 1 − F (c | Z, L(c)) are non-zero. If T is unbounded, K ′ must have

finite support. Minimal conditions are provided in the Appendix.

Our estimator also uses an estimator of F (t | Z, L(u)) = P (T ≤ t | Z, L(u)) for various u

and t. By the curse of dimensionality, one will need to specify a lower dimensional working

model for this conditional distribution and estimate it accordingly. The resulting estimator

is locally efficient in the sense that it is asymptotically efficient if the working model contains

the truth and it remains consistent and asymptotically normal otherwise. Thus our estimator

uses time-dependent covariate information, such as the weight history of the mouse up till

time u, to predict the time T till onset thereby recovering information lost due to censoring.

To illustrate the potential gain possible, if the weight process perfectly predicts T , then our

estimator is asymptotically equivalent with the Kaplan-Meier estimator if we specify a correct

model for F (t | Z, L(u)).

Current practice is to sacrifice the mice at one point in time. Since our methodology shows

that sophisticated mouse experiments can be nicely analyzed, we hope that experiments

of the type above will be carried out in the future. In section 5 we will analyze a cross

sectional study to estimate the time-till-transmission distribution in a previously analyzed

HIV-partner study. In this data analysis we estimate the effects of “History of Sexually

Transmitted Disease” and “Condom Use” in a model log(T ) = Z>β + ε, which thus includes

the accelerated failure time model as a submodel, while using covariates outside the model to

allow for informative censoring and to improve efficiency. It is important to note that such
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an analysis is not possible with any of the existing methods since these methods assume that

there are no relevant covariates outside the regression model.

1.2 Previous work and comparison with our results

There is a large literature on estimation of the distribution of T with current status data when

covariates are absent: Diamond, et al. (1986), Jewell and Shiboski (1990), Diamond and Mc-

Donald (1991), Keiding (1991), Sun and Kalbfleisch (1993), Groeneboom and Wellner (1992),

Jewell et al. (1994), van de Geer (1994), Huang and Wellner (1995) and several others. van

der Laan and Robins (1998) consider estimation of the distribution of T with current status

data in the presence of time-dependent covariate processes and time-independent covariates,

using them to improve efficiency and allow for informative monitoring schemes.

Several authors have investigated estimation of regression parameters using current status

data, (C, ∆), together with a time-independent covariate, Z. Rabinowitz, et al. (1995) fit an

accelerated failure time model T = Z>β+ε (where T is the log of a failure time) that requires

error ε to be independent of the covariates Z. Huang (1996) derives an efficient estimator

of the regression parameters of the proportional hazards model. Rossini and Tsiatis (1996)

assume a semiparametric proportional odds regression model and carry out sieve maximum

likelihood estimation. In each case the monitoring time may depend on the covariates of the

model, Z, but not on additional covariates. Shen (2000) fits a linear regression model with

current status data and time-independent covariates. In each of these references all covariates

that explain the dependence between C and T must be included in the model for T . Because

the models are for time-independent covariates only, no time-dependent covariates can be

used to explain the dependence between C and T . None of these limitations apply to our

approach. In addition, our approach provides in general a mapping from full-data estimating

functions to observed data estimating functions and thus provides the class of all estimators

for any well understood full data model.

We would like to stress the implication of our results for the accelerated failure time model

as studied by Rabinowitz, et al. (1995). Consider our model with the additional restriction on

the regression model that ε is independent of Z. Our restricted model generalizes the problem

of estimation of β in the accelerated failure time model of Rabinowitz, et al. (1995) based

on current status data, namely by allowing the presence of additional time-dependent and

time-independent covariates. The literature does not provide an estimator in this estimation
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problem. However, because this restricted model is a submodel of our model our locally

efficient estimator (e.g. using as working model the accelerated failure time model) yields a

closed-form, consistent, and asymptotically normally distributed estimator of the regression

parameters in the accelerated failure time model. This estimator will be efficient in the

accelerated failure time model and will remain consistent and asymptotically normal when the

monitoring mechanism depends on the additional (time-dependent) covariates. Furthermore,

it will still be consistent if the error distribution is not independent of Z, but E(K(ε) | Z) = 0.

The next two sections are the heart of the paper. In section 2 we present the locally ef-

ficient estimator, details for implementing the estimator, and some ideas of efficiency theory

and one-step estimation. In section 3 (and the Appendix) we prove consistency, asymp-

totic linearity and local efficiency of our estimator. Two simulations that demonstrate some

asymptotic and finite sample properties of the estimators are presented in section 4. An

analysis of the California Partners’ Study of HIV infectivity is given in section 5 and finally

we have some closing remarks.

