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Binary isotonic regression procedures, with
application to cancer biomarkers

Debashis Ghosh, Moulinath Banerjee, and Pinaki Biswas

Abstract

There is a lot of interest in the development and characterization of new biomark-
ers for screening large populations for disease. In much of the literature on di-
agnostic testing, increased levels of a biomarker correlate with increased disease
risk. However, parametric forms are typically used to associate these quantities.
In this article, we specify a monotonic relationship between biomarker levels with
disease risk. This leads to consideration of a nonparametric regression model for
a single biomarker. Estimation results using isotonic regression-type estimators
and asymptotic results are given. We also discuss confidence set estimation in this
setting and propose three procedures for computing confidence intervals. Meth-
ods for estimating the receiver operating characteristic (ROC) curve are also de-
scribed. The finite-sample properties of the proposed methods are assessed using
simulation studies and applied to data from a pancreatic cancer biomarker study.
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Summary

There is a lot of interest in the development and characterization of new biomark-
ers for screening large populations for disease. In much of the literature on diagnostic
testing, increased levels of a biomarker correlate with increased disease risk. However,
parametric forms are typically used to associate these quantities. In this article, we
specify a monotonic relationship between biomarker levels with disease risk. This leads
to consideration of a nonparametric regression model for a single biomarker. Estima-
tion results using isotonic regression-type estimators and asymptotic results are given.
We also discuss confidence set estimation in this setting and propose three procedures
for computing confidence intervals. Methods for estimating the receiver operating char-
acteristic (ROC) curve are also described. The finite-sample properties of the proposed
methods are assessed using simulation studies and applied to data from a pancreatic

cancer biomarker study.
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1. Introduction

There has been extensive work done on the development of methodology for diag-
nostic testing and screening (Pepe, 2003). The primary scientific goal in this area is
to determine the discriminatory power of a biomarker for detecting disease, or equiv-
alently, to model the effect of biomarker on disease risk. As an example, we consider
prostate cancer. Typically, prostate-specific antigen (PSA) has been used for detection
of prostate cancer. If a man has a PSA measurement between 4 and 10 ng/mL, then
this leads to a prostate needle biopsy. While PSA is able to detect prostate cancer
when it is present, it also leads to numerous false positives. Thus, there is interest
among oncologists in determining the effect of PSA on risk of prostate cancer.

For much of the work on statistical methodology on screening and diagnostic meth-
ods, it has been assumed that increasing levels of the biomarker are associated with
increased disease risk. Typically, this effect has been specified in a parametric manner.
We give two examples of this. The first is linear discriminant analysis, in which the
distribution of the biomarker in the diseased and undiseased populations is assumed
to be normally distributed. The second is logistic regression, in which the effect of the
biomarker on the probability of developing disease is assumed to be linear on the logit
scale. For these procedures, if the parametric form is misspecified, then this can lead
to bias in the estimate of association between biomarker levels and disease risk.

It is desirable to have flexible models and procedures for studying the association
between a biomarker and risk of disease. It seems intuitively reasonable to have the ef-
fect be monotonic but to leave it otherwise unspecified. There has been much research
on monotonic regression in the statistical literature. Two-stage estimation procedures
have been proposed by Mukerjee (1988) and Mammen (1991) in which nonparametric
regression is followed by monotone empirical smoothing using a pool-adjacent-violators
algorithm. Ramsay (1988), Kelly and Rice (1990) and He and Shi (1998) have proposed
monotone B-spline estimation procedures that are guaranteed to provide monotonic

estimates under nonnegativity constraints on the parameters. All of these procedures
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involve some form of nonparametric smoothing, so the estimate will be sensitive to the
choice of bandwidth. One theoretical problem with these monotonic regression proce-
dures has been the lack of availability of asymptotic results concerning the proposed
estimators.

Recently, there has been considerable progress in the characterization of asymp-
totic properties for nonparametric estimators subject to order constraints (Banerjee,
2000; Banerjee and Wellner, 2001). A key feature of these problems is that in contrast
to many statistical problems, classical regularity conditions do not hold. Thus, the
consistency and asymptotic normality results for maximum likelihood estimators in
parametric models are not relevant. In this article, we develop statistical estimation
procedures for nonparametric isotonic models of biomarkers on disease risk. The struc-
ture of this paper is as follows. In Section 2, we describe the observed data structures
and probability model. We also relate the model to optimal screening rules using a
classification point of view. In Section 3, we present the proposed estimation proce-
dure and associated asymptotic results. In Section 4, we discuss the construction of
confidence intervals for the nonparametric function. We also describe procedures for es-
timating receiver operating characteristic (ROC) curves in Section 5. The finite-sample
properties of the estimators are assessed using simulation studies and are applied to
data from a pancreatic cancer study in Section 6. We conclude with some discussion

in Section 7.
2. Statistical Methodology
2.1. Preliminaries and Notation

Let D be a binary variable representing the indicator of disease and Z the biomarker.
Without loss of generality, we assume Z to be nonnegative. To model the effects of the

biomarker on disease risk, we formulate the following model:

