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”Implementation of quasi-least squares With
the R package qlspack”

Jichun Xie and Justine Shults

Abstract

Quasi-least squares (QLS) is an alternative method for estimating the correlation
parameters within the framework of generalized estimating equations (GEE) that
has two main advantages over the moment estimates that are typically applied
for GEE: (1) It guarantees a consistent estimate of the correlation parameter and
a positive definite estimated correlation matrix, for several correlation structures;
and (2) It allows for easier implementation of some correlation structures that have
not yet been implemented in the framework of GEE. Furthermore, because QLS is
a method in the framework of GEE, existing software can be employed within the
QLS algorithm for estimation of the correlation and regression parameters. In this
manuscript we describe and demonstrate the user written package qlspack that al-
lows for implementation of QLS in R software. Our package qlspack calls up the
geepack package Yan (2002) and Halekoh et al. (2006) to update the estimate of
the regression parameter at the current QLS estimate of the correlation parameter;
hence, geepack related functions for standard error estimation can be used after
implementing qlspack.
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Abstract

Quasi-least squares (QLS) is an alternative method for estimating the correlation pa-
rameters within the framework of generalized estimating equations (GEE) that has two
main advantages over the moment estimates that are typically applied for GEE: (1) It
guarantees a consistent estimate of the correlation parameter and a positive definite es-
timated correlation matrix, for several correlation structures; and (2) It allows for easier
implementation of some correlation structures that have not yet been implemented in the
framework of GEE. Furthermore, because QLS is a method in the framework of GEE,
existing software can be employed within the QLS algorithm for estimation of the correla-
tion and regression parameters. In this manuscript we describe and demonstrate the user
written package qlspack that allows for implementation of QLS in R software. Our pack-
age qlspack calls up the geepack package (Yan (2002) and Halekoh, Højsgaard, and Yan
(2006)) to update the estimate of the regression parameter at the current QLS estimate of
the correlation parameter; hence, geepack related functions for standard error estimation
can be used after implementing qlspack.

Keywords: Cholesky decomposition, correlated data, generalized estimating equations, quasi-
least squares, R.

1. Introduction

1.1. Example Data

In this manuscript we describe and demonstrate our user-written package qlspack (now avail-
able at http://CRAN.R-project.org/) that allows for implementation of quasi-least squares
(QLS, Chaganty and Shults 1999) in R software (R Development Core Team 2008).

We demonstrate implementation of the qlspack package on a data set that represents repeated
blood pressure measurements following induced heart attack in 43 rats (page 166 of Davis
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2 Implementation of quasi-least square with qlspack

2002). These data have the typical structure for a longitudinal GEE analysis because they
involve repeated measurements on each rat and the number of rats is relatively large in
comparison to the number of measurements per rat. (However, we do note that some rats
have 9 measurements; in many longitudinal trials the number of measurements per subject is
smaller.) Furthermore, measurements collected on different rats might be reasonably assumed
to be independent, while measurements from the same rat might tend to be more similar, and
thefore should be correlated.
For demonstration purposes, we will consider simple models that relate the expected blood
pressure on the rats with the time of measurement and the group membership of each rat.
In addition, we will also consider a binary outcome that takes value one if the rat’s blood
pressure exceeds the median. As is usual for a GEE analysis, we will relate the expected value
of each of these outcome variables with covariates measured on each of the rats, while also
adjusting for the potential correlation within the measurements on each cluster.

1.2. Set-up and notation

The set-up and notation are identical for QLS and GEE. In terms of notation, we assume
that measurements Yi = (yi1, · · · , yini)

′ and associated covariates x>ij = (xij1, · · · , xijp) are
collected on rat (subject) i at times Ti = (ti1, · · · , tini)

>, for i = 1, · · · , m. The data are
considered balanced when ni = n ∀ i and equally spaced when |tij − tij−1| = γ ∀ i and
j = 2, . . . , ni. We also let Yi = (yi1, · · · , yini)

> represent the ni measurements that were
collected within cluster i and define N =

∑m
i=1 ni. The rat data are not balanced because

the number of measurements per rat varies between 1 and 9 (mean = 6.8); in addition, the
measurements are unequally spaced in time because they were taken at 1, 5, 10, 15, 30, 60,
120, 180, and 240 minutes after heart attack induction. Note that the rats in this study had
a common set of measurement times, which are often planned for in longitudinal studies,
though sometimes only approximately achieved in practice.
To conduct a QLS (or GEE) analysis of this data will involve first specifying a generalized
linear model for the expected value of the outcome variable: The expected value and variance
of measurement yij on rat (subject) i are then given by E(yij) = g−1(x>ijβ) = uij and
V ar(yij) = φh(uij), respectively, where φ is a known or unknown scale parameter. We also
let Ui(β) represent the ni × 1 vector of expected values uij on rat (subject) i.
We then adjust for the correlation amongst repeated measurements on each rat by specifying
a working correlation structure to describe the pattern of association between measurements
within each rat. This working structure for rat (subject) i will be denoted by Corr(Yi) =
Ri(α). The interval on which α yields a positive definite (feasible) correlation matrix will
be referred to as the feasible region for Ri(α). The covariance matrix of Yi is then given by
Cov(Yi) = φAi

1/2Ri(α)Ai
1/2, where Ai = diag(h(ui1), . . . , h(uini)) and φ is a scalar parameter

that can be known or unknown.