2 Estimation

We define estimating functions for β as functions of the data Y and parameters, including the

parameter of interest β, which are orthogonal (i.e. covariance equal to zero) to all nuisance

scores when evaluated at the true parameter values. We will first present the class of all

estimating functions of the observed data model (which are orthogonal to the nuisance tangent

space) defined by the regression model (1) and CAR (2) on G. This set can be represented as

the range of a mapping D → IC(D) ≡ IC0(D) − ICnu(D) from estimating functions of the

full data model. The estimating functions for β in the model for the full data (T, Z, L) are

of the form D(T, Z) = h(Z)Kβ(T, Z) for some h(Z), where Kβ(T, Z) = K(T − Z>β). The

first piece of the mapping, IC0, is an (inverse probability of censoring weighted) estimating

function of β in the model with known censoring density, g(· | X), and is given by

IC0(Y | G, D) ≡ D′(C, Z)(1− ∆)
g(C | X)

+ D(αW , Z). (4)

D′ is the derivative with respect to the first argument and αW is the minimum of the support

of g(· | X), which is (by CAR) allowed to be a function of the baseline covariates W . These

estimating functions satisfy E(IC0(Y | G, D) | X) = D(X), under a weak identifiability

condition (see Appendix) and are therefore indeed unbiased.
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The second piece of the mapping is the projection of IC0 on the tangent space of the

monitoring process only assuming CAR (2). It is given by

ICnu(Y | F, G, D) ≡
∫ ∞

0

(
D′(u, Z)F(u | Z, L(u))

g(u | X)

− 1
G(u | X)

∫ ∞

u
D′(t, Z)F (t | Z, L(u))dt

)
dM(u), (5)

where F (· | Z, L(u)) is the conditional cumulative distribution of T given (Z, L(u)) and

dM(u) = I(C ∈ du) − ΛC(du | X)I(C ≥ u). For a given cumulative distribution F we

define F = 1 − F . For convenience, in ICnu(Y | F, G, D) we use shorthand F to represent

F (· | Z, L(u)) for various u. We define IC(Y | F, G, D) ≡ IC0(Y | G, D)−ICnu(Y | F, G, D).

If L is time independent we denote it by W , in which case

ICnu(Y | F, G, D)

=
D′(C, Z)F (C | Z, W )

g(C | X)
−
∫ ∞

0
D′(u, Z)F(u | Z, W )du (6)

and

IC(Y | F, G, D) =
D′(C, Z)
g(C | X)

(F (C | Z, W )− ∆) + E[D(T, Z) | Z, W ]. (7)

(XXX change of notation for IC!) An estimator βn of β is asymptotically linear at

the observed data distribution PFX ,G with influence curve IC(Y | β, FX , G) if βn − β =

n−1∑n
i=1 IC(Yi | β, FX , G) + oP (n−1/2). A regular estimator attains the semiparametric in-

formation bound at PFX ,G if its influence curve at PFX ,G is the so called efficient influence

curve, `∗eff, which can be defined as a standardized efficient score.

The optimal estimating function should equal this efficient score (up till a standardization

matrix) when evaluated at the true parameter values. Let Dopt(X | β) = hopt(Z)K(T−Z>β)

be the full data estimating function that is mapped into the optimal estimating function in

the observed data model. Theorem 3 in the Appendix gives the explicit form of Dopt in

several data models. The most general setting has

IC(Y | F, G, Dopt) = hopt(Z)IC(Y | F, G, Kβ) =
ZE(K ′

β | Z)
φ(Z)

IC(Y | F, G, Kβ) (8)

where φ(Z) = E(IC(Y | F, G, Kβ)2 | Z). The efficient influence curve is

`∗eff(Y | F, G, hopt, copt, β) = c−1
opthopt(Z)IC(Y | F, G, Kβ), (9)

where copt =
[
E
(
Zhopt(Z)IC0(K ′

β)
)]

.
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Thus an efficient estimator can be found by solving

0 =
n∑

i=1

IC(Y | F, G, Dopt(· | β)) (10)

for β using (8) after estimating the nuisance parameters F , G, and the optimal index hopt.

We must solve (10) iteratively for β. If our initial value, β0
n, for β is a

√
n-consistent

estimator of β, then a single iteration of the Newton-Raphson algorithm for solving (10) is

just the classical one-step estimator as defined in Bickel, et al. (1993, page 395):

β1
n ≡ β0

n +
1
n

n∑
i=1

̂̀∗
eff(Yi | β0

n). (11)

Here `∗eff(Y | F, G, hopt, copt, β) is estimated by substitution of estimators Fn, Gn, hn, cn, β0
n

for F, G, hopt, copt, β, respectively.

We propose to use IC0(Y | G, ZKβ) as an estimating function to compute an initial

estimator, β0
n. Then the initial estimator of the k-vector regression parameter β is the solution

of the system of equations

n∑
i=1

Zi

(
K ′

β0
n
(Ci, Zi)(1− ∆i)

gn(Ci | Xi)
+ Kβ0

n
(αWi , Zi)

)
= 0. (12)

Formal conditions for existence and
√

n-consistency of β0
n are given in our technical report.

