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Abstract

Latent supervised learning is a machine learning technique for performing binary

classification using a surrogate variable for the unobserved training label. We extend

latent supervised learning to the case when the surrogate variable is a right-censored

survival time. A motivating application for the proposed methodology is to stratify

patients into two risk groups given a set of biomarkers. Sieve maximum likelihood

estimation is employed for model estimation with special care taken to account for

censoring. Consistency of the proposed estimator is established. Simulations show that

the proposed estimator is accurate under a range of settings. Applications to real data

examples demonstrate its advantages over a competing method; the proposed method

produces more significant separation in survival on both training sets and held-out

independent test sets.

Keywords: Censoring; Classification and Clustering; Cox Model; Inverse Probability of

Censoring Weighted; Proportional Hazards; Random Forest; Statistical Learning; Sieve

Maximum Likelihood Estimation; Sliced Inverse Regression; Survival Analysis.

1Susan Wei is a doctoral student, Department of Statistics and Operations Research, University of North

Carolina at Chapel Hill, Chapel Hill, NC 27599 (Email: susanwe@live.unc.edu). Michael R. Kosorok is

Professor and Chair, Department of Biostatistics, and Professor, Department of Statistics and Operations

Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (Email: kosorok@unc.edu).

The first author was funded through the NSF Graduate Fellowship. The second author was funded in part

by NIH grant CA142538.

1



1 Introduction

Latent supervised learning is a machine learning technique for performing binary classifica-

tion using a surrogate variable when labeled training data is unavailable. Wei and Kosorok

(2013) first introduced this idea and applied it to a model wherein the surrogate variable is

Gaussian distributed. Here we extend the methodology to the surrogate variable that is a

right-censored survival time.

The proposed methodology is particularly motivated by the problem of stratifying a

population into two risk groups based on a set of biomarkers. One possibility for risk

stratification is to cluster the patients based solely on biomarkers. This approach ensures

patients with similar biomarker values are assigned to the same risk group. There is no

guarantee, however, that the resulting clusters will exhibit different survival experiences.

Another approach is to stratify patients based solely on survival time. This, however, is

likely to have the undesirable effect of producing subgroups of patients in the same risk

group with dissimilar biomarker patterns.

The proposed methodology can be applied to discover subgroups that are both biologi-

cally and clinically meaningful. An index is constructed which divides the population into

two groups using the the binary rule ”index < cutpoint.” The index is a linear combination

of the biomarkers to be estimated from the data. Our model takes the classic Cox model as

a starting point. Let T denote the true (unobservable) lifetime and C the censoring time.

The observed data consists of Y = min(T,C), δ = 1{T ≤ C} and a real p-dimensional co-

variate vector X. The proposed model assumes the linear hyperplane in the covariate space

defined by ωT
0 x − γ0 = 0, where ω0 ∈ Rp and γ0 ∈ R , “separates” the survival times into

two distributions with proportional hazards. Accordingly, the conditional hazard function

is given by

h(t|x) = exp(β01{ωT
0 x− γ0 ≥ 0})h0(t), (1)

where h0(t) is the baseline hazard function and β0 is the log hazards ratio, assumed to be

nonzero for identifiability. It is further assumed that censoring C is independent of survival

T , conditional on X.

In the estimation of Model (1), the primary parameters of interest are ω0 and γ0. The

estimation procedure used in the Gaussian model in Wei and Kosorok (2013) will be adapted

for Model (1) to account for censoring. The estimation is obtained by maximizing the Cox

proportional hazards partial likelihood over a data-driven sieve, an approximating space

constructed to grow dense as sample size increases.
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1.1 Related work

Tian and Tibshirani (2011) proposed the adaptive index model which constructs a score

that is the sum of several binary rules such as “age > 60” or “blood pressure > 120 mm

Hg”. The conditional hazard function in an adaptive index model is given by

h(t|x) = exp(β0 + β
K∑
k=1

1{x∗k ≤ ck})h0(t), (2)

where x∗k are from the set {±x1, . . . ,±xp} and K, the number of binary rules, is no bigger

than p, the dimension of the covariate vector X.

In both Model (1) and (2), the covariate space is divided into regions with different

survival experiences. As linear boundaries offer an especially rich and flexible array of

binary partitions in high dimensions, Model (1) may in this regard have certain advantages

over the adaptive index model in which boundaries always remain parallel to the coordinate

axes. However, as is typical in statistics, there is no single “correct” model. Scores such

as the International Prognostic Index (IPI), based on age, disease stage, etc., used for

risk classification in Non-Hodgkins lymphoma is one example of a setting where clinicians

may prefer the adaptive index model. On the other hand if the individual covariates are

less interpretable, the rules x∗k ≤ ck become less meaningful and Model (1) is preferable.

There is also no need to pre-specify in the proposed model the number of covariates to

include in the final stratification rule (K in Model (2)). Variable selection is built into the

proposed methodology since all covariates are assigned a weight which give an indication of

the importance of a variable.

An alternative to the single binary partition considered in Model (1) is to use tree-

based methods and perform recursive binary partitions. The Classification and Regression

Tree (CART) methodology of Breiman et al. (1984) is a seminal work in this area. CART

and other tree-based methods have many advantages over traditional linear methods in

classification and regression. For instance, tree-based methods perform well even if the

assumptions deviate from the true model, i.e they are robust. Several authors have extended

tree-based methods in the setting of censored survival data (Leblanc and Crowley, 1993;

Banerjee and Noone, 2007). Another generalization is multivariate trees which allow for a

linear combination of variables at decision and leaf nodes rather than a single variable. In

Gama (2004) a method for constructing multivariate survival trees is given.

Trees combine binary rules constructed using univariate variables. In contrast, the

proposed methodology constructs a single binary split based on a linear combination of all

variables. While tree-based methods allow for finer risk stratification, the model studied
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here is more parsimonious. The richness of linear decision boundaries in high dimensions

makes a compelling case for studying a parsimonious model as in Model (1). Also, there are

fewer tuning parameters involved in the proposed methodology whereas in many tree-based

methods, careful decisions have to be made regarding growing the tree and then pruning it

back.