1.3. Correlation structures implemented in qlspack

The qlspack package allows for implementation of the following correlation structures:

1. The Equicorrelated (Exchangeable): For this structure all correlations within a
cluster are identical, so that Corr(yij , yik) = α. The feasible region for this structure is
(−1/(nm − 1), 1), where nm is the maximum value of ni over i = 1, 2, . . . , m.
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Xie, J. and Shults, J. 3

2. The first-order autoregressive AR-1: For this structure Corr(yij , yik) = α|j−k|,
with feasible region (−1, 1). Note that although the feasible region is (−1, 1) for
the AR-1 structure, a negative value for α is often biologically implausible because
it yields within subject correlations that alternate in sign. For example, if α = −0.90
then the correlation between the first and second measurements on a subject will be
(−0.90)|2−1| = −0.90, while the correlation between the first and third measurements
will be 0.90|3−1| = 0.81.

3. The Markov correlation structure: For this structure Corr(yij , yik) = α|tij−tik|,
with feasible region (−1, 1). As for the AR-1 structure, a negative value for α is often
biologically implausible.

4. The tri-diagonal correlation structure: For this structure Corr(yij , yik) = α for
|j−k| = 1 and is zero otherwise. The feasible region for this structure is (−1/cm, 1/cm),
where cm = 2 sin

(
π[nm−1]
2[nm+1]

)
and nm is the maximum value of ni over i = 1, 2, . . . ,m;

this interval is approximately (−1/2, 1/2) for large n and contains (−1/2, 1/2) for all n.

Note that the working independent (identity) structure is not implemented in qlspack because
the estimates for this structure are identical for QLS and GEE; hence existing software for
implementation of GEE (e.g. R geepack) could be used to apply the identity structure.
We also note that an algorithm for implementation of an unstructured correlation matrix
is provided in (Chaganty and Shults 1999); however, the moment estimate (Liang and Zeger
1986) is more straightforward to implement and can also easily be obtained in existing software
for GEE.

1.4. Why use QLS?

There are two primary reasons to consider application of QLS for estimation of the correlation
parameter in the framework of GEE. First, as pointed out by Crowder (1995), if the working
correlation structure is misspecified in a GEE analysis, a feasible estimate of α may fail to
exist. In this situation, the iterative GEE approach may fail to converge, or (if there is con-
vergence in the estimates) α̂ may be infeasible. For example, Shults, Ratcliffe, and Leonard
(2007) considered a GEE analysis for which of α̂ was infeasible for the working tri-diagonal
structure, so that the estimated correlation matrix was not positive definite. As summarized
in (Shults et al. 2007), QLS estimates of α have been proven to be always feasible, for several
working correlation structures. QLS might therefore be applied when α̂ is infeasible for GEE,
or when GEE fails to converge for a particular working correlation structure. (Note however,
that infeasibility may be a strong indication that the working structure has been misspecified,
as also discussed in Shults et al. (2009).)
Another important reason to consider application of QLS is to allow for application of a bio-
logically plausible correlation structure that has not yet been implemented in the framework
of GEE. For example, the AR-1 structure is plausible for longitudinal studies because this
structure forces the correlation to decrease with increasing separation in measurement occa-
sion, e.g. if α = 0.5 then the correlation between the first and second measurement on each
subject is 0.5, while the correlation between the first and third measurement is 0.25. Because
the AR-1 structure only depends on measurement occasion, it is appropriate for studies in
which the measurements are equally spaced in time, e.g. if α = 0.9 then the correlation
between any two consecutive measurements on a subject must be 0.9.
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4 Implementation of quasi-least square with qlspack

The Markov correlation generalizes the AR-1 structure to allow for dependence on the actual
timing of measurements and is therefore appropriate for analysis of data that are unequally
spaced in time. For example, if the measurements have unequal spacing in time, the Markov
structure will not force the correlation between all consecutive measurements to be equal.
For example, if α = 0.90 in the rat study then the correlation between the first and second
measurements on each rat (taken at 1 and 5 minutes post-heart attack induction) is 0.905−1 =
0.6561, while the correlation between the fifth and sixth measurements is 0.9060−30 = 0.04
for the Markov structure (versus 0.90 for the AR-1 structure). The Markov structure is more
plausible in this example because the first and second measurements on each rat are closer
together in time than the fifth and sixth measurements and therefore might be expected to
be more similar, and therefore more highly correlated.