To obtain the initial estimate β0
n using equation (12), it is necessary to n−1/4-consistently

estimate the conditional density of the censoring mechanism, g(· | X), from the data. We

elected to use a time-dependent Cox proportional hazards model (3). For this model to

estimate consistently the censoring density, the usual step-function estimate of the baseline

hazard must be smoothed: e.g., as in Andersen, et al. (1993). If we believe the censoring

mechanism is independent of all covariates we can use a kernel smoother to estimate g(· |
X) ≡ g(·). In any case, after g has been estimated, the initial estimate β0

n then quickly can

be found by numerical methods (e.g., Newton-Raphson) using equation (12).

Estimation of the efficient influence curve (9) involves estimation of (F, G, hopt, copt, β).

With an initial estimate of β and the estimate of the censoring density g in hand, we now

discuss estimation of each of the other three parameters and computation of the one-step

estimator β1
n. This general method can always be used but, as illustrated in Example 2,

more specific information about the structure of the model can improve efficiency for finite

samples.
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Fn for time-independent case. If L = W is time-independent, then ICnu is given by

equation (6) and the following identity can be used to estimate F (· | Z, W ):

F (t | Z, W ) = E[I(T ≤ t) | Z, W ] = E[∆ | C = t, Z, W ]. (13)

The second equality follows from CAR.

The proposed submodel can be chosen to be a highly parametric model or a flexible

semiparametric model. The former leads to a fully efficient estimator in fewer circumstances.

Nonetheless, the finite sample performance of a parametric model is comparable if not superior

to a semiparametric model because it recognizes the main effects of the covariates and is

more stable where the data are sparse. This comparison is made in the second example in

the simulation section.

One possible semiparametric model for F (· | Z, W ) is a logistic generalized additive model.

F (t | Z, W ) = E[∆ | C = t, Z = (Z1, . . . , Zk), W = (W1, . . . , Wl)]

=
exp(fC(t) + fZ1(Z1) + · · ·+ fWl

(Wl))
1 + exp(fC(t) + fZ1(Z1) + · · ·+ fWl

(Wl))
. (14)

The Splus function gam with family=binomial(link=logit) produces an Fn based on the

observed data {Yi}n
i=1. Furthermore, some or all of the general functions fC , fZ1, . . . , fWl

,

can be replaced by more parametric polynomials.

The factor IC(Yi | F, G, Kβ) in equation (9) can now be estimated for each Yi using the

expressions for IC0(Yi | Gn, Kβ0
n
) and ICnu(Yi | Fn, Gn, Kβ0

n
) given in (4) and (6).

Fn for time-dependent case. If L is time-dependent, ICnu must be estimated directly

from equation (5). It is necessary to estimate F (t | Z, L(u)) for a given (t, u) with t ≥ u. First

consider the case where the density of C depends only on the time-independent covariates

(even though F (t | Z, L(u)) may depend on the time-dependent covariates). Then we proceed

using the CAR-identity

F (t | Z, L(u)) = E(∆ | C = t, Z, L(u), C ≥ u). (15)

To avoid the curse of dimensionality, for each u we replace L(u) by a vector of summary

measures, Wu(L(u)), that hopefully captures the most relevant information for predicting T .

Now, for each u, we can estimate F (· | Z, L(u)) ≈ F (· | Z, Wu) by the GAM in equation (14).

The model is fit using data Yi for which Ci ≥ u (i.e., individuals for which L(u) is observed).

For the general case where the censoring mechanism also depends on the time-dependent

covariates, the identity (15) is not guaranteed by CAR. We proceed in estimating F (t |
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Z, L(u)) in two stages by noting that

F (t | Z, L(u)) = E(F (t | Z, L(t)) | Z, L(u), C ≥ u),

where, by CAR, F (t | Z, L(t)) = E(∆ | C = t, Z, L(t)). Thus we can estimate F (t | Z, L(t))

by fitting the gam-model (14) with covariates t and Z and covariates extracted from L(t)

for each t. Now for each u, regress F̂ (t | Zi, Li(t)) on Zi and covariates extracted from

Li(u), using individuals for which Ci ≥ u. This improves on the method of van der Laan

and Robins (1998) because it does not rely on the estimate of G and therefore allows double

robust estimation (see below).

hopt. The vector-valued function hopt(Z) is proportional to Z. The constant of propor-

tionality is the ratio of

E(K ′
β | Z) = E

(
K ′′(C − Z>β)(1 − ∆)

g(C | X)
| Z

)
+ K ′(αW − β>Z) (16)

and φ(Z). Using β0
n and gn(· | X) to obtain an observed outcome, the expression (16) can be

estimated by regressing an observed outcome on Z. The function φ(Z) can be estimated in

several ways depending on the number and type of covariates are available. In general, φ(Z)

is the conditional expectation given Z of IC2(Y | β, F, G, Kβ). An estimate of IC has already

been computed and its square can be regressed on Z in some parametric or semiparametric

method (e.g., splines, gam, running medians).