There are also several related work in the literature that deal with risk stratification using

non-tree approaches. One such methodology was put forth in Bair and Tibshirani (2004).

There, a continuous predictor of survival based on gene expression is constructed and a

threshold on the predictor is used to identify two subgroups. The procedure has two steps:

1) a subset of genes with the highest Cox scores is selected, and 2) principal components

analysis is performed on this subset of the gene expression data, and a proportional hazards

model based on the first few principal components is used to obtain a continuous predictor

of survival. A disadvantage of this two-step procedure is that genes which do not play a

strong individual role but play an important role when considered in an ensemble of genes

will be completely removed in the first step. Another procedure that suffers from the same

drawback is the method proposed in Wu et al. (2008), which also involves two steps. In

the first step, a subset of genes is selected using correlation and liquid association. Liquid

association is used in studying coexpression patterns between three genes. Although this

is likely an improvement on a univariate approach to selecting genes, important genes may

still be omitted from the analysis.

In the simulations and data examples found later in this paper, we will directly compare

the proposed methodology to a method proposed in Li et al. (1999), which will be referred to

as Li’s double-slicing method. This method is based on the dimension reduction technique

Sliced Inverse Regression (SIR) (Li, 1991). The SIR model assumes the response variable

T ∈ R is related to the covariate vector X ∈ Rp in the following manner:

T = g(ωT
0,1X, . . . , ωT

0,KX, ϵ). (3)

where ω0,k are unit vectors in Rp, k = 1, . . . ,K for some integer K. One feature of Li’s

model is that the function g is completely unspecified as is the distribution of the error term

ϵ.

Li et al. (1999) proposed the double-slicing method for censored survival data. This is

a two-step procedure that first involves reducing the dimension of the covariate space by

slicing simultaneously on survival and censoring. A kernel-based approach is then used to

estimate the inverse regression curve adjusting for the presence of censoring. The double-
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slicing procedure critically assumes censoring follows the SIR assumption, i.e.

C = h(ωT
0,1X, . . . , ωT

0,KX, δ). (4)

for some function h and error δ. It will be seen in simulations that Li’s double-slicing

method is rather sensitive to departures from the assumption in (4).

1.2 Outline

The methodology is described in Section 2 and consistency of the estimator is established in

Section 3. Section 4 contains simulation findings comparing two variations of the proposed

method and Li’s double-slicing method. Applications to real datasets are presented in

Section 5. The paper concludes with a discussion in Section 6.

2 Methodology

There are three parameters in Model (1) to estimate – the parameters involved in the

hyperplane, ω0 and γ0, and the log ratio hazard β0. An obvious estimation procedure is

simply to maximize the Cox proportional hazards partial likelihood over the parameter

space of these three variables. However direct maximization is computationally challenging

when the dimension of the covariate is high. The proposed method performs maximization

over a data-driven approximating space that grows dense as the sample size increases. Such

a sequence of approximating spaces is referred to as a sieve in the literature, following the

terminology in Grenander (1981). A sieve maximum likelihood approach was also used

for the Gaussian Latent Supervised Learning model studied in Wei and Kosorok (2013).

We follow their procedure of constructing a preliminary sieve based on information in the

covariate space and then updating the sieve by incorporating the surrogate variable. Since

the surrogate variable – survival time – can be censored, there are many challenges here

not faced in the completely observed Gaussian model studied previously.

2.1 The Estimator

The log proportional hazards partial likelihood is given by

Ln(ω, γ, β) = n−1
n∑

i=1

δi{β1{ωTxi − γ ≥ 0} − log n−1
∑

j:yj≥yi

exp(β1{ωTxj − γ ≥ 0})}.

The factor n−1 was added to be consistent with the empirical processes notation in Section

3. Given ω and γ, the estimated log hazard ratio β̂n(ω, γ) = argmaxβ Ln(ω, γ, β) can be

5



found via the standard Newton-Raphson approach. The profile likelihood is given by

Mn(ω, γ) = Ln(ω, γ, β̂n(ω, γ)).

The profile likelihood Mn(ω, γ) is maximized over a data-driven sieve Ω̂n ⊂ Sp where Sp =

{ω ∈ Rp : ||ω|| = 1} is the unit sphere in Rp. The proposed estimator, called the sieve

estimator, is given by

(ω̂s
n, γ̂

s
n) := argmax

ω∈Ω̂n,γ∈R
Mn(ω, γ). (5)

The next two sections describe the construction of the sieve Ω̂n.

2.2 The Simple Sieve

This section details the construction of the preliminary sieve, also referred to as the simple

sieve. The simple sieve is based on the Mean Difference (MD) discrimination rule applied

to the covariates x. The MD, also known as the nearest centroid method (see Chapter 1 of

Scholkopf and Smola (2001)), is a forerunner to the shrunken nearest centroid method of

Tibshirani et al. (2002). It is based on the class sample mean vectors. A new data vector is

assigned to the the positive (negative) class if it is closer to the mean vector of the positive

(negative) class. Thus the MD discrimination method results in a separating hyperplane

with normal vector

( positive class mean vector − negative class mean vector ).

The simple sieve consists of MD directions formed in the following manner:

1. Partition the covariate space X into K regions. Let Sk ⊂ {1, . . . , n} be the index set

for region k.

2. Let Pk denote the collection of partitions of the set Sk into two parts. For P ∈ Pk,

let P1 and P2 be the parts of the partition, i.e. P1 ∪ P2 = Sk and P1 ∩ P2 = ∅.

3. For each P ∈
∪

k Pk, calculate the Mean Difference direction ωMD(P ) — the vector

connecting the centroids of the two classes {Xi : i ∈ P1} and {Xi : i ∈ P2},

ωMD(P ) =
X̄P1 − X̄P2

||X̄P1 − X̄P2 ||
,

where X̄P1 and X̄P2 are the sample means of X’s in P1 and P2 respectively.
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To obtain a partition of the covariate space, K-means clustering can be used. If K-means

returns clusters that are very large, sample a sub-population of the cluster. The parameter

K should be chosen to ensure the cardinality of the sieve is not too big. Setting K to

be roughly n/10 works well in practice. This choice results in the sieve having approxi-

mately
∑K

k=1 2
|Sk| = n210/10 elements, which grows linearly in n and is quite manageable

computationally.