Unforunately, although the Markov structure is relatively simple and biologically plausible
for many longitudinal studies, it has not been implemented in the software packages that
implement GEE. QLS allows for straightforward implementation of the Markov correlation
structure, as we will demonstrate in this manuscript. Also see Shults and Morrow (2002),
Shults, Whitt, and Kumanyika (2004) and Shults, Mazurick, and Landis (2006) for discussion
of studies that benefited from analysis with more complex correlation structures than are
typically implemented for GEE. Future planned updates of the qlspack package will include
implementation of additional correlation structures that have not yet been implemented in
the framework of GEE.

2. The Method of QLS

2.1. Brief Description of QLS

QLS is a two-stage computational approach for estimation of the correlation parameters within
the framework of GEE. Stage one of (QLS, Chaganty 1997), for balanced and equally spaced
data; Shults (1996), and Shults and Chaganty (1998), for unbalanced and unequally spaced
data) alternates between updating estimates of the regression parameter β and the correlation
parameter α until there is convergence in the estimates. To estimate β in stage one, QLS
solves the GEE estimating equation for β (equation (6) Liang and Zeger 1986) at the current
estimate of α:

GEE estimating equation for β

m∑

i=1

D>
i A

−1/2
i R−1

i (α)A−1/2
i (Yi − Ui(β)) = 0, (1)

where Ui(β) = E(Yi) and Di = ∂Ui
∂β .

The estimation approach for β is therefore identical for QLS and GEE. However, the methods
differ with respect to estimation of α. While GEE typically implements moment estimates
of the correlation parameters, QLS solves an unbiased estimating equation for α in the first
stage of the procedure:
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Stage one QLS estimating equation for α

∂

∂α

{
m∑

i=1

Z>i (β)
{
R−1

i (α)
}

Zi(β)

}
= 0, (2)

where Zi(β) = (zi1, zi2, . . . , zini)ni×1 is the vector of Pearson residuals zij on subject i and
zij = yij−µij√

h(uij)
.

The solution α̂ to (2) is not consistent. Stage two of QLS therefore obtains a consistent
estimate α̂QLS as the solution to the stage two estimating equation for α (Chaganty and Shults
1999):

Stage two QLS estimating equation for α

m∑

i=1

trace

{
∂R−1

i (δ)
∂δ

Ri(α)
}∣∣∣∣∣

δ=α̂

= 0. (3)

The final QLS estimate of β is then obtained by again solving the GEE estimating equation
(1) for β, evaluated at α̂QLS. An advantage of QLS is that the stage one and stage two
estimates of the correlation parameters will be feasible and consistent for several correlation
structures when the correlation structure is correctly specified (Chaganty and Shults 1999).
In section 2.3 we present solutions to the stage one and stage two estimating equations for
the correlation structures that we consider in this manuscript.

The asymptotic distribution of β̂QLS is identical to the asymptotic distribution of β̂GEE .
As a result, testing and confidence intervals for the regression parameter with QLS can be
implemented using existing approaches for GEE, as we will demonstrate in Section 3.

We note that the current manuscript implements QLS in R software. Earlier, we implemented
QLS in the xtqls procedure in Stata (Shults et al. 2007) and in the GEEQBOX package in
Matlab (Ratcliffe and Shults 2006). The two manuscripts just cited contain similar descrip-
tions of QLS and implement the same algorithms for estimation of α for QLS, in programs
written initially for Stata and then translated to Matlab (The MathWorks, Inc. 2007). In
addition to the manuscripts cited earlier, other papers on QLS include Chaganty and Naik
(2002), Chaganty (2003), and Shi and Chaganty (2004). We also note that an important pa-
per for the development of QLS was by Dunlop (1994) who described the link between GEE
and least squares. For an excellent and thorough description of GEE, also see the text by
Hardin and Hilbe (2003). Also see Sun, Shults, and Leonard (2009) for a comparison of QLS
with some alternative approaches based on unbiased estimating equations.

2.2. Algorithm for QLS

The QLS procedure implements the following algorithm:

1. Obtain a starting value for β̂ by assuming α = 0 and then obtaining a solution (for β)
to the GEE estimating equation for β, evaluated at α = 0. (Note that solving the GEE
estimating equation at α = 0 is equivalent to using linear regression, logistic regression,
or Poisson regression to obtain a starting value for β̂ for outcomes that are continuous,
binary, or that represent counts, respectively.)
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6 Implementation of quasi-least square with qlspack

2. Alternate between the following steps until there is convergence in the estimates of β:

(a) Update the Pearson residuals at the current estimate of β, where the jth Pearson
residual on subject i is given by:

zij =
yij − ûij

h(ûij)
.