Although this regression method can always be used, in some cases φ(Z) has other ex-

pressions with more structure that can be exploited. In particular, if there are no covariates

other than Z, then φ is given by equation (26) and can be estimated by substitution of

an estimator of F (t | Z) = E(∆ | C = t, Z). If L = W is time independent, φ(Z) is

given by equation (27), which can thus be estimated by substitution of an estimator of

F (t | Z, W ) = E(∆ | C = t, Z, W ). Equation (27) will be more accurate but potentially more

computationally intensive. In Example 2 the assumptions on T | Z and W | T, Z imply a

distribution on W | Z that can be exploited in computing φ(Z).

copt. An estimate, cn, of the normalizing matrix copt is

cn = −1
n

n∑
i=1

hn(Zi)Z>
i UGn(K ′

β0
n
)(Yi). (17)

The expectation has been estimated by the empirical mean. Each factor inside the expectation

has already been estimated to obtain the estimate of hopt.

9
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3 Properties of One-Step Estimator

Theorem 1 shows that if our models for g(C|X) and Fn(t | Z, L(u)) are correctly specified,

then the one-step estimator β1
n is indeed asymptotically linear with influence curve `∗eff and

thus asymptotically efficient. Moreover, β1
n has the additional feature that it remains a

consistent and asymptotically normal estimator of β even when the model for F (t | Z, L(u))

is misspecified (i.e., when estimates Fn → F † 6= F ).

This protection from model misspecification of F follows from the general representation

of `∗eff developed by Robins and Rotnitzky (1992) and further developed in van der Laan

and Robins (2002). For further details about computing this representation we refer to the

Appendix and technical report.

Theorem 1 Under regularity conditions provided in the Appendix β1
n ≡ β0

n +

n−1∑n
i=1 `∗eff(Yi | Fn, Gn, hn, cn, β0

n) is asymptotically linear with influence curve

Π
[
`∗eff(· | F †, G, h, c, β)

∣∣∣T⊥
2 (PFX ,G)

]
, (18)

where T2(PFX ,G) is the tangent space for the chosen CAR-model containing the true G. Fur-

thermore, if h = hopt and F † = F , then β1
n is asymptotically efficient.

3.1 Construction of Confidence Intervals

A confidence region for the parameter vector β or individual confidence intervals for each

regression parameter can be constructed by estimating the covariance matrix of the efficient

influence function, `∗eff. If the model for F (t | Z, L(u)) is correctly specified, the vector
√

n(β1
n − β) is asymptotically distributed N (0, Cov(`∗eff)) because the projection operator in

expression (18) is the identity operator in this case. Thus an asymptotic 95% confidence

region for β is
{
β ∈ IRk | (β1

n − β)>Σ̂−1(β1
n − β) ≤ (k/n)F0.95,k,∞

}
(e.g., Morrison, 1990),

where Σ̂ is the empirical variance of the estimated efficient influence function,

Σ̂ =
1
n

n∑
i=1

(̂̀∗
eff(Yi) − 1

n

n∑
i′=1

̂̀∗
eff(Yi′)

)(̂̀∗
eff(Yi)− 1

n

n∑
i′=1

̂̀∗
eff(Yi′)

)>
,

where we define ̂̀∗eff(Y ) ≡ `∗eff(Y | Fn, Gn, hn, cn, β0
n). An asymptotic 95% confidence interval

for a single parameter is β1
n ± 1.96σ̂/

√
n, where σ̂2 is the appropriate diagonal element of Σ̂.

If the model for F (t | Z, L(u)) is misspecified, the above confidence intervals are conser-

vative. The true variance of the estimator is given by the variance of expression (18), which
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is smaller than the variance of `∗eff. We refer to van der Laan and Robins (1998) and van der

Laan and Robins (2002) for exact expressions when the model for the monitoring process is

either Cox proportional hazards or independence. However, unless F is very poorly specified,

the conservative intervals will be fairly accurate.

3.2 A Doubly Robust Estimator

Given estimates Fn, Gn of the nuisance parameters F, G and a choice hn for the full data

estimating function, consider the estimator βn solving

0 =
1
n

n∑
i=1

`∗eff(Yi | Fn, Gn, hn, cn, β).

Due to the orthogonality of `∗eff(Y | F, G, h, c, β) to any nuisance score generated by fluctu-

ations of G, we actually have the following double-robustness property with respect to the

nuisance parameters F and G of this estimating function `∗eff(Y | F, G, h, c, β):

E
(
`∗eff(Y | F1, G1, h, c, β)

)
= 0 if either F1 = F or G1 = G.

This means that, in fact, under regularity conditions, βn will be consistent and asymptotically

linear if either the model for F (t | Z, L(u)) is correctly specified or the model for G is

correctly specified. This double robustness property of βn implies that, in practice, a minor

misspecification of the model for G can be corrected by doing a good job in modelling F (t |
Z, L(u)) and vice versa.

3.3 Data Adaptive Selection of Location Parameter

The regression parameter β represents the effect of Z on the location parameter identified

by K. Thus the choice of location parameter affects immediately the interpretation of β and

could therefore just be subject-matter driven. However, one might also decide to choose the

location parameter that is best identifiable from the data. Suppose that we choose a location

parameter Kτ with compact support [−τ, τ ] that, e.g., approximates the median for τ → 0

and approximates the mean for τ → ∞. In that case, we propose to calculate Σ̂ for a range

of τ ’s and select the τ that minimizes this estimated variance of the efficient influence curve.