Pr(D=1]|2)=G(2), (1)
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where (G is assumed to be a monotonic increasing and continuously differentiable on
[0,00) with G(0) = 0 and lim, ,,, G(z) = 1. We are interested in making inferences
on G.

Let (D1, Z1),(Ds, Z3), ..., (Dy, Z,) be n ii.d. observations from the above model.
The joint density of (D, Z) is given by

p(d, z) = {G(2)} {1 = G(2)} " h(2), (2)
where h(-) is the density function of Z. The likelihood function for the data, up to a

multiplicative constant not involving A, is given by

Lo({di, zi}i=y) = T {G ()} {1 = G(z) }' 7% . (3)

Before developing the estimation procedures in (1) using maximization of the non-
parametric likelihood (3), we first relate (1) to the literature on screening rules. In
particular, we show that (1) satisfies a certain optimality criterion useful for classifica-

tion.
2.2. Optimal screening rules

Consider a diagnostic test based on thresholding Z. One relevant quantity is the
false positive rate based on a cutoff ¢, defined to be FP(c) = P(Z > ¢|D = 0). Another
is the true positive rate TP(c) = P(Z > ¢|D = 1). The true and false positive rates
can be summarized by the receiver operating characteristic (ROC) curve, which is a
graphical presentation of {F'P(c),TP(c) : —oo < ¢ < oo}. The ROC curve shows
the tradeoff between increasing true positive and false positive rates. Tests that have
{FP(c),TP(c)} values close to (0,1) indicate perfect discriminators, while those with
{FP(c),TP(c)} values close to the 45 degree line in the (0,1) x (0,1) plane are tests
that are unable to discriminate between the diseased and healthy populations. An

alternative terminology used for summarizing the operating characteristics of a test is
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sensitivity (equal to the true positive rate) and specificity (equal to one minus the false
positive rate).

Suppose we fix a false positive rate, say fo = F'P(cy) and compare the performance
of two tests. Then the test that gives a higher true positive rate will be the better
test. Suppose that given fy, we wish to find the screening rule with the highest true
positive rate. It follows from Neyman-Pearson theory (Lehmann, 1997, §3.2) that the
classification rule based on

_ Pr(ZID=1)

LR(Z) = Pr(Z|D =0)

> c(fo) (4)

optimizes the true positive rate for a given false positive rate fy, where ¢(fy) is chosen
such that Pr{LR(Z) > ¢(fo)} = fo, and fy € [0, 1]. Such rules satisfying this property
have been referred to by McIntosh and Pepe (2002) as uniformly most sensitive (UMS)

screening tests based on Z. Using Bayes’ rule to invert expression (4), we have that

Pr(ZID=1) _ Pr(D=12)Pr(Z)
Pr(Z|ID=0)  Pr(D=0|Z)Pr(Z)
Pr(D =1|2)

1-Pr(D=12)

UMS rules can thus also be constructed based on the risk score Pr(D = 1|Z). This
corresponds to the specification (1) we have utilized in this paper. This gives a justifi-
cation of our model from a classification point of view.

Two methods that have been used for classification are linear discriminant analysis
and logistic regression. These methods, as well as (1) in this paper, can be motivated
as generating UMS screening rules. Our model (1) requires fewer assumptions than
linear discriminant analysis and logistic regression. Linear discriminant analysis (LDA)
requires normality of the measurements in both diseased and undiseased populations,
while logistic regression (LR) assumes that the effect of the biomarker on disease risk
is linear on the logit scale. Intuitively, our method will perform better than these other

two methods when the underlying assumptions of LDA and LR are violated.
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3. Estimation Procedures and Asymptotic Results