(b) Obtain an updated estimate of α solving the QLS stage one estimating equation (2)
for α; this requires specification of the working correlation structure and involves
the Pearson residuals and timings of measurements on each subject. As described
in Section 2.3 there is an explicit solution (that is a function of the zij) for the
AR-1 structure; the method of bisection is used to solve the equation for the other
structures.

(c) Update the estimate of β by solving the GEE estimating equation (1) for β for the
pre-specified working correlation structure that is evaluated at the current estimate
of α.

3. After convergence in stage one, update the estimate of α by obtaining the solution to
the QLS stage two estimating equation (3) for α. The stage two estimate for the AR-
1 structure is a simple function of the stage one estimate; otherwise, the method of
bisection is used to solve the stage two estimating equation that depends on the form
of the working correlation structure and involves the stage one estimate and timings of
measurements on each subject.

4. Obtain the final estimate of β by solving the GEE estimating equation (1) for β for the
pre-specified working correlation structure that is evaluated at the stage two estimate
of α.

The algorithm in qlspack uses the geepack R function to solve the GEE estimating equation
in steps 2 (c) and 4 for β, at the current estimates of the correlation parameter. It is based on
an algorithm described by Shults et al. (2007). We also note that Hardin and Hilbe (2003)
demonstrates a similar algorithm, but with a moment estimate for α, for a correlation struc-
ture that is currently unsupported for GEE. Prior to the widespread availability of software
packages that allowed for solution of the GEE estimating equation for β at fixed values of the
correlation structure, Shults (1996) and Shults and Chaganty (1998) solved the GEE estimat-
ing equation using an approach based on the Cholesky decomposition of the inverse of the
working correlation structure. This approach is implemented in Ratcliffe and Shults (2006).

2.3. Stage One and Stage Two Estimates of α

The QLS procedure in qlspack obtains provides solutions to the stage one (2) and stage two
(3) estimating equations for several working correlation structures. For estimating equations
that do not have an explicit solution, qlspack uses the bisection method to obtain a solution
in the feasible region for α.

For the AR(1) structure and for unbalanced data, Shults and Chaganty (1998) proved that
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the feasible stage one estimate α̂ can be expressed as:

α̂QONE =

m∑
i=1

ni∑
j=2

(zij + zij−1)2 −
√

m∑
i=1

ni∑
j=2

(zij + zij−1)2
m∑

i=1

ni∑
j=2

(zij − zij−1)2

2
m∑

i=1

ni∑
j=2

zijzij−1

, (4)

while the stage two estimate α̂QLS−AR1 Chaganty and Shults (1999) is given by

α̂QLS−AR1 =
2α̂QONE

1 + α̂2
QONE

. (5)

For the Markov structure and unbalanced data, Shults (1996) obtained the QLS stage one
estimating equation for α:

m∑

i=1

ni∑

j=2

eijα
eij

[
α2eijzijzi,j−1 − αeij

(
z2
ij + z2

i,j−1

)
+ zijzi,j−1

]

(1− α2eij )2
= 0, (6)

where eij = |tij − ti,j−1|. Note that qlspack requires that eij ≥ 1 ∀ i and j.

The stage two estimating equation for the Markov structure Chaganty and Shults (1999) is
given by:

m∑

i=1

ni∑

j=2

2eijδ
2eij−1 − αeijeij

[
δeij−1 + δ3eij−1

]

(1− δ2eij )2

∣∣∣∣∣∣
δ=α̂

= 0. (7)

For the equicorrelated structure and for unbalanced data, Shults (1996) proved that there will
be a unique feasible solution to the following stage one estimating equation for α:

∑

i:ni>1

Z>i Zi −
∑

i:ni>1

1 + α2(ni − 1)
(1 + α(ni − 1))2

(Z>i (β) ei)2 = 0, (8)

where Ini is the identity matrix and ei is a ni × 1 column vector of ones. Shults and Morrow
(2002) obtained the stage two estimate α̂QLS−EQC:

∑

i:ni>1

ni (ni − 1) α̂ (α̂ (ni − 2) + 2)
(1 + α̂(ni − 1))2

/
∑

i:ni>1

ni (ni − 1)
(
1 + α̂2(ni − 1)

)

(1 + α̂(ni − 1))2
. (9)

For the tri-diagonal structure and unbalanced data, Shults (1996) proved that there will always
be a feasible solution to the stage one estimating equation for α. qlspack obtains solutions to
the stage one and two estimating equations (2) and (3) for the tri-diagonal structure by first
constructing the tri-diagonal matrix Ri(α̂) and then using the R function solve to obtain
R−1

i (α̂). Next, to evaluate
∂R−1

i (δ)
∂δ

∣∣∣∣
δ=α̂

,

qlspack implements the following expression:

∂R−1
i (δ)
∂δ

∣∣∣∣
δ=α̂

= −R−1
i (α̂)

∂Ri(δ)
∂δ

∣∣∣∣
δ=α̂

R−1
i (α̂),
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8 Implementation of quasi-least square with qlspack

where ∂Ri(δ)
∂δ is an ni × ni matrix with ones on the off-diagonal and zero elsewhere, i.e. the

(j, k)th element of ∂Ri(δ)
∂δ is 1 if |j − k| = 1 and is 0 otherwise.