This corresponds with choosing the location parameter that results in the smallest confidence

bands.
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4 Simulations

Two simulation studies are presented to illustrate the applicability and efficiency of these

methods. Example 1 demonstrates that the asymptotic properties of the one-step estimator

apply to a dataset of moderate size. The superiority of the one-step estimator over the initial

estimator is also shown. The effects of an additional time-independent covariate, W , and the

submodel selected for F (· | Z, W ) are considered in Example 2.

The function K we use in these simulations is a smoothed truncated mean given by

K(t) = −τI(t < −τ) + τI(t > τ) + (t + (τ/π) sin(πt/τ)) I(|t| ≤ τ) (19)

with τ = 3. K has two continuous derivatives, both of which are zero outside the interval

(−τ, τ).

4.1 Example 1: No Unmodelled Covariates

The data generating distribution has β = (β0, β1) = (0, 1), Z0 ≡ 1 (intercept), Z1 ∼ N (0, 1),

T | Z ∼ N (Z1, 1), and C | Z ∼ N (Z1, 1). The observed data is (C, ∆, Z). The general method

of estimation described in section 2 was used with the following specifics. The censoring

distribution was estimated via linear regression of C on Z with independent normal error.

The distribution of T | Z was estimated using equation (13) and a generalized linear model

with probit link. hopt was computed after approximating the integrals E(K ′
β0

n
(T, Z) | Z) =

− ∫ K ′′
β0

n
(t, Z)F (t | Z)dt and the expression (26) for φ(Z) by Simpson’s Rule with 20 intervals.

The results in Table 1 are based on 1000 repetitions.

The one-step estimator is efficient in this example because the submodel chosen for F is

correct. In finite samples we estimate the efficiency by comparing the variance of the estimator

with the variance of the efficient influence curve. Similarly we estimate the efficiency of the

one-step estimator relative to the initial-estimator. Results for the parameter β1 at three

sample sizes are given in Table 1 (similar patterns are seen for β0). The asymptotic efficiency

is evident in both of the larger samples.

4.2 Example 2: Unmodelled Covariate

Suppose in addition to Z, another covariate W has been collected that is associated with T .

Our method uses the information contained in the covariate to improve the estimate of β. The

strength of the relationship between T and W is one factor that determines how much our

12
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Table 1: Comparison of initial and one-step estimators for simple linear re-

gression example. One-step estimator is asymptotically efficient and appears

to be fully efficient even for moderate sample sizes.

Asymptotic Relative

Sample Relative Efficiency

Estimator Size Efficiency (baseline=Initial)

250 0.53 1

Initial (β0
n,1) 500 0.76 1

1000 0.81 1

250 0.67 1.2

One-step (β1
n,1) 500 1.05 1.3

1000 1.05 1.3

one-step estimator can improve the initial estimator, which does not use W . In this example

we consider three covariates: W1 = T , W2 = T + small error, and W3 = T + large error. The

first corresponds to a perfect surrogate for T , the second to a good predictor of T , and the

third to a poor predictor of T .

The degree to which we will be able to exploit the information in W also depends on

the submodel we select for F (· | Z, W ). It is frequently wise to be optimistic and select

a small submodel; for example, a generalized linear model often outperforms a generalized

additive model if linearity is at all reasonable. In this example we consider two one-step

estimators. The first estimator is the generic method described in section 2 The assumed

model for F (· | Z, W ) is correct for each of the three covariates. Thus β1
n is asymptotically

efficient in each case.

The second one-step estimator assumes W is a perfect surrogate for T and thus “esti-

mates” F (t | W, Z) with I(W ≤ t). This is correct in the first scenario because W1 = T but

not correct for the second or third case. Under the assumption W = T , one could directly

estimate β by linear regression: W = Z>β + ε. This direct linear regression method is opti-

mal in case 1 where W1 = T . However, in the other two cases, this estimator is inconsistent.

On the other hand, our one-step estimator is consistent in each of the three cases and is

asymptotically equivalent with this direct linear regression method if W = T .

The simulation results are presented in Table 2. The initial estimator is exactly the

13
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estimator in the previous example. It does not use the information provided by the covariate

W and thus is not nearly efficient. If W is very informative, as in the first two cases, the

variance bound is less than half the variance of the initial estimator.

The generic one-step estimator is efficient, but for samples with N = 1000 the variance

bound is about 10% smaller than the variance of the estimator. The special one-step esti-

mator that assumes W = T reaches the efficiency bound (and then some) when W is very

informative. When W is a poor predictor of T , the performance of this estimator suffers

as should be expected because the assumption W = T is bad. The variance of the special

estimator is larger than the generic estimator in this case.