We now consider estimation in (1) by maximization of (3). One nice feature of this
model is the fact that the likelihood function (3) can be shown to be equivalent to
a likelihood function arising from a current status censoring scheme. Current status
data represent a failure time data structure in which what is observed is a monitoring
time and an indicator of whether or not the event occurred before the monitoring
time. Nonparametric theory for the current status model, which is very well-studied
(Huang and Wellner, 1997), can therefore be used to analyze the model. Let 7" be
a non-negative random variable with distribution function G; we think of 7" as the
survival time of an individual. Let Y be the time at which the individual is observed.
Let Y be independent of 7" and distributed with density h. Our data consists of
(Y,I) where I = 1 if T <Y and 0 otherwise. Then, it is easy to see that the joint
distribution of the vector (7,Y") is identical to the joint distribution of (D, Z) given
by (2). Thus, {(D1,71),...,(Dy,Z,)} can be viewed as a random sample from a
current status censoring model, with distribution function G’ and censoring density h.
The NPMLE of the survival distribution in the current status model is well-studied
in Groeneboom and Wellner (1992) while the likelihood ratio for testing G at one
or multiple points is dealt with in Banerjee (2000) and Banerjee and Wellner (2001).
Thus, many of the results from this area can be applied to our problem here.

We now characterize the unconstrained MLE of G, say Gn. Let Z(;) denote the
ith largest value of the biomarker and let D(; denote the corresponding indicator
(¢ =1,...,n). For arbitrary points P, = (0,0), P = (p1.1,p1,2) - - -, Px = (Pk,1, Pr,2) in
R?, we will denote by slogem { P;}¥_, the vector of slopes (left derivatives) of the greatest
convex minorant (GCM) of the piecewise linear curve that connects Py, P, ..., P in
that order, computed at the points {p; 1} ;. We can set G to be the right—continuous

piecewise constant increasing function which satisfies G(Z;)) = 1; where

(t1, G, - - . , Uy) = slogem {4, Z d) Hieos

§=0
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and Z(0) = d@y = 0. Note the MLE is uniquely determined only up to its values at
the Z;, 1 =1,...,n. A closed-form formula for the unconstrained estimator is given by

the “max-min” formula

N o
Gn(Z(z')) = max min M
s<i ki k—j+1

(5)
We now state the asymptotic distribution of the MLE of G(z) in model (1). This
result can be proven using arguments paralleling those in the proof of Theorem 5.1 of
Groenenboom and Wellner (1992, p. 89).

Theorem 1: The unconstrained MLE G‘n(zo) has the following limiting distribution:

49(2) G(z0) {1 — G(2)}]""
h(z)

/3 {én(zo) — G(zo)} iy [ 7=07

where g(zq) is the derivative of G evaluated at zy, Z is the location of the minimum of
W (t) + t%; here W is a standard two-sided Brownian motion starting from 0.
Theorem 1 yields a complicated form for the limiting distribution of the maximum
likelihood estimator. By contrast, for most statistical estimation problems in which
classical regularity conditions are satisfied, the maximum likelihood estimator con-
verges at an n'/? rate. In addition, the limiting distribution of the NPMLE estimator,
properly normalized, is much more complicated than the normal distribution found for
regular estimation problems. We will later consider construction of Wald-type confi-
dence intervals based on this result.

One goal in this paper will be to make inference about the null hypothesis Hy :
G(z9) = 0y. To do this requires characterization of the constrained MLE of G subject
to G(z9) = 0, which we denote G°. Define a A b and a V b to be the minimum and
maximum of two real numbers a and b. We construct the vector of slopes of the greatest

convex minorant: .
1
(@l @) = slogem {i dijy it
13-+ s Up) = SI108 ) (4)Ji=0
=0

and

7
(ﬂ(r)n—i—l, sy a'(r)z) = slogcm {7’: Z d(m—H') ;z:—om’

Jj=0
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where m is the number of biomarker values no greater than z;. The constrained
estimate G’?L is the right-continuous piecewise constant function that satisfies G(Z;)) =
a4 Ay for 1 < i < m and G(Z) = @) Vb for m+1 < i < n. Similar to before,
max-min formulae could be developed for characterization of the constrained MLE.
In order to state results about the asymptotic distribution of the likelihood ratio
statistic for testing Hy : G(z9) = 6y, we will need some more notation. For positive
constants a and b, define the process X, ,(z) = a W(z) 4 bz%, where W(z) is standard
two-sided Brownian motion starting from 0. Let G,p(z) denote the GCM of X, (z).
Let go (%) be the right derivative of G,;; this can be shown to be a piecewise constant
(increasing) function, with finitely many jumps in any compact interval. We construct

Go 4(2), a random function, in the following manner:

(a) When z < 0, we restrict ourselves to the set {z < 0} and compute X, ().
G2 (2) is the GCM of X, 5(2), constrained so that its slope (right derivative) is

non-positive;

(b) When z > 0, we restrict ourselves to the set {z < 0} and compute X,;(2).
G? 4(2) is the GCM of X, 5(2), constrained so that its slope (right derivative) is

non-negative.