2.3 Incorporating the survival data

This section describes the process by which the simple sieve is updated. Let 0 = t1 < t2 <

· · · < tH < ∞ = tH+1 be a partition of the observed survival times and Ih = [th, th+1)

for h = 1, . . . ,H. The covariate X is standardized to have mean zero and unit covariance,

denoted by Z = Σ
−1/2
xx (X−EX). The sample version is zi = Σ̂

−1/2
xx (xi− x̄), for i = 1, . . . , n,

where x̄ and Σ̂xx are the sample mean and sample covariance matrix, respectively.

Under certain conditions, the largest eigenvector of the covariance matrix of the inverse

regression curve E(Z|T}) lies in the direction of ωT
0 Σ

1/2
xx . This follows from the theoretical

properties of Sliced Inverse Regression established in Li (1991). To see this, we first need

Condition 3.1 in Li (1991):

For any b ∈ Rp, the conditional expectation E(bTX|ωT
0 X) = cωT

0 X for some constant c.

Under this assumption, Theorem 3.1 in Li (1991) guarantees

E(Z|T ) falls into the space generated by ωT
0 Σ

1/2
xx . (6)

To estimate the inverse regression curve E(Z|T ) and its covariance, we can slice on the

variable T as is done in SIR. However, Wei and Kosorok (2013) demonstrated that there

are certain advantages of slicing on both the variable T and the variable 1{ωTX − γ ≥ 0}

over slicing on T alone for the type of model we study here. Let V (ω, γ) be the weighted

covariance matrix of E(Z|T ∈ Ih, 1{ωTX − γ ≥ 0}) given by

V (ω, γ) =

H∑
h=1

ph,1(ω, γ)mh,1(ω, γ)mh,1(ω, γ)
T +

H∑
h=1

ph,2(ω, γ)mh,2(ω, γ)mh,2(ω, γ)
T , (7)

where

mh,1(ω, γ) = E(Z|T ∈ Ih, ω
TX − γ ≥ 0)

and

ph,1(ω, γ) = P (T ∈ Ih, ω
TX − γ ≥ 0),
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and similarly for mh,2(ω, γ) and ph,2(ω, γ) where the inequality is switched. Note that

mh,1(ω, γ) = E(Z|T ∈ Ih, 1{ωTX − γ ≥ 0}) = E(E(Z|T, ωTX)|T ∈ Ih, 1{ωTX − γ ≥ 0})

for any ω ∈ Sd and γ ∈ R such that P (ωTX − γ ≥ 0) > 0. Thus it follows from the

properties of SIR that the largest eigenvector of V (ω, γ) is in the direction of ωT
0 Σ

1/2
xx under

Condition (6).

The estimation of the various components in V (ω, γ) in Equation (7) is complicated

by the fact that T may not have been observed. Censoring must be handled carefully to

construct an unbiased estimate of the weighted covariance matrix. In what follows, a weight

function w is used to adjust for the presence of censoring. A method called RIST is used

to estimate w (Zhu and Kosorok, 2012). Further detail on RIST is given in Web Appendix

A. The detailed derivation of the following estimate for V (ω, γ) is given in Web Appendix

A. Here we give its final expression:

V̂n(ω, γ) =

H∑
h=1

p̂h,1m̂h,1(ω, γ)m̂h,1(ω, γ)
′ +

H∑
h=1

p̂h,2m̂h,2(ω, γ)m̂h,2(ω, γ)
′ (8)

where

m̂h,1(ω, γ) =
1

np̂h,1(ω, γ)

∑
zi{1{th ≤ yi ≤ th+1, ω

Txi − γ0 ≥ 0}

+ ŵ(yi, th, xi)1{yi < th, δi = 0, ωTxi − γ0 ≥ 0}

− ŵ(yi, th+1, xi)1{yi < th+1, δi = 0, ωTxi − γ0 ≥ 0}}

and

p̂h,1(ω, γ) = n−1
∑

1{th ≤ yi ≤ th+1, ω
Txi − γ0 ≥ 0}

+ ŵ(yi, th, xi)1{yi < th, δi = 0, ωTxi − γ0 ≥ 0}

− ŵ(yi, th+1, xi)1{yi < th+1, δi = 0, ωTxi − γ0 ≥ 0}.

The expressions for m̂h,2 and p̂h,2 can be found by switching the inequality in the indicator

functions.

Let ν̂n(ω, γ) be the largest eigenvector of V̂n(ω, γ). The individual components in

V̂n(ω, γ) are uniformly consistent and thus V̂n(ω, γ) itself is uniformly consistent for V (ω, γ).

It then follows that ν̂n(ω, γ) is consistent for ν(ω, γ), the largest eigenvector of V (ω, γ).

The updated sieve Ω̂n is formed by applying ν̂n to the simple sieve of Mean Difference

directions. It is given by

Ω̂n :=

{
ν̂n(ω

MD(P ), γMD(P ))Σ̂−1/2
xx : P ∈

K∪
k=1

Pk

}
. (9)
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where γMD(P ) is the intercept that maximizes the profile likelihoodMn(ω, γ) given ωMD(P ).

The term Σ̂
−1/2
xx is necessary to transform the estimate back to the original scale.

The sieve estimate based on the RIST adjustment will be called the sieve RIST esti-

mator. In Web Appendix B, we outline an alternative way to estimate V (ω, γ) using the

Inverse Probability of Censoring Weighting (IPCW). Our motivation for this is the suc-

cessful application of IPCW in Nadkarni et al. (2011) to estimate SIR-like directions in a

regression setting. Following their procedure, the IPCW is estimated using a kernel con-

ditional Kaplan Meier estimate. The sieve estimate based on the IPCW will be called the

sieve IPCW estimator.

Finally we note that experience indicates the sieve estimation is not sensitive to the

choice of H, the number of slices; setting H = n/10 works well in most applications. The

computational complexity of the sieve estimate almost completely reduces to the choice of

K, the number of regions the covariate space is partitioned into in the simple sieve.