Table 2: Comparison of (the variances of) the initial estimator and two one-

step estimators. The generic one-step estimator is efficient in each case. The

special one-step estimator assumes W = T and is therefore efficient only in

case 1. The generic one-step estimator has not reached the (asymptotic)

efficiency bound in this simulation (N = 1000) but the special one-step

estimator has in the first two cases where W is a perfect or good predictor

of T .
Estimator Available Asymptotic Relative Relative

Covariate Relative Efficiency Efficiency

Efficiency (baseline=Initial) (baseline=Generic)

W1 = T 0.40 1

Initial (β0
n,1) W2 0.44 1

W3 0.78 1

W1 = T 0.90 2.20 1

Generic (β1
n,1) W2 0.93 2.12 1

W3 0.94 1.19 1

W1 = T 1.03 2.32 1.15

Special (β1∗
n,1) W2 1.08 2.48 1.08

W3 0.90 1.15 0.96

Details. The data generating distribution has Z0 ≡ 1 (intercept), Z1 ∼ N (0, 1), T | Z ∼
N (Z1, 1), W1 | T, Z = T , W2 | T, Z ∼ N (T, 0.12), W3 | T, Z ∼ N (T, 1.02), and C | Z, W ∼

14
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N (Z1, 1). The general method of estimation described in section 2 was used with the following

specifics to compute the generic one-step estimator. The censoring distribution was estimated

via linear regression of C on Z with independent normal error. The distribution of T | Z, W

was estimated using equation (13) and a generalized linear model with probit link. From the

data model it can be shown that fW |Z can be estimated consistently with linear regression

with normal errors in each of the three cases. This estimate can be used to more accurately

estimate

φ(Z) =
∫

fW |Z(w | Z)

[
E(Kβ0

n
| Z, W )2 +

∫ F (t | Z, w)F(t | Z, w)K ′
β0

n
(t, Z)

g(t | Z, w)
dt

]
dw

(see equation (27)).

The special one-step estimator based on the assumption W = T is easier to compute

because the assumption implies F (t | Z, W ) = I(t ≤ W ), E(K ′
β0

n
| Z, W ) = K ′

β0
n
(W, Z), and

φ(Z) =
∫

fW |Z(w | Z)Kβ0
n
(w, Z)2dw.

Results in Table 2 are based on 1000 repetitions.

5 California Partners’ Study

The methods described in this paper were applied to a dataset extracted from the California

Partners’ Study. Each case consists of a monogamous heterosexual couple in which the male

is HIV-positive due to a prior sexual contact. The “failure time variable” on which current

status data is available is the time (in months) until infection of the female partner. Several

time-independent covariates are available including an indicator of condom use (never=1,

ever=0), an indicator of bleeding (ever=1, never=0), an indicator of a sexually transmitted

disease (STD) history in the female (ever=1, never=0), an estimate of the rate of sexual

contact (contacts per month), and the age of the female (years). There are 87 subjects with

complete information on these five covariates. More detailed descriptions of the data are

available in Padian, et al. (1987), Shiboski and Jewell (1992), Jewell and Shiboski (1990),

and Padian, et al. (1997).

Our ultimate goal is to estimate the regression parameters in the model T = Z>β + ε,

where T is the log of the transmission time. Define the following notation: Z0 ≡ 1 is

the intercept, Z1 = I(No condom use), Z2 = I(STD History), Z3 = Z1Z2. We expect the

coefficients of Z1 and Z2 to be negative, indicating these risk factors lower the expected time
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until transmission of the disease. We include the interaction term because the effect of STD

history may not be observed if condoms are used.

Before estimating β, we must model the censoring mechanism. The distribution of C may

be dependent on the covariates in the model and possibly other external to the regression

model. Several classes of models for the conditional distribution of C given covariates are

feasible including simple linear regression and Cox proportional hazards. In each of these

classes the only significant dependence is between the monitoring time and Z1. As noted in

the introduction, it may be safer to include more rather than fewer covariates and to specify

a semi-parametric rather than parametric model to protect against dependence between T

and C as much as possible. With that in mind we chose to use the Cox proportional hazards

model and to include all five covariates mentioned in the paragraph describing the dataset.

With a model for the censoring mechanism in hand, we proceed to computing an initial

estimate of β based on equation (12). The length of the support window of K ′ can be

varied (as can the functional form of K) to obtain results for a range of estimators from

smoothed median regression to trimmed mean regression. Table 3 displays how the initial

and one-step estimates depend on the selection of the window length. For the analysis of log

transmission time the estimates do not change substantially with τ . In a similar analysis of

the untransformed transmission time, the estimates changed due to the right skewness of the

distribution. For example, the intercept, which represents the time until infection in pairs

with neither risk factor, was largest for large τ and smallest for small τ . A wide window

indicates the tail of the distribution will have an effect while a small window indicates only

the center of the data is measured.

For τ = 0.25 the initial estimator is β0
n = (4.44,−0.54,−0.31, 0.24); that is, the conditional

log time until infection is centered at 4.44− 0.54Z1 − 0.31Z2 + 0.24Z3.