We have that G ;(z) will almost surely have a jump discontinuity at zero. Let g ,(2)
be the slope (right-derivative) of G ,(2); this, like g,4(2), is a piecewise constant
(increasing) function, with finitely many jumps in any compact interval and differing
(almost surely) from go4(2) on a finite interval containing 0. Thus, g;; and g7, are
the unconstrained and constrained versions of the slope processes associated with the
canonical process X 1(2).

The following theorem describes the joint limit behavior of the unconstrained and
constrained MLEs of GG, the constraint being that imposed by the null hypothesis
Hy : G(z) = 6y. This can be proven using arguments similar to those in the proof of

Theorem 2.6.1 of Banerjee and Wellner (2001):
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Theorem 2: Consider testing the null hypothesis Hy : G(z9) = 6y with 0 < zy < 00

and 0 < 0y < 1 and assume Hy holds. Let
Xo(t) = {Ghlz0 +tn 3 — 0y} and Y,(t) = n? {G%(z +tn~'?) — 6,} .

Suppose that G is continuously differentiable in a neighborhood of zy with g(zy) > 0
and that h is continuous in a neighborhood of zy with h(zy) > 0. Let

G(20){1 - G(z)}]"?
h(z)

and b= g(29)/2. Then

{Xa(®), Yo (1)} = {900(2), 90 (1)} =a [a (b/a)g11 {(b/a)*P*t} ,a (b/a) g1, {(b/a)*t}] .

finite dimensionally and also in the space Ly]—K, K| x Ly[—K, K| for every K > 0
(p > 1), where L,|—K, K] is the set of functions that are L? integrable on [—K, K.
Based on this result, we can develop the asymptotic theory for the likelihood ratio test
statistic Hy : G(z9) = 6.

Theorem 3: If )\, denotes the likelihood ratio, i.e.

_ I3, {C}Yn(zz)}dq, {1- G:n(zi)}l_di
M, {9 (z) 1 {1 = GG (z0) e

then the limiting distribution of the likelihood ratio statistic for testing Hy : G(zy) = g
18

210 3 24D = [ ({0 — (o] de.

A heuristic proof of this theorem is given in the Appendix. Note that the limiting
distribution of Theorem 3 is much different from that in regular statistical problems,
where 2),, converges to a chi-squared distribution. The random variable D can be
thought of as an analog of the x? distribution to nonregular problems.

To visualize D, we present a plot from a simple simulation study with model (1).

We let n = 100, Z ~ U(0,1) and G(z) = 22. We consider testing Hy : G(0.7) = 0.49.
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We generate 2000 samples of size 100 from the model and for each sample, compute
the likelihood ratio statistic for testing Hy. The empirical distribution function of the
likelihood ratio statistic is shown in red in Figure 1 and along with it, is displayed the
empirical distribution from (a discrete approximation to) the theoretical limit. The
two lines are seen to be in good agreement. The random variable D can be tabulated
or simulated relatively easily. For further details, see Banerjee (2000) or Banerjee and

Wellner (2001).

4. Confidence intervals for the distribution function

In this section we investigate the properties of confidence sets for the the value of
the conditional probability function G' at some point z; > 0. We denote G(z) by 6.
At first glance, it appears that one could use the nonparametric bootstrap (Efron and
Tibshirani, 1986) and construct confidence sets for 6 by using the empirical distribution
of the NPMLE based on the bootstrapped datasets. However, because the statistical
estimation problem here is nonregular, the use of the bootstrap is not valid. We refer
the reader to §3.1 of Biihlmann and Yu (2002) for a discussion of this point. We
discuss three methods for confidence set construction: (i) the Wald-based method; (ii)

the subsampling based method; and (iii) the likelihood ratio based method.

4.1. Wald-based method

Recall the limiting distribution of G, (z) from §3:

49(2) G(z) {1 — G(2)}]""

7=0Z.
h(z)

ni/3 {Gn(zo) A G(zo)} "y [
A 95% confidence interval for G(zy) is then given by
{Gn(20) — n=!/3 Q.975, Gn(20) + n=!/3 Q.975},

where Q_975 is a consistent estimator of ()g75, the 97.5th percentile of the limiting

symmetric random variable C'Z. But Q g7 is simply C x .99818 where .99818 is the

10
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97.5th percentile of Z, where the quantiles of Z are from Groenenboom and Wellner
(2001). Since C involves the unknown parameters G(zp), h(2o), and g(2q), we estimate

C by

~

B (20) ’

C, = [4§n(20) Gnl20) {1 — én(zo)}] 1/3

where g, and h.,, are estimates of g and h. An asymptotic 95% confidence interval is

then given by
{én(zo) 3G, x 99818, Gin(ze) + 13 C, x .99818} .