3 Consistency

In this section, the sieve estimator is shown to be consistent. This is done by applying

Theorem 14.1 (Argmax Theorem) in Chapter 14 of Kosorok (2008). The following list of

assumptions is needed:

A1 The intercept γ0 is known to lie in a bounded interval [a, b].

A2 The log hazards ratio β0 is non-zero.

A3 For any b ∈ Rp the conditional expectation E(bX|ωT
0 X) is linear in ωT

0 X.

A4 The variable ωT
0 X has a strictly bounded and positive density f over [a, b] with

P (ωT
0 X < a) > 0 and P (ωT

0 X > b) > 0

A5 The covariate X has a continuous distribution.

A6 P (C = 0) = 0, P (C ≥ τ |X) = P (C = τ |X) > 0, almost surely for some 0 < τ < ∞,

and censoring is independent of T given X.

The interval [a, b] in A1 may be estimated from the data by first calculating the direction of

maximal variation of the sample covariates X, and next considering the range of the result-

ing projections. Assumption A2 ensures the model is identifiable. Li showed in the original

SIR paper (Li, 1991) that A3 is necessary to ensure the consistency of SIR. Any elliptical
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distributions, the Gaussian in particular, satisfy the condition. Condition A4 proved useful

in establishing consistency of the sieve estimator for the Gaussian Latent Supervised Learn-

ing model studied in Wei and Kosorok (2013). Condition A5 may be relaxed at the cost of

more complicated proofs. Condition A6 is standard in survival analysis.

Theorem 1 (Consistency). Let (x1, y1, δ1), . . . , (xn, yn, δn) be iid from Model (1). Under

A1 – A6, the sieve estimator (ω̂s
n, γ̂

s
n) is consistent for (ω0, γ0).

Proof. Let P denote the probability measure of Z = (X,Y, δ) under Model (1). Define the

empirical measure to be Pn = n−1
∑n

i=1 δZi where δz is the measure that assigns mass 1

at z and zero elsewhere. For a measurable function f , we denote Pnf = n−1
∑n

i=1 f(Zi)

and Pf =
∫
f dP . Using the empirical processes notation described above, the profile log

proportional hazards likelihood Mn(ω, γ) in Section 2.1 can be rewritten as

Mn(ω, γ) = Pnδ{β̂n(ω, γ)1{ωTX − γ ≥ 0} − logFn(Y, ω, γ, β̂n(ω, γ))}, (10)

where

Fn(t, ω, γ, β) = PnY (t) exp(β1{ωTX − γ ≥ 0})

and

Y (t) = 1{Y ≥ t}.

The related population quantities are now defined. First, let Z̃ = (X̃, Ỹ , δ̃) be an indepen-

dent realization of Z and let P̃ be a copy of the probability measure P. The theoretical log

proportional hazards likelihood L(ω, γ, β) is given by

L(ω, γ, β) = P̃δ̃{β1{ωT X̃ − γ ≥ 0} − logPY (Ỹ ) exp(β1{ωTX − γ ≥ 0})}. (11)

Given ω and γ, the population log hazard ratio is defined to be β(ω, γ) = argmaxβ L(ω, γ, β).

The theoretical profile likelihood is given by

M(ω, γ) = L(ω, γ, β(ω, γ))

which can be written in empirical processes notation to mirror expression (10):

M(ω, γ) = Pδ{β(ω, γ)1{ωTX − γ ≥ 0} − logF0(Y, ω, γ, β(ω, γ))} (12)

where

F0(t, ω, γ, β) = PY (t) exp(β1{ωTX − γ ≥ 0}).

Following Theorem 14.1 (Argmax Theorem) in Kosorok (2008), the following conditions

must be satisfied to obtain consistency: 1) The sequence (ω̂s
n, γ̂

s
n) is uniformly tight; 2) The
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map (ω, γ) 7→ M(ω, γ) is upper semi-continuous with a unique maximum at (ω0, γ0); 3) Mn

converges to M uniformly over compact subsets K of Sp× [a, b]; and 4) The sieve estimator

nearly maximizes the objective function, i.e.,

Mn(ω̂
s
n, γ̂

s
n) ≥ Mn(ω0, γ0)− oP (1).

Each of these conditions is checked in turn:

1) The first condition is easily seen to hold since ||ω̂s
n|| = 1 and γ̂sn is constrained to lie

in the interval [a, b].

2a) The profile likelihood M(ω, γ) will actually be shown to be continuous. Let (ωn, γn)

be a sequence converging to (ω, γ). Since X is continuous by A5, we have

|Pδ1{ωT
nX − γn ≤ 0} − δ1{ωTX − γ ≥ 0}|

≤ Pδ|1{ωT
nX − γn ≤ 0} − δ1{ωTX − γ ≥ 0}|

= Pδ|1{ωT
nX − γn ≤ 0} − δ1{ωTX − γ ≥ 0}|1{|ωT

nX − γn − ωTX − γ0| ≤ ϵ}

+ δ|1{ωT
nX − γn ≤ 0} − δ1{ωTX − γ ≥ 0}|1{|ωT

nX − γn − ωTX − γ0| > ϵ}

→ 0

If β(ωn, γn) → β(ω, γ) then F0(t, ωn, γn, β(ωn, γn)) → F0(t, ω, γ, β(ω, γ)) almost surely.

Note that F0(t, ωn, γn, β(ωn, γn)) ≤ max(exp(beta), 1)PY (t) and is thus bounded by an

integrable function under A6. This gives Pδ logF0(Y, ωn, γn, β(ωn, γn) → Pδ logF0(Y, ω, γ, β(ω, γ)).

Thus to show M(ω, γ) is continuous, the continuity of β(ω, γ) must be established.

We next show β(ω, γ) is continuous. First it is easy to see L(ω, γ, β) is continuous

with respect to ω, γ, and β using the arguments above. Next we establish L(ω, γ, β)

has a unique maximum in the β argument for every pair (ω, γ). Consider the partial

derivative of L with respect to β

dL

dβ
= P̃δ̃

{
1{ωT X̃ − γ ≥ 0} − PY (Ỹ ) exp(β1{ωTX − γ ≥ 0})1{ωTX − γ ≥ 0}

PY (Ỹ ) exp(β1{ωTX − γ ≥ 0})

}

A straightforward calculation shows the second partial derivative with respect to

β is strictly less than 0. Thus combined with the continuity of L(ω, γ, β), we get

β(ωn, γn) → β(ω, γ).