The remaining item is to compute the one-step estimator. The covariates in this data

set are time-independent so equation (6) applies. The cumulative distribution function

F (t | Z, W ) was estimated using the generalized additive model as in equation (14) with

Z = (Z0, Z1, Z2, Z3) and logit link function. The indicator of bleeding and the age of the

female were used as covariates outside the regression model (that is, W ). Adjusting for these

covariates is not possible with any other technique in the literature. The one-step estimator

is β1
n = (4.43,−0.50,−0.27, 0.42); that is, the conditional log time until infection is centered

at 4.43− 0.50Z1 − 0.27Z2 + 0.42Z3.
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Table 3: Dependence of Estimates on Window Length. K ′ is zero outside

Z>β ± τ . If τ is larger than 0.3, this window extends beyond the support of

gn. If τ is smaller then 0.15, the initial estimator has numerous solutions.

τ Parameter Z0 Z1 Z2 Z3

0.17 β0
n 4.43 -0.52 -0.27 0.15

β1
n 4.42 -0.49 -0.26 0.26

0.21 β0
n 4.43 -0.53 -0.29 0.17

β1
n 4.43 -0.50 -0.26 0.30

0.25 β0
n 4.44 -0.54 -0.31 0.20

β1
n 4.43 -0.50 -0.27 0.42

0.29 β0
n 4.45 -0.56 -0.33 0.24

β1
n 4.44 -0.51 -0.28 0.45

The individual standard errors of the coefficients of the two main effect indicator variables

are 0.19 and 0.11, respectively. Thus the indicators of no condom use and of STD history

are significant (0.01 < p < 0.02) factors in predicting the log time until transmission. The

coefficient of the interaction is not statistically significant.

6 Discussion

We provide locally efficient estimators of regression coefficients based on current status data

with time-dependent covariates with a general linear regression failure-time model, T =

Z>β + ε, where the distribution of the error term has conditional location parameter equal

to zero. Although the curse of dimensionality prevents a globally efficient estimator, the

proposed estimator attains the efficiency bound at a user-supplied submodel of interest and

is consistent and asymptotically normal over the whole model.

Another advantage of this locally efficient estimation approach is that the censoring pro-

cess need not be independent of the failure time; only coarsening at random is required.

Unlike other regression estimation approaches, this estimator allows the effects of other un-

modelled covariates to be incorporated in a very general way. Thus if a surrogate covariate

for T is available, it may be used to improve the estimation of the regression parameters even

though the surrogate is not included in the model. Furthermore, the unmodelled covariates

17
Hosted by The Berkeley Electronic Press



may even be time-dependent processes.

The estimator exists in closed form and has been implemented with generally available

software. It was shown in simulations to perform according to its asymptotic theoretical

properties in finite samples and was applied to data from the California Partners’ Study.

Appendix

Identifiability of β: The crucial and structural condition for the consistency of the solution

of an inverse probability of censoring weighted estimating equation is that the estimating

function is unbiased. The following theorem provides the necessary and minimal conditions

guaranteeing that the inverse weighting of the full data estimating function works.

Theorem 2 Assume that (i) K is selected to be constant outside [−τ, τ ] and to be strictly

increasing with two continuous derivatives on [−τ, τ ], (ii) Pr(−τ < ε < τ | Z) > δ1 > 0 with

probability one for some δ1, (iii) the support of g(· | X) is an open interval (αW , αY ) with

W = (Z, L(0)) being the baseline covariates, and (iv) Pr(Z ∈ Z(β, G)) > δ2 > 0 for some

δ2, where

Z(β, G) ≡ {z : αY − βz > min(T − βz, τ), αW − βz < max(T − βz,−τ)}. (20)

where the inequalities need to hold FX |Z=z a.e. Assume that Z(β, G) is non-empty. Define

HF (β, G) = {h(Z)I(Z ∈ Z(β, G)) : sup
z

| h(z) |< ∞}.

If h ∈ HF (β, G), then E(IC0(Y | G, Dh(· | β)) | X) = Dh(X | β).

Proof of theorem. The conditional expectation is given by:

I(Z ∈ Z)h(Z)
∫ max(min(T,αY ),αW )

αW

K ′
β(c, Z)dc + Kβ(αW , Z).

This can be rewritten as:

I(Z ∈ Z)h(Z)Kβ(max(min(T, αY ), αW ), Z)

= I(Z ∈ Z)h(Z)K(max(min(ε, αY − βZ), αW − βZ))

= I(Z ∈ Z)h(Z)K(max(min(ε, αY − βZ),−τ)) by (iv) and (20)

= I(Z ∈ Z)h(Z)K(min(ε, αY − βZ)) by (i)

= I(Z ∈ Z)h(Z)K(min(ε, τ)) by (iv) and (20)

= I(Z ∈ Z)h(Z)K(ε) by (i).2
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Asymptotic Efficiency of β1
n: Theorem 1 (restated here with the regularity conditions)

shows that the one-step estimator β1
n is indeed asymptotically linear and consistent regardless

of the model for F , and if F is correctly specified, estimator has influence curve `∗eff.