3. Examples

3.1. Rat Data

Here we demonstrate implementation of qlspack for analysis of the rat data that were described
in the Introduction.

The data are available in Table 6.11 on page 166 of Davis (2002) who provides an excellent
description of methods for analysis of data with repeated measurements. For convenience,
they are also printed in the Appendix and are available as the text file rat.txt on the
web-site http://www.cceb.upenn.edu/~sratclif/QLSproject.html. This file contains the
data displayed in the appendix with some additional variables that were created for the
demonstration analyses:

Columns in rat.txt

id2 id time group bp group1 group2 group3 group4 highbp

The description of each column is as follows:

� id2: the id variable for each rat that is provided in Davis (2002)

� id: a new id variable that takes value 1,2,..43 after sorting on id and group

� time: the timing of each measurement

� group: the group variable that takes value 1, 2, 3, or 4

� bp: the blood pressure value

� group1: indicator variables for group 1 that takes value one for rats in group 1 and that
takes value 0 otherwise

� group2: indicator variables for group 2 that takes value one for rats in group 2 and that
takes value 0 otherwise

� group3: indicator variables for group 3 that takes value one for rats in group 3 and that
takes value 0 otherwise

� group4: indicator variables for group 4 that takes value one for rats in group 4 and that
takes value 0 otherwise

� highbp: a variable that takes value 1 if the rat’s blood pressure is at least 100.
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Note that Table 6.11 on page 166 of Davis (2002) displays duplicate ids for the rats, e.g.
id2 takes value 1 for the first rat within each group. For this reason, we needed to create a
new id (id) that takes distinct values for different rats. The variable id should be used in
the analysis. Other variables described above that are not included in the Appendix include
group1, group2, group3, group4, and highbp.
Because the blood pressure measurements are not equally spaced in time, the Markov corre-
lation structure is biologically plausible for their analysis. However, we will also demonstrate
analyses that implement the AR-1, equicorrelated, and tri-diagonal correlation structures.
To demonstrate the qlspack package, we will fit a simple regression model for expected blood
pressure that includes time and indicator variables for groups 2, 3, and 4. In addition, we will
consider a binary outcome that takes value 1 if the blood pressure is at least 100 (the median
blood pressure value).

3.2. Syntax for qlspack Package

The syntax for the qls function in qlspack is very similar to the syntax of the geepack R
function. The following command will yield output that includes estimates of the regression
and correlation coefficients and standard errors for the regression coefficients:

R> qlsfit.ar1<- qls(formula, data, id, family = "gaussian", time,

+ correlation = "ar1", std.err = san.se)

The argument formula indicates the regression model; data is the name of the R data set. We
need to list all the variables we would like to include in the model in the formula argument.
The argument id is the variable name for the subject id.
The argument family is the name of the two parameter exponential family that is selected.
Possible values for family include gaussian, binomial, and poisson. The link and variance
functions that correspond to each of these family choices include: (gaussian) the identity
link function g−1(γ) = γ and variance function h(γ) = 1; (binomial) the logistic link function
g−1(γ) = exp(γ)/(1 + exp(γ)) and variance function h(γ) = γ(1 − γ); (poisson) the expo-
nential link g−1(γ) = exp(γ) and identity variance function h(γ) = γ. The default value for
family is gaussian.
The argument time is the name of the timing variable. This argument is useful only when
the argument correlation takes the value markov. The default value for time is "NA".
The argument correlation is the name of the correlation structure. Possible values for
correlation include ar1 (AR-1 structure);exchangeable (equicorrelated structure); markov
(Markov structure); and tri-diagonal (tri-diagonal structure).
The argument std.err is the name of the type of standard errors (for β̂) that will be ap-
plied in the analysis. Possible values for std.err include san.se (sandwich robust estimate);
jack (approximate jacknife estimate); j1s (1-step jacknife variance estimate); and fij (fully
iterated jacknife variance estimate). The default value is san.se.
In general, the data for implementation of qls should have the same structure as for imple-
mentation of geepack. The id for different clusters should be different, but need not to be
consecutive.
For detailed information like standard error estimates for β̂ and corresponding p-values, we
can use
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10 Implementation of quasi-least square with qlspack

R> summary(qlsfit.ar1)

It is also important to note that the geepack package must be installed prior to use of qlspack.