2b) In the full likelihood, replace λ(t) with λs(t) = (1 + sh(t))λ(t), h is for now an

unspecified bounded function, and take the derivative of the full likelihood with respect

to s (the Gateaux derivative). Let N(t) = 1{Y ≤ t, δ = 0} be the counting process.
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Using the fact that PdN(t) = P [Y (t) exp (β01{ω′
0X − γ0 ≤ 0})], we obtain that the

resulting derivative is:

∫ τ

0
h(t)P [Y (t)b(X, θ0)]dΛ0(t)−

∫ τ

0
h(t)P [Y (t)b(X, θ)]dΛ(s) (13)

where b(X, θ) = exp (β1{ω′X − γ ≤ 0}), θ = (β, ω, γ) and θ0 = (β0, ω0, γ0). Now if

we replace Λ in 13 with Λs(t) =
∫ t
0 (1 + sg(u))dΛ(u), for some other function g, and

differentiate with respect to s again, we obtain the second Gateaux derivative is

−
∫ τ

0
h(t)g(t)P [Y (t)b(X, θ)]dΛ(t)

which is strictly negative, implying that for fixed θ, any Λ which satisfies 13 for a rich

enough collection of h is a maximizer over all Λ for fixed θ. Choose h(t) = 1{t ≤ u},

plug into 13, and allow u to range over [0, τ ], and we obtain that the profile maximizer

of the full expected log-likelihood over Λ satisfies

∫ u

0
P [Y (t)b(X, θ0)]dΛ0(t)−

∫ u

0
P [Y (t)b(X, θ)]dΛ(t) = 0, for all u ∈ [0, τ ].

Hence

dΛ(t)

dΛ0(t)
=

P [Y (t)b(X, θ0)]

P [Y (t)b(X, θ)]
.

Plugging this back into the full likelihood, and removing additive terms which are

constants with respect to θ, we obtain that the profile log-likelihood is

P

[∫ τ

0
(b(X, θ)− log(P [Y (t)b(X, θ)])) dN(t)

]
, (14)

which is equal to the expected log-likelihood in Equation (11).

Now suppose θ1 maximizes 14. Then, by the fact that 14 is the profile log-likelihood,

there exists a Λ1 such that the joint parameter (θ1,Λ1) maximizes the full likelihood.

By the property of the Kullback-Leibler discrepancy and model identifiability, this

implies that θ1 = θ0.

Hence 14 has a unique maximizer at θ0.

3) First let mω,γ,β(x, y, δ) = δ(β1{ωTX − γ ≤ 0} − logFn(y, ω, γ, β)) and consider the

class of functions {mω,γ,β(x, y, δ) : (ω, γ, β) ∈ K} where K is a compact subset of the
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parameter space Sp× [a, b]×R. The argument that this class is Donsker and therefore

also Glivenko-Cantelli is as follows. The at-risk process Y is Donsker by Lemma 4.1

in Kosorok (2008). Trivially, the class {β} is Donsker. The class {1{ωTX−γ ≥ 0}} is

also Donsker by way of the example in Section 4.1.1 in Chapter 4 of Kosorok (2008).

Therefore the product {β1{ωTX − γ ≥ 0}} is Donsker since products of bounded

Donsker classes are Donsker. Now the class expβ1{ωTX − γ ≥ 0} is Donsker since

exponentiation is Lipschitz continuous on compacts. Repeating these arguments shows

logFn(y, ω, γ, β) is Donsker and hence the class {mω,γ,β(x, y, δ) is Donsker.

Now, let mω,γ(x, y, δ) = δ{β̂n(ω, γ)1{ωTx − γ ≥ 0} − logFn(y, ω, γ, β̂n(ω, γ))}. The

estimated log ratio hazard β̂n(ω, γ) lives in a compact set in R for all ω, γ in compact

K, and thus the class {mω,γ(x, y, δ)} is contained in a Donsker class which implies it

is also a Glivenko-Cantelli class. Writing Mn(ω, γ) = Pnmω,γ(x, y, δ), we have

sup
ω∈Sp,γ∈R

|Mn(ω, γ)− Pmω,γ(x, y, δ)| → 0

in probability. The uniform convergence of β̂n(ω, γ) to β(ω, γ) and F̂n(t, ω, γ) to

F0(t, ω, γ) follows from standard arguments. Thus we have Pmω,γ(x, y, δ) converges

uniformly to M(ω, γ) = Pδ{β(ω, γ)1{ωTX−γ ≥ 0}− logF0(Y )} over Sp×R. Finally,

this gives Mn(ω, γ) converging uniformly to M(ω, γ) over Sp × R.

4) The main text in Section 2.3 already established the sieve Ω̂n is dense. In other words,

there exists a sequence (ωn, γn) ∈ Ω̂n × [a, b] that converges to ω0, γ0. By definition

we have

Mn(ω̂
s
n, γ̂

s
n) ≥ Mn(ωn, γn).

By the continuity of M(ω, γ), we have Mn(ω0, γ0)−Mn(ωn, γn) = oP (1) and thus

Mn(ω̂
s
n, γ̂

s
n) ≥ Mn(ω0, γ0)− oP (1).

Note the conditions of the Argmax theorem are met, and the desired consistency follows.

4 Simulations

In this section we examine the performance of the sieve RIST estimator, the sieve IPCW

estimator, and Li’s double-slicing method. Since Li’s double-slicing method produces a

direction estimate only, the profile likelihood Mn(ω, γ) is used to estimate an intercept in
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order to make a direct performance comparison with the sieve estimators. The specific

tuning parameters used for each of the methods, necessary to reproduce the simulation

results below, are given in Web Appendix C.