Before stating the regularity conditions, we note that condition (ii) in the theorem is

a general empirical process condition. For empirical process theory we refer to van der

Vaart and Wellner (1996). We decided not to derive more primitive conditions that imply

condition (ii) because it is technical and model dependent. In our technical report it is

shown that condition (i) assures the initial estimator exists and is
√

n-consistent and that

the structural condition (23) as needed in the proof holds. Condition (iii) requires that

gn converges uniformly to g over a set A and that Fn(t | Z, L(u)) converges uniformly to

something (not necessarily the truth) over a set B, where A and B are intersections of the

support of g and K: in other words, one only needs convergence over sets at which F and

g are identifiable (under condition (i)). In addition, condition (iii) requires that the product

of the rates is oP (n−1/2). Condition (iv) requires that one uses an efficient procedure for

estimation of the monitoring mechanism g(c | X) such as a maximum likelihood estimator.

Theorem 1 Assume

(i) Conditions of lemma 1 hold.

(ii) `∗eff(· | Fn, Gn, hn, cn, β0
n) is contained in a PFX ,G-Donsker class with probability tending

to one.

(iii) For some F † we have that
√

nr1nr2n → 0 where

r1n ≡ sup
A

|gn(u | X)− g(u | X)| → 0

r2n ≡ sup
B

∣∣∣Fn(t | Z, L(u))− F †(t | Z, L(u))
∣∣∣→ 0

and the uniform convergence statements need to hold in probability over the sets

A ≡ {(u, Z, L(u)) : K ′(u − Z>β) > 0, max(F †
, Fn, F )(u | Z, L(u)) > 0}

B ≡ {(t, Z, L(u)) : t ≥ u, K ′(t − Z>β) > 0, max(gn, g)(u | Z, L(u)) > 0}.

(iv) Φ(Gn) ≡ EY (`∗eff(Y | F †, Gn, h, c, β)) is an efficient estimator of Φ(G).
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Then β1
n ≡ β0

n + n−1∑n
i=1 `∗eff(Yi | Fn, Gn, hn, cn, β0

n) is asymptotically linear with influence

curve

Π
[
`∗eff(· | F †, G, h, c, β)

∣∣∣T⊥
2 (PFX ,G)

]
, (21)

where T2(PFX ,G) is the tangent space for the chosen CAR-model containing the true G and

the matrix c is the limit of cn. Furthermore, if h = hopt and F † = F (so that `∗eff(· |
F †, G, h, c, β) = `∗eff(· | F, G, hopt, copt, β)), then β1

n is asymptotically efficient.

Proof: This general proof is analogous to the proof of the result of van der Laan and Robins

(1998) for the estimation of smooth functionals of FT . See our technical report.

In the next lemma we assume that for FX a.e. (Z, L)

inf
c∈A(Z,L)

g(c | X) > γ > 0 for some γ > 0, (22)

where

A(Z, L) ≡ {c : c ∈ (αX , αX), K ′(c− Z>β) > 0, F(c | Z, L(c)) > 0}.

This condition implies the identifiability result of theorem 2 and could be weakened by choos-

ing as choice for the initial estimating function a h(Z) which equals zero for Z 6∈ Z(β, G),

instead of h(Z) = Z.

Lemma 1 Let hn be given, β0
n be the initial estimator defined in section 2, and cn ≡ c(hn)

be as in equation (17).

Suppose that the following conditions on the true data generating distribution hold:

(∂/∂β)E(ZUG(Kβ)(Y )) is invertible at the true value of β = β0, g′ and K ′′ are bounded

above, identifiability condition (22) holds for β ∈ Nβ0, where Nβ0 is an arbitrarily small

neighborhood of β0.

In addition, we make the following consistency assumptions: ‖ gn − g ‖∞,A= OP (n−1/4),

‖ Gn − G ‖∞,A= OP (n−1/2), hn(Z) converges uniformly to an arbitrary h(Z) with c(h) ≡
−E(h(Z)Z>UG(K ′

β)(Y )) invertible.

Then cn converges to c(h) and (under no conditions on Fn)

EY

(
`∗eff(· | Fn, G, hn, cn, β0

n)
)

= β − β0
n + oP (n−1/2) (23)

Proof. See our technical report.

Optimal Estimating Function, Dopt:
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Theorem 3 Suppose K is twice differentiable and assume condition (22). Then

Dopt(X) ≡ hopt(Z)Kβ(T, Z) ≡ ZE(K ′
β | Z)

φ(Z)
Kβ(T, Z) (24)

where, for general L,

φ(Z) = E(IC(Y | F, G, Kβ)2 | Z). (25)

Consider the case where (Z, L) = Z (i.e., no covariates other than those modelled). Then

φ(Z) =
∫ F (t | Z)F (t | Z)K ′

β
2(t, Z)

g(t | X)
dt. (26)

Consider the case where (Z, L) = (Z, W ) with W time independent but not modelled. Then

φ(Z) = E

(
E(Kβ | Z, W )2 +

∫ F (t | Z, W )F(t | Z, W )K ′
β
2(t, Z)

g(t | X)
dt

∣∣∣∣∣Z
)

. (27)
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