3.3. QLS Analysis of Blood pressure for Several Correlation Structures

Fitting the regression model with the Markov structure is achieved by first copying the
rat.txt data into the current working directory and installing the geepack and qlspack pack-
ages. Next we can set our working directory in R and open the rat.txt data set. Note also
that we will implement the default sandwich covariance matrix for estimation of Cov(β̂).)

R> data(rat)

Next, let us fit the Markov correlation structure in a QLS analysis that regresses blood-
pressure on time and indicator variables for groups 2, 3, and 4:

R> qlsfit.mkv <- qls(formula = bp ~ time + group2 + group3 + group4, data =

+ rat, id = rat$id, time = rat$time, family = "gaussian",

+ correlation = "markov")

R> summary(qlsfit.mkv)

Please note that in the formula argument, we must list all the variables we need to include
in the model separately. We cannot use the form like formula=bp~time+as.factor(group).

Call: qls(formula = bp ~ time + group2 + group3 + group4, data = rat,
id = rat$id, family = "gaussian", time = rat$time,
correlation = "markov")

Coefficients:
Estimate Std.err Wald p(>W)

(Intercept) 102.404408615 3.50183923 855.15511945 0.000000000
time 0.001588161 0.01330833 0.01424106 0.905009229
group2 2.121321466 4.41045303 0.23133778 0.630533651
group3 -9.767634073 5.54060793 3.10787773 0.077914423
group4 -21.812644901 8.45134651 6.66138971 0.009852405

Estimated Scale Parameters:
Estimate Std.err

(Intercept) 396.275 64.44642

Correlation: Structure = markov Link = identity

Estimated Correlation Parameters:
Estimate Std.err

1 0.9428284 0
Number of clusters: 43 Maximum cluster size: 9
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The estimated correlation for the Markov structure is 0.9428.

Next, to fit the equicorrelated structure (with abbreviated output) we use:

R> qlsfit.exch <- qls(formula = bp ~ time + group2 + group3 + group4, data =

+ rat, id = rat$id, time = rat$time, family = "gaussian",

+ correlation = "exchangeable")

R> summary(qlsfit.exch)

Call: qls(formula = bp ~ time + group2 + group3 + group4, data = rat, id =
rat$id, family = "gaussian", time = rat$time, correlation =
"exchangeable")

Coefficients:
(Intercept) time group2 group3 group4
1.001260e+02 -9.154816e-04 2.537508e+00 -1.294372e+01 -1.883122e+01

Degrees of Freedom: 291 Total (i.e. Null); 286 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 400.6342

Correlation: Structure = exchangeable Link = identity
Estimated Correlation Parameters:
[1] 0.704539

Number of clusters: 43 Maximum cluster size: 9

The estimated correlation for the equicorrelated structure is 0.7045.

Next, to fit the AR-1 structure we use:

R> qlsfit.ar1 <- qls(formula = bp ~ time + group2 + group3 + group4, data =

+ rat, id = rat$id, time = rat$time, family = "gaussian",

+ correlation = "ar1")

R> summary(qlsfit.ar1)

Call: qls(formula = bp ~ time + group2 + group3 + group4, data = rat, id =
rat$id, family = "gaussian", time = rat$time, correlation = "ar1")

Coefficients:
(Intercept) time group2 group3 group4
1.012666e+02 -9.380585e-04 2.507180e+00 -1.313150e+01 -2.083418e+01

Degrees of Freedom: 291 Total (i.e. Null); 286 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 399.1677
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Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
alpha:1

0.7762648

Number of clusters: 43 Maximum cluster size: 9

The estimated value for α is 0.7763.

Next, for the tri-diagonal structure, we use:

R> qlsfit.tri <- qls(formula = bp ~ time + group2 + group3 + group4, data =

+ rat, id = rat$id, time = rat$time, family = "gaussian",

+ correlation = "tridiagonal")

R> summary(qlsfit.tri)

Call: qls(formula = bp ~ time + group2 + group3 + group4, data = rat, id =
rat$id, family = "gaussian", time = rat$time, correlation =
"tridiagonal")

Coefficients:
(Intercept) time group2 group3 group4
97.91145037 0.01966653 12.73875053 -10.69637510 -16.16715911

Degrees of Freedom: 291 Total (i.e. Null); 286 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 420.5853

Correlation: Structure = tridiagonal Link = identity
Estimated Correlation Parameters:
alpha:1

0.5223492

Number of clusters: 43 Maximum cluster size: 9

The estimated value of α was 0.5223 for the tri-diagonal structure.