The major drawback of these intervals is the need to estimate g(zp) and h(z).
We first consider h(zp). Since Z is observed for all individuals, nonparametric density
estimation methods can be used to estimate h(z). On the other hand, g(z) is much
more difficult to estimate consistently. Due to the data structure and model, we can
only estimate G at Op(nl/ 3) support points, which means that we will never have
sufficiently large sample sizes for estimating the derivative of G consistently. In the
simulation studies and real data example presented in §6, we estimate the derivative of
G using smoothing splines (Heckman and Ramsay, 2000). The smoothing parameter

is chosen using generalized cross-validation (Craven and Wahba, 1979).
4.2. Subsampling-based method

The subsampling technique followed here is due to Politis, Romano and Wolf (1999)
and is part of a general theory for obtaining confidence regions. The basic idea is to
approximate the sampling distribution of a statistic, based on the values of the statistic
computed over smaller subsets of the data. We start by calculating the unconstrained

MLE G, (z) for the observed dataset. This leads to the following algorithm:

1. Create a dataset (D7, Z7), ..., (D}, Z;), where (D}, Z7) (j = 1,...,b) are a subset
of the original data obtained by sampling without replacement, and b is the size

of the subsampled dataset.

11
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2. Calculate the unconstrained MLE G*(z) for the dataset.
3. Repeat steps (1) and (2) several times.

By Theorem 2.2.1. of Politis et al. (1999), it follows that if b, n — oo and b/n — 0, then
the conditional distribution of n'/3{G* (29) — G(2)} converges to the unconditional
distribution of n'/3{G,(z) — G(z)} with probability 1. This allows us to use the
empirical distribution of n'/3{G* (20) — Gy (20)} to construct confidence intervals.
While this appears to be a promising algorithm, a major issue is the choice of b. For

the data example, we use a calibration algorithm, proposed in Delgado et al. (2001):
(a) Fix a selection of reasonable block sizes between limits bjo,, and by,

(b) Generate K pseudo sequences (Df, ZF)K | which are i.i.d. P,; with P, equal to
the empirical distribution function this amounts to drawing K bootstrap samples

from the actual data set.

(c) For each pseudo data set, construct a subsampling based confidence interval for
én = Gjp(2) for each block size b. Let I, be equal to 1, if én lies in the k£’th

interval based on block size b and 0 otherwise.
(d) Compute h(b) = K=" 3K I

(¢) Find b that minimizes | 2(b) — (1 — ) | and use this as the block size to compute

subsampling based confidence intervals based on the original data.
4.3. Likelihood ratio based method

Confidence sets of level 1 — a with 0 < o < 1 are obtained by inverting the
acceptance region of the likelihood ratio test of size «; more precisely if 2log A, is the
likelihood ratio statistic evaluated under the null hypothesis Hy : G(2) = 6y, then the
set of all values of # for which 2log A, is not greater than d, where d, is the 1 — ath

percentile of D, gives us a limiting level 1 — « confidence set for 6.

12

http://biostats.bepress.com/umichbiostat/paper3s



Denote the confidence set of (approximate) level 1 — a based on a sample of size
n from the binary regression problem by C,, .. Thus C, , = {6 : 2log A\, < d,} . Be-
cause we are inverting the likelihood ratio statistic, it achieves the correct coverage

asymptotically. The finite-sample properties of this method are examined in Section 6.
5. Summaries using ROC curves

One summary of the estimated function G from (1) that is appealing to clinicians is

the ROC curve. In our situation, given the estimator G, we consider a grid of possible

cutoff values ¢* = 0,0.01,0.02,...,1 and calculate the following two quantities:
TPR(C*) — ZZ:l { ( ) >c ’ }

Z?:l I(Di = 1)

and X
io IH{G(Z;) > ¢*, D; = 0}
Z?:l I(D; = 0)
A plot of {T/P\R(c*), F?R(c*) : ¢* =0,0.01,0.02,...,1} then provides an ROC curve

FPR(c") = 2

based on the estimated model (1).

Note that the ROC curve will be overoptimistic in that the predictions for TPR
and FPR were based on the G, which was estimated using the entire dataset. Thus,
the ROC curves will be overoptimistic. An alternative is to construct a leave-one-out
cross-validation estimate of the ROC curve. Let G denote the estimate of G in (1)
with the ¢th observation held out, 2 = 1,...,n. Then a cross-validated estimate of the
ROC curve is given by {T/—P/R(C*), F/—P/R(C*) :¢*=0,0.01,0.02,...,1}, where

S IH{GO(Z) > ¢, D; = 1}

TPR() = == 5 =)

and B
>r  H{G9(Z) > ¢*,D; = 0}
Z?:l I(Di = 0) .