Let T1 be the distribution of T when ωT
0 X−γ0 ≥ 0 and T2 be the distribution of T when

ωT
0 X−γ0 < 0. The following distributions are considered for T1 and T2: 1) exponential dis-

tributions satisfying proportional hazards (Exponential PH), 2) Weibull distributions satis-

fying proportional hazards (Weibull PH), and 3) Weibull distributions satisfying the acceler-

ated failure time model (Weibull AFT). Let exp(λ) denote the exponential distribution with

mean 1/λ. Let Weibull(λ, ν) denote the Weibull distribution with scale parameter λ > 0

and shape parameter ν > 0 where the density function is given by f(t) = λνtν−1 exp(−λtν).

The specific survival time distributions considered are

1. Exponential PH: T1 ∼ exp(λ exp(β)) and T2 ∼ exp(λ).

2. Weibull PH: T1 ∼ weibull(λ exp(β), ν) and T2 ∼ weibull(λ, ν).

3. Weibull AFT: T1 ∼ weibull(λ exp(νβ), ν) and T2 ∼ weibull(λ, ν).

The survival parameters are set to λ = 1/10, β = log 10, and ν = 2.

Various censoring mechanisms are also considered: 1) independent – censoring com-

pletely independent of X, 2) linear – censoring dependent on X only through ωT
0 X − γ0,

and 3) nonlinear – censoring dependent on X in a non-linear manner. Specifically, the three

censoring distributions considered are

1. independent: C ∼ unif(0, τ)

2. linear: C ∼ min(unif(0, τ1), a)1{ωT
0 X−γ0 ≥ 0}+min(unif(0, τ2), b)1{ωT

0 X−γ0 < 0}

3. nonlinear: C ∼ exp(aeX1+X2
2+log |X3|)

The parameters τ, τ1, τ2, a, b are set to different values for each survival model considered.

Their values, along with the overall censoring percentage for each censoring and survival

setting, are given in Web Appendix C.

The covariate vector X is generated from the standard p-variate Gaussian distribution.

The first p/2 components of ω0 are set to −p−1/2 and the rest to p−1/2. The intercept γ0

is set to 1/4 which results roughly in a 60/40 split of the data. The sample size is fixed

at 100. Four dimensions are considered p = 5, 10, 25, 50. The average classification error

over 100 Monte Carlo simulations is reported for each of the three methods. The error

rate is obtained by generating a large independent test set and calculating the number of
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misclassifications resulting from the estimated hyperplane. The average angle between the

estimate and the true direction ω0 and the average intercept estimate error can be found in

Web Appendix D.

Web Appendix D also reports other performance measurements include the the average

angle between the estimated direction and the true direction ω0 and the distance between

the estimated intercept and the true intercept.

Exponential proportional hazards Figure 1 shows the performance of the three meth-

ods for the Exponential PH survival setting. The average classification error rate is given as

a function of the dimension of X. We see that Li’s method performs worse than the RIST

sieve estimator in the independent censoring setting. This is expected as there is no benefit

to slicing on the censoring variable. We also see that the sieve IPCW performs the worst

in high dimensions.
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Figure 1: Exponential proportional hazards – classification error as a function of dimension

for 100 Monte Carlo simulations with error bars for each of the three censoring mechanisms

considered – independent, linear, and nonlinear.

In the linear censoring setting, all methods perform similarly. Since the linear censoring

setting satisfies Li’s double-slicing censoring assumption, we do not expect the sieve RIST

method to provide a substantial improvement. In the nonlinear censoring setting, the

censoring time cannot be written as a function of a linear combination of the covariates.

Hence, it does not satisfy Li’s double-slicing assumption. We see that Li’s estimate is

quite sensitive to departure from this assumption. The sieve RIST estimate outperforms

Li’s estimate and the sieve IPCW estimator. Note that under the nonlinear censoring

mechanism, the estimation of the individual slice means must adjust for the presence of

censoring unlike in the independent censoring setting. This is because, for instance, when
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x1, x2 and x3 are large, the censoring time tends to be small. Thus if the slice means were

estimated using the sample mean of observed survival times, the estimate would be biased

in favor of small values of x1, x2 and x3.

Weibull proportional hazards Figure 2 shows the performance of the three methods

for the Weibull PH survival setting. In the independent censoring setting, the sieve RIST

estimate is more accurate than the other two methods. In the linear censoring setting,

all three methods perform similarly. In the nonlinear censoring setting, the sieve RIST

estimate performs the best as expected. The performance patterns of the three methods for

the Weibull PH survival setting is quite similar to those in the preceding Exponential PH

setting. One interesting difference is the sieve IPCW actually outperforms Li’s estimate in

the nonlinear censoring setting here.
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Figure 2: Weibull proportional hazards – classification error as a function of dimension for

100 Monte Carlo simulations with error bars for each of the three censoring mechanisms

considered – independent, linear, and nonlinear.

Weibull accelerated failure time Figure 3 shows the performance of the three meth-

ods for the Weibull AFT survival setting. The Weibull AFT model violates the assumption

of proportional hazards in Model (1) and thus provides an opportunity to assess the ro-

bustness of the sieve estimators under distributional departures. In all three censoring

settings, the sieve IPCW performs the worst across all dimensions while the sieve RIST

estimate and Li’s double slicing estimate perform very similarly across all three censoring

settings. Li’s double-slicing method makes no distributional assumptions unlike our sieve

methods. Fortunately, the sieve RIST estimate seems to be quite robust to departure from

the proportional hazards assumption.
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Figure 3: Weibull accelerated failure time – classification error as a function of dimension

for 100 Monte Carlo simulations with error bars.

The simulations in this section suggest that the sieve RIST estimator performs similarly

to the Li’s double-slice method when Li’s censoring assumption is satisfied (as in the linear

censoring setting) but outperforms the double-slicing method when the assumption is not

satisfied (as in the nonlinear censoring setting) or satisfied trivially (as in the independent

censoring setting). The simulations also suggest that the sieve RIST method is more accu-

rate than the sieve IPCW method, especially for higher dimensions. In addition, the sieve

RIST estimate which assumes the proportional hazards model is seen to be robust when

the survival distribution actually follows the accelerated failure time model. Finally, the

simulations reveal that the performance of all three methods deteriorate in high dimensions.

Regularization may be promising for extending the proposed method to high dimensions.