3.4. Comparison of GEE and QLS for Analysis of Blood Pressure

To compare the results in GEE versus QLS, we used geepack as described in Halekoh et al.
(2006) to implement the above models in GEE. For example, here we demonstrate implemen-
tation of geepack for the AR-1 structure, which yields results that differ slightly from those
for QLS:

R> geeglm( highbp ~ time + group2 + group3 + group4, family =

+ gaussian, data=rat, id=rat$id, corstr="ar1")
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Call: geeglm(formula = bp ~ time + group2 + group3 + group4, family =
gaussian, data = rat, id = rat$id, corstr = "ar1")

Coefficients:
(Intercept) time group2 group3 group4

101.292169249 -0.004733925 3.105246676 -13.992058591 -21.285179098

Degrees of Freedom: 291 Total (i.e. Null); 286 Residual

Scale Link: identity Estimated Scale Parameters:
[1] 402.9202

Correlation: Structure = ar1 Link = identity Estimated Correlation
Parameters:

alpha
0.8696674

Number of clusters: 43 Maximum cluster size: 9

The equicorrelated and tri-diagonal structures could be implemented by changing the value
of corstr in the above command. Please (see Halekoh et al. 2006) for more details regarding
implementation of the R geepack for implementation of GEE in R.
Table 1 displays the estimation results for QLS versus GEE, for the sandwich based covariance
matrix. Note that the Markov structure is not available for analysis in geepack and is therefore
not included for GEE.
Table 2 displays the QLS and GEE estimates for α for each of the correlation structures
displayed above.
It is interesting to note that for this example, the feasible region for the tri-diagonal structure
is (−0.526, 0.526). The GEE moment estimate for α is 0.742 which exceeds the upper limit
for the feasible region for α. The application of GEE with moment estimates therefore yields
some non positive definite estimated correlation matrices for the tri-diagonal structure, which
can be checked by obtaining the eigenvalues for this structure and demonstrating that some
eigenvalues are negative. For example, the estimated correlation matrix for rats who were
measured at all measurement occasions is a 9×9 tri-diagonal correlation structure; if α = 0.742
then the eigenvalues for this structure are 2.412, 2.201, 1.872, 1.459, 1, 0.541, 0.128, −0.201,
and −0.411. In contrast to the GEE moment estimate, the QLS estimate for α (0.522) is
inside the feasible region for α and corresponds to a 9× 9 tri-diagonal structure with positive
eigenvalues 1.992, 1.844, 1.614, 1.323, 1, 0.677, 0.386, 0.155, and 0.007. However, as discussed
in ? an infeasible estimate for α might be a sign that the correlation structure has been
misspecified. The infeasibility of the moment estimate for the tri-diagonal structure, coupled
with the fact that it is not biologically plausible for this analysis, might therefore be used to
exclude this structure from consideration as a working correlation structure in this analysis.

3.5. QLS analysis of a Binary Outcome in the Rat Data

Note also that QLS analyses can be conducted for binary and count outcomes, as well. For

Hosted by The Berkeley Electronic Press



14 Implementation of quasi-least square with qlspack

β̂GEE seGEE pGEE β̂QLS seQLS pQLS

MARKOV
Constant 102.404 3.502 <.001

Time 0.002 0.013 0.905
Group2 2.121 4.410 0.631
Group3 −9.768 5.541 0.078
Group4 −21.813 8.451 0.010
EQUI

Constant 100.23 5.776 <.001 100.13 5.918 <.001
Time −0.0004 0.011 0.969 −0.0009 0.011 0.933

Group2 2.369 6.883 0.731 2.538 7.032 0.718
Group3 −12.842 8.101 0.113 −12.944 8.269 0.118
Group4 −18.853 9.703 0.052 −18.831 9.817 0.055

TRI
Constant 101.72 3.972 <.001 97.911 4.886 <.001

Time 0.0076 0.017 0.652 0.020 0.030 0.519
Group2 −0.952 5.181 0.854 12.739 6.759 0.059
Group3 −10.531 5.645 0.062 −10.696 6.799 0.116
Group4 −19.836 8.398 0.018 −16.167 7.277 0.026
AR-1

Constant 101.29 5.543 <.001 101.266 3.962 <.001
Time −0.0047 0.011 0.662 −0.0009 0.011 0.934

Group2 3.105 6.508 0.633 2.507 6.058 0.679
Group3 −13.992 7.537 0.063 −13.132 7.003 0.061
Group4 −21.285 9.321 0.022 −20.834 9.057 0.021

Table 1: Estimation results for QLS versus GEE.

example, the regression model for the binary outcome highbp and Markov structure is fit
using the following command:

R> qls( highbp ~ time + group2 + group3 + group4, data = rat, id =

+ rat$id, time = rat$time, family = binomial, correlation="markov")

Call: qls(formula = highbp ~ time + group2 + group3 + group4, data=rat,
id = rat$id, family = binomial, time = rat$time, correlation = "markov")

Coefficients:
(Intercept) time group2 group3 group4
0.5623337877 0.0009521582 0.1683637564 -0.5914757350 -1.4953002081

Degrees of Freedom: 291 Total (i.e. Null); 286 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 1.061967
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Markov TRI EQUI AR-1
GEE 0.742 0.623 0.870
QLS 0.943 0.522 0.705 0.776

Table 2: QLS and GEE estimate for different correlation structures.