Note that since our procedure does not require smoothing, it is fairly easy to calculate

FPR(c") =

the isotonic regression-based estimators for each of the samples with one observation

left out.

13
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6. Numerical examples
6.1. Simulation studies

To compare the various confidence set methods described in §4, several simulation
studies were conducted. We considered (1) in which Z has an exponential distribution
with rate parameter 1.5 and G(z) = 2(3 + €*)~'. The goal is to test Hy : G(1) =
0.475. Sample sizes n = 50,100, 150, 200, 300, 500, 800, 1000 and 1500 were considered.
With the subsampling-based method, a prior series of simulations were performed
in order to pick out the optimal sample size. As mentioned earlier, for the Wald
intervals, numerical derivatives of a smoothing spline-based estimate of é(z) were
used to estimate g(z) from the algorithm described in Heckman and Ramsay (2000).
The results are summarized in Table 1. There are several points to note from here.
First, the isotonic regression based estimator of G(z) is approximately unbiased for
all sample sizes considered. Second, while the Wald confidence intervals tend to give
the shortest confidence intervals based on length, their nominal coverage is far from
0.95. As the sample size increases, the coverage decreases. By contrast, the confidence
intervals obtained using subsampling and inversion of the likelihood ratio test statistic
yield relatively consistent estimates of the coverage probability. Comparing these two
intervals, we find that the length of the likelihood ratio test statistic-based confidence
interval tends to be slightly smaller than that from the subsampling procedure. Given
this observation and the overall computational complexity of the latter, we advocate
use of the likelihood ratio test statistic method for constructing confidence intervals in

practice.

6.2. Pancreatic cancer data

We now apply the proposed methodology to data from a pancreatic study used in
Pepe and Thompson (2000). They come from a study in which measurements on two

serum biomarkers, CA125 and CA19-9, were collected on 90 pancreatic cancer patients

14
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and 51 patient without the disease. To illustrate the methodology, we consider data
on CA19-9 and CA125 separately.

CA19-9 (Carbohydrate Antigen 19-9) is present in the fetal epithelium of the stom-
ach, intestine, liver and pancreas. In adults, traces can be found in the pancreas, liver,
gallbladder and lung. While its primary use is for pancreatic cancer, it is also elevated
in cancers of the liver, lung, breast, uterus and ovary (mucinous). CA19-9 may also be
elevated in non-malignant liver diseases such as cirrhosis and hepatitis. A logarithmic
transformation was taken to reduce skewness. The estimate of G at several points
and the 95% pointwise confidence intervals from the three methods are summarized in
Table 2. Based on the results, we find that the Wald-based CI generally gives shorter
intervals than the other two methods. However, in light of the simulation results, the
intervals from the Wald method might not achieve 95% coverage. One other point to
note is that some of the intervals will contain values greater than one. This is because
of the fact that we have not constrained estimates from (1) to be less than or equal to
one. A practical solution is to truncate the interval at one.

Using the estimated function G, one can construct an ROC curve from the methods
in §5. For the purposes of comparison, a logistic regression model was used to model
the effect of CA19-9 on pancreatic cancer, and the resulting parameter estimates were
used to construct an ROC curve. Both the data-based and leave-one-out cross-validated
ROC curves were estimated; these are presented in Figures 2a and 3a. While the leave-
one-out cross-validated curves give lower true positive rates, it appears that the logistic
regression is performing better. This suggests that the logistic regression model is a
reasonable assumption for CA19-9.

The CA125 (Cancer Antigen 125) assay uses a monoclonal antibody that is rela-
tively specific for surface antigen derived from a papillary serous cystadenocarcinoma.
It is detectable in various adult tissues, such as the pleura, pericardium and eritoneum.
It is used primarily as a marker for ovarian cancer, although elevated CA125 levels can

also be seen in association with malignancies of breast, cervix, uterus, liver, pancreas,