5 Examples

The sieve RIST method and Li’s double-slice method is demonstrated on two datasets. The

sieve IPCW method is omitted in the following analysis because the simulation findings

revealed the sieve RIST estimator consistently outperformed it. The tuning parameters

used in the sieve RIST estimate and Li’s double-slice estimate are the same as those used

in the simulations section, they are given in Web Appendix C.

5.1 Diffuse large B-cell lymphoma

Diffuse large B-cell lymphoma (DLBCL) is a cancer of white blood cells and the most

common type of non-Hodgkin lymphoma among adults. In Rosenwald et al. (2002), hierar-

chical clustering based on gene expression was used to identify three DLBCL subtypes: 1)
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Germinal-center B-cell-like (GBC), 2) Activated B-cell-like (ABC), and Type 3. Although

these subgroups are biologically meaningful, there is no guarantee that their survival ex-

periences differ. Indeed, Figure 4a, which displays the estimated survival function in each

subgroup and the log-rank test p-values, reveals there is little difference between the survival

experiences of the ABC subgroup and the GBC subgroup.

The DLBCL data was obtained from

http://llmpp.nih.gov/DLBCL/DLBCL_patient_data_NEW.txt

and consists of 240 patients with 138 patient deaths at follow-up, resulting in 42% censoring.

There are five covariates in the data that are used in the analysis here. The covariates include

the average values of four gene expression signatures. The signatures are 1)Germinal center

B cell, 2)Lymph node, 2)Proliferation, and 4) MHC class II. The fifth covariate is the gene

expression value of the BMP6 gene. Removing cases with missing values leaves 222 cases,

of which 73 are randomly set aside for a test set. The remaining 149 cases comprise the

training set. The training set has 47% censoring, and the test set 34% censoring.

The sieve RIST estimator and Li’s double-slicing estimator are now applied to the DL-

BCL dataset. Figures 4b and 4c show the estimated survival functions of the subgroups

discovered by each method and the estimated log hazards ratio β in the DLBCL training

set. The p-value for the log-rank test β = 0 is also displayed. Both methods identify sub-

groups that are significantly different with respect to survival with the sieve RIST estimate

producing a larger (in magnitude) log hazard ratio and more significant p-value. As a model

diagnostic, we apply the sieve RIST and Li’s double-slicing estimates to the held out test

set. Figure 5 shows the estimated survival functions of the subgroups identified by each

method on the DLBCL test set. The p-value is very significant for the subgroups produced

by the sieve RIST estimate. On the other hand, the subgroups identified by Li’s estimate

are not significant at the 0.01 level. Thus, the sieve RIST estimator was capable of finding a

more significant separation in survival in both the training and test sets than Li’s estimate.

Furthermore, both methods identify subgroups of patients that are both biologically and

clinically relevant as compared to Rosenwald’s discovered subgroups.

5.2 Primary Biliary Cirrhosis

Primary Biliary Cirrhosis (PBC) is an autoimmune disease of the liver. The data studied

here is from the Mayo Clinic trial in PBC of the liver conducted between 1974 and 1984.

This dataset has been extensively studied in survival analysis. The PBC data was obtained

from
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http://mayoresearch.mayo.edu/mayo/research/biostat/upload/therneau_upload/pbc.html

The first 312 cases in the data set participated in a randomized trial and contain largely

complete data. This will form our training set. The additional 112 did not participate in

the clinical trial but have basic measurements recorded and were followed for survival. This

will form our test set. After removing cases with missing data, we have 308 patients in the

training set with 60% censoring and 91 patients in the test set with 71% censoring. We

conduct our analysis with the following eight covariates: 1) age, 2) sex, 3) edema, 4) bili,

5) albumin, 6) platelet, 7) protime, and 8) stage.

The sieve RIST method and Li’s double-slicing method are now applied to the PBC

dataset. For the PBC training set, Figure 6 shows the estimated survival functions of the

subgroups discovered by each method and the p-value for the log rank test β = 0. Both

methods identify subgroups that are significantly different with respect to survival, with

the sieve RIST estimate producing subgroups with larger (in magnitude) log hazards ratio

and a more significant p-value. As a model diagnostic, we examine the performance of

these estimates on the held out test set. Figure 7 shows the estimated survival functions

of the subgroups identified by each method on the PBC test set. The p-value for β is very

significant for the subgroups produced by the sieve estimate. The subgroups identified by

Li’s estimate are less significant but still very significant. Overall, the sieve RIST estimator

seems to be fulfilling the purpose for which it was designed, i.e. to find two subgroups with

maximally different proportional hazards.

6 Discussion

Latent supervised learning is a machine learning technique for performing binary classifi-

cation using a surrogate variable for the unobserved training label. The concept of latent

supervised learning bridges the gap between unsupervised and supervised learning. It was

applied here to tackle the problem of identifying two subgroups in the covariate space whose

survival distributions have maximally different proportional hazards. The model considered

is parsimonious and easy to interpret. The applicability of this method is immediate to areas

such as drug discovery or personalized medicine where it is desirable to identify subgroups

that are both clinically and biologically meaningful.

The simulations conducted here demonstrate the proposed method performs similarly to

Li’s double-slicing method when Li’s censoring assumption is satisfied and outperforms Li’s

estimate when this assumption is violated. In the DLBCL dataset, the proposed method
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produced subgroups that were significantly different with respect to survival on an indepen-

dent test set while Li’s estimate produced a less significant result. In the PBC data, both

methods produced subgroups in the test set with significantly different survival, but the

proposed method produced subgroups whose survival distributions had a larger log hazards

ratio than Li’s estimate.

Consistency for the estimation procedure was established. Performing inference for the

parameters ω and γ, however, is still an open problem. As a model diagnostic in the data

examples, we applied the estimated separating hyperplane to an independently held out test

set and assessed the significance of the survival separation. This in some sense wastes part

of the data as we have to set aside a test set to perform model diagnostics. A theoretical

basis for performing inference would be preferable. Establishing the weak convergence of

the sieve estimator is thus an important endeavor.

Model mis-specification is another important issue. For instance in the true underlying

model there may be more than two subgroups. We are currently working on extending the

methodology to an arbitrary number of subgroups using ideas from multi-class classification

methods in machine learning. An interesting question is how to discover the correct number

of groups. For this endeavor, we can borrow from the literature on how to determine the

appropriate number of clusters in clustering analysis.