Correlation: Structure = markov Link = identity
Estimated Correlation Parameters:
alpha:1

0.9539716

Number of clusters: 43 Maximum cluster size: 9

The estimated value of α was 0.9539 for the Markov structure.

Similarly, the AR-1, exchangeable and tri-diagonal structures will be implemented by replac-
ing correlation="markov" in the above command by correlation="ar1", correlation="exchangeable"
and correlation="tri-diagonal", respectively.

3.6. Relationship to R package geepack

qlspack updates the QLS estimates for β by using the geeglm function in geepack to solve the
GEE estimating equation (for β) at the current QLS estimates of the correlation parameter.
As a result, the functions which can be applied to the return value of geeglm can also be
applied to that of qlspack. Because geepack provides estimates of the estimated covariance
matrix of β based on several approaches (robust sandwich covariance, fully iterated jacknife,
1-step jacknife, and approximate jacknife) qlspack therefore also allows for application of
these estimates. As we have seen, the default approach is application of the robust sandwich
covariance.

4. Discussion

We implemented QLS using the user-written package qlspack for R software. This allowed for
application of the Markov correlation structure that previously was not offered as a potential
working correlation structure in the major software packages for GEE. In addition, it allowed
for feasible estimation with a tri-diagonal correlation structure when the moment estimate
was infeasible (and therefore yielded some estimated correlation matrices that were not pos-
itive definite). Future updates of qlspack are planned, to incorporate additional correlation
structures that have not yet been implemented in the framework of GEE and to allow for
analysis of multi-level correlated data.
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A. Table 6.11 of Davis (2002)

Minutes after Ligation
Grp ID 1 5 10 15 30 60 120 180 240
1 1 112.5 100.5 102.5 102.5 107.5 107.5 95.0 102.5 100.5
1 2 92.5 102.5 105.0 100.0 110.0 117.5 97.5 102.5 112.5
1 3 132.5 125.0 115.0 112.5 110.0 110.0 127.5 . .
1 4 110.0 110.0 . . . . . . .
1 5 122.5 127.5 . . . . . . .
1 6 102.5 107.5 107.5 102.5 90.0 112.5 107.5 110.0 112.5
1 7 42.5 42.5 . . . . . . .
1 8 107.5 80.0 . . . . . . .
1 9 110 130 115 105 112.5 110 115 102.5 92.5
1 10 97.5 97.5 80 82.5 82.5 102.5 100 95 95
1 11 90 70 85 85 92.5 97.5 107.5 97.5 90
2 1 115 115 107.5 107.5 112.5 107.5 112.5 107.5 107.5
2 2 120 . . . . . . . .
2 3 125 125 120 120 117.5 125 122.5 120 120
2 4 95 90 95 90 100 107.5 100 100 92.5
2 5 97.5 70 . . . . . . .
2 6 87.5 65.5 85 90 105 90 85 87.5 100
2 7 90 87.5 97.5 95 100 95 102.5 . .
2 8 97.5 92.5 57.5 55 90 97.5 110 115 105
2 9 107.5 107.5 145 110 105 105 112.5 . .
2 10 102.5 130 85 80 127.5 97.5 117.5 102.5 127.5
3 1 107.5 107.5 102.5 102.5 102.5 97.5 98.5 102.5 92.5
3 2 67.5 20 . . . . . . .
3 3 97.5 108.5 94.5 102.5 102.5 107.5 117.5 112.5 .
3 4 105 105 . . . . . . .
3 5 85 60 . . . . . . .
3 6 100 105 105 105 110 110 115 107.5 105
3 7 95 95 90 100 100 100 95 90 100
3 8 85 92.5 92.5 92.5 90 110 100 102.5 87.5
3 9 82.5 77.5 75 65.5 65 72.5 72.5 67.5 67.5
3 10 92.5 75 40 35 . . . . .
3 11 62.5 75 115 110 100 100 . . .
4 1 70 67.5 67.5 77.5 77.5 77.5 72.5 65 55
4 2 45 37.5 45 45 47.5 45 50 45 50
4 3 52.5 22.5 90 65 60 65.5 52.5 47.5 57.5
4 4 100 100 100 100 97.5 92.5 . . .
4 5 47.5 30 . . . . . . .
4 6 102.5 90 . . . . . . .
4 7 115 110 100 110 105 105 105 105 105
4 8 97.5 97.5 97.5 105 95 92.5 92.5 92.5 92.5
4 9 95 125 130 125 115 117.5 110 105 102.5
4 10 72.5 87.5 65 57.5 92.5 82.5 57.5 50 50
4 11 105 105 105 105 102.5 100 95 92.5 87.5
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