15
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stomach, colorectum and lung. Non-malignant elevations of CA 125 have been re-
ported for a variety of inflammatory diseases, such as cirrhosis, hepatitis, pancreatitis,
and pelvic inflammatory disease. As with CA19-9, logarithmic transformation was
taken to adjust for skewness in the measurement. The estimated G and confidence
intervals are presented in Table 3. We find the same types of conclusions as in Table 2.
Plots of the data-based and leave-one-out cross-validated ROC curves are given in Fig-
ures 2b and 3b. We find that the isotonic regression is performing quite competitively
relative to logistic regression; there is slight evidence to suggest that it is performing

better for the leave-one-out ROC curve.
7. Discussion

In this article, we have proposed a nonparametric isotonic regression model for
the analysis of biomarker data. This model is more flexible in that the effect of the
biomarker on disease risk does not have a parametric form. By utilizing recently
developed estimation methods and asymptotic results from the literature, we are able
to characterize and provide the asymptotic distribution of the maximum likelihood
estimator and the likelihood ratio test statistic for the conditional probability function.
Note that unlike previous nonparametric estimators for monotone regression models,
our estimator does not require smoothing and hence does not depend on a smoothing
parameter. The simulation results indicated that in finite-samples, the Wald statistic-
based confidence intervals tend to have poor coverage probabilities. Thus, we advocate
the use of the likelihood ratio test statistic for constructing confidence intervals.

One limitation with (1) is that no other covariates are included. In screening
settings, it might be important to account for potential confounders, such as demo-
graphic covariates. Thus, one might envision extensions of (1) in which the effect of
the biomarker is monotone on disease risk and the other effect of other covariates has
a parametric form. Inference and estimation with semiparametric monotone regression

models has not been well-studied and is an area we are currently pursuing.
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In the data analysis, we presented pancreatic cancer biomarker data in which the
goal was to model the effects of the individual biomarkers, CA125 and CA19.9, sepa-
rately on disease risk. An alternative objective is to combine the information on the two
biomarkers in order to maximize screening accuracy. This is an area studied recently
by Baker (2000), Pepe and Thompson (2000), and McIntosh and Pepe (2002). How to
incorporate monotone restrictions in this problem remains fairly uninvestigated. Two
procedures have been developed by Dykstra et al. (1999) and Wang and Taylor (2004).

We are currently studying multivariate generalizations of (1).
Acknowledgments

The first author would like to thank Jeremy Taylor and Yue Wang for useful discussions.
The second author acknowledges the support of grant DMS-0306235 from the National

Science Foundation.
Appendix
Sketch of Proof of Theorem 2:

We can write 2log A\, as

2 " dilog Gn(z:) + (1 — di) log{1 — Gn(z)}

i=1

—2 " dilog G (z) + (1 — d;) log{1 — G5 (z)}. (6)

i=1

2log A\p

Rearranging terms in (6), we get

2log A, = {Zd logG 2) Zd logG0 (z; }

1€D i€D

_9 Z(l —dy)log{l — Gn(z)} — Z (1 —d;)log{1 — G° n(2i)}
ot An +ZEBn - (7)
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where J, is the set of indices where G,, and é% differ. By Taylor series expansion and

algebraic manipulation,

) - [ R CHOR]

o Z 202 [{G Zz 00}2 - {ég(zz) - 90}2] + Op(l) (8)

and

B, - —221_ [{G () — o} — {G3(=) — b0} |

+2Z ST 7 [1Gnle) = 00} = {68 = 0] +or). )

where op(1) denotes a term that converges in probability to zero. Plugging in repre-

sentations (8) and (9) of A, and B, into (7), we have

2log\, = 22 00 [{G (z;) — 0o} — {ég(zz) —6o}]

2y {292 ST [t - 01 — (Gt — 0] + o)

= I, — I, +op(1). (10)

Let D, be the interval on which G, and GY differ. Define the processes Gn(z) and
Va(2) by

n

Gn(z) = ; Z 1(Z(i) S Z) and V Z d
=1

Note that {Gn(Z(), Va(Zi))} (i =1,...,n) characterize the points of the cusum dia-
gram used to compute the NPMLE’s é‘n and ég We can rewrite I; as

| ﬁn n{(én(z)—eo)—(ég(z)—00)}d{Vn(z)—eoGn(z)}, (11)
= i [ (G =007 (E0) )"} G2 (12)
- " n{(é() 00)? — (G3(2) — 00)%} h(2) dz +op(1)  (13)
- / [X2() - Y2 dt + 0,(1) (14
= _/ {X2(t) — Y2(t)}dt + op(1). (15)
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Note that (12) follows from (11) using integration by parts. Also, (14) follows from
(13) on changing to the local variable t = n'/3(z — z,). Also, D, = n'/3 (D, —t —0) is
the set where the processes X,, and Y,, differ. As a consequence of Theorem 2, the set

D, is O,(1). By similar arguments,

I = (1/a2)/D {X5() = Y7 (£)}dt + op(1). (16)

Combining (15) and (16) and using the representation (10) for the likelihood ratio

statistic, we have
1
2log A, = = / (X2(8) — Y2(t)}dt
a? Jp,
Using the distributional convergence of {X,(t), Y, (t)} to {gas(t), g5,(t)} as processes

from Theorem 2, we conclude that

21080 =0 25 [ [{6es®F ~ LY dt

Expressing {gas(t), go 5(t)} in terms of the slopes of the convex minorants of the canon-

ical process from Theorem 2, we obtain

5 [ Hos®F ~ (o ®¥]dt = e/ [ (lu{(b/a) 1) - [g, {(b/a)"* 1)) de

- / [{g1: () — {2, (w)}?] dw =D,

a?

on changing variables: w = (b/a)?/t.
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Table 1. Summary of simulation results

Wald intervals Subsampling intervals LRT intervals

n  Bias LHM RHM CP LHM RHM CP LHM RHM CP
50 302 0.237  0.713  0.867 0.179 0.774 0.948 0.276 0.720 0.936
100 -5.409 0.295 0.666 0.807 0.283 0.673 0.941 0.315 0.666 0.945
150 -0.156 0.327 0.628 0.752 0.310 0.646 0.952 0.335 0.643 0.945
200 -0.006 0.339 0.612 0.733 0.325 0.628 0.953 0.345 0.624 0.944
300 -4.969 0.370 0.591 0.682 0.348 0.610 0.954 0.366 0.605 0.949
500 0.215 0.383 0.567 0.667 0.371 0.581 0.956 0.378 0.585 0.960
800 -2.169 0.407 0.548 0.605 0.384 0.573 0.954 0.392 0.567 0.952
1000 -2.151 0.410 0.545 0.591 0.384 0.563 0.938 0.395 0.559 0.957
1500 -3.631 0.419 0.539 0.594 0.399 0.552  0.956 0.407 0.551 0.947

Note: Bias is the mean of the estimators of §; minus ; (x10%); LHM is the mean of the
left endpoint of the 95% confidence interval; RHM is the mean of the right endpoint
of 95% confidence interval; CP is the nominal coverage probability of 95% confidence

intervals.
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Table 2. Summary of CA19-9 results for pancreatic cancer data

z  G(z2) Wald CI Subsampling CI LRT-based CI
1.5 0.233 (0.125,0.342) (0.097,0.369) (0.126,0.360)
2.0 0.233 (0.132,0.334) (0.072,0.395) (0.132,0.366)
2.5 0.233 (0.067,0.599) (-0.034,0.501) (0.132,0.503)
3.0 0.333 (0.174,0.492) (0.101,0.566) (0.178,0.552)
3.5 0.364 (0.330,1.000) (-0.008,0.735) (0.214,0.863)
4.0 0.714 (0.556,0.873) (0.481,0.947) (0.433,0.883)
4.5 0.778 (0.600,0.955) (0.583,0.972) (0.573,0.955)
5.0 1.000 (0.680,1.000) (0.670,1.330) (0.665,1.000)

Table 3. Summary of CA125 results for pancreatic cancer data

z  G(z) Wald CI Subsampling CI LRT-based CI
2.0 0.250 (0.069,0.431) (0.048,0.452) (0.099,0.459)
2.3 0.350 (0.250,0.450) (0.167,0.533) (0.202,0.584)
2.5 0.571 (0.285,0.857) (0.320,0.833) (0.293,0.792)
3.0 0.778 (0.674,0.882) (0.631,0.925) (0.594,0.864)
3.5 0.794 (0.742,0.845) (0.658,0.931) (0.680,0.876)
4.0 0.794 (0.709,0.879) (0.690,0.898) (0.690,0.905)
5.0 0.800 (0.593,1.007) (0.683,0.917) (0.707,0.957)
6.0 1.000 (1.000,1.000) (0.848,1.152) (0.736,1.000)
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Figure 1: Empirical distribution of D (black line) relative to theoretical limit (red line)
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Figure 2: ROC curve estimated using pool-adjacent violators algorithm (solid line)
and logistic regression (dotted line) for pancreatic cancer biomarkers: (a) CA19-9; (b)

CA125.
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Figure 3: Leave-one-out cross-validated ROC curve estimated using pool-adjacent vi-
olators algorithm (solid line) and logistic regression (dotted line) for pancreatic cancer
biomarkers: (a) CA19-9; (b) CA125.

26

http://biostats.bepress.com/umichbiostat/paper3s



	text.pdf.1084824820.titlepage.pdf.oNkg4
	tmp.1084824820.pdf.KTxQa