Another important extension of the work is to high dimensional low sample size data, i.e.

when p > n. Currently covariance and inverse covariance estimation limit the application

of the methodology to this setting. Extension of the methodology to ultra-high dimensions,

i.e. when p is much bigger than n, would also be of practical interest. Some type of

regularization of the coefficients in the linear combination may be promising.
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A Estimation of V (ω, γ) in the sieve RIST estimator

We derive the estimation of the components of V (ω, γ) in Equation (7). The derivation is

given for the individual slice mean mh,1 from which it should be clear how to estimate the

probabilities ph,1. The individual slice mean can be written as

mh,1(ω, γ) =
E(Z1{T ≥ tj}1{ωTX − γ ≥ 0})− E(Z1{T ≥ tj+1}1{ωTX − γ ≥ 0})
E(1{T ≥ tj}1{ωTX − γ ≥ 0})− E(1{T ≥ tj+1}1{ωTX − γ ≥ 0})

and similarly for mh,2(ω, γ). Consider the following decomposition

E(Z1{T ≥ t}1{ωTX − γ ≥ 0})

= E(Z1{Y ≥ tj}1{ωTX − γ ≥ 0}) + E(Z1{T ≥ t, C < t}1{ωTX − γ ≥ 0}).

The second term can be further expressed as follows

E(Z1{T ≥ t, C < t}1{ωTX − γ ≥ 0})

= E(Z1{Y ≥ t, δ = 0}1{T ≥ t}1{ωTX − γ ≥ 0})

= E(Z1{Y ≥ t, δ = 0}1{ωTX − γ ≥ 0}E(1{T ≥ t}|Y, δ = 0, Z))

= E(Z1{Y ≥ t, δ = 0}1{ωTX − γ ≥ 0}E(1{T ≥ t}|C, T > C,Z))

= E(Z1{Y ≥ t, δ = 0}1{ωTX − γ ≥ 0}E(1{T ≥ t}|C, T > Y,Z))

= E(Z1{Y < t, δ = 0}1{ωTX − γ ≥ 0}w(Y, t, Z))

where

w(Y, t, Z) = P (T ≥ t|Z)/P (T ≥ Y |Z)

is the weight adjustment for the presence of censoring. Let ŵ be an estimate of w to be

discussed below. Putting these pieces together leads to the expression in Equation (8).

To estimate the weight adjustment, it is necessary to estimate the conditional survival

function of T given X. For this task, we choose a method called Recursively Imputed

Survival Trees (RIST) (Zhu and Kosorok, 2012). RIST can be viewed as a type of Monte

Carlo EM algorithm which generates extra diversity in the fitting process. Let ŵ(yi, th, zi)

be the estimated RIST weight for i = 1, . . . , n and h = 1, . . . , H + 1.

Since RIST is known to be an unbiased estimator for the conditional survival function,

the proposed estimate V̂n(ω, γ) is consistent for V (ω, γ).

B Estimating the IPCW

We consider an alternative way to estimate V (ω, γ) in Equation (7) using Inverse Probability

of Censoring Weight (IPCW) as in Nadkarni et al. (2011). Let m̂IPCW
h,1 (ω, γ) be the IPCW-
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adjusted weighted average of the Z’s associated with observed survival times in the h-th

slice that are above the hyperplane ωTx− γ ≥ 0:

m̂IPCW
h,1 (ω, γ) =

∑n
i=1 δi

zi
P̂ (C>yi|zi,ωT xi−γ≥0)

1{yi ∈ Ih}1{ωTxi − γ ≥ 0}

p̂h,1(ω, γ)
, (15)

where

p̂IPCW
h,1 (ω, γ) =

n∑
i=1

δi
1

P̂ (C > yi|zi, ωTxi − γ ≥ 0)
1{yi ∈ Ih}1{ωTxi − γ ≥ 0}.

The expressions for m̂IPCW
h,2 (ω, γ) and p̂IPCW

h,2 (ω, γ) are similar.

The inverse probability censoring weight P̂ (C > t|z) can be estimated as follows. Let

NC
i (t) and Y C

i (t) denote the counting process and at-risk process respectively for the i-th

observation: NC
i (t) = 1{yi ≤ t, δi = 0} and Y C

i (t) = 1{yi > t}. The conditional censoring

distribution P (C > t|z) is estimated using a kernel conditional Kaplan Meier estimate:

P̂ (C > t|z) = ϕ

(
−
∫ t

0

∑n
i=1K(||z − zi||/h) dNC

i (t)∑n
j=1K(||z − zj ||/h)Y C

j (t)

)
. (16)

Here ϕ is the product integral functional and K is a kernel function and h is the bandwidth.

The integral on the right hand side of Equation (16) can be simplified as follows:∫ t

0

∑n
i=1K(||z − zi||/h) dNC

i (t)∑n
i=1K(||z − zi||/h)Y C

i (t)
=

n∑
i=1

∫ t

0

K(||z − zi||/h) dNC
i (t)∑n

j=1K(||z − zj ||/h)Y C
j (t)

=
∑
i:δi=0

∫ t

0

K(||z − zi||/h) dNC
i (t)∑n

j=1K(||z − zj ||/h)Y C
j (t)

=
∑
i:δi=0

K(||z − zi||/h)1{Yi ≤ t}∑n
j=1K(||z − zj ||/h)Y C

j (Yi)

=
∑

i:δi=0,Yi≤t

K(||z − zi||/h)∑
j:Yj>Yi

K(||z − zj ||/h)

which gives

P̂ (C > t|z) =
∏

i:δi=0,Yi≤t

1− K(||z − zi||/h)∑
j:Yj>Yi

K(||z − zj ||/h)
. (17)

It should now be clear how to derive the expressions for P̂ (C > t|z, ωTx − γ ≥ 0) and

P̂ (C > t|z, ωTx− γ < 0).

C Simulations

For the sieve RIST estimator, K-means clustering was used in the preliminary sieve where

K is set to n/10 and the number of slices in the updated sieve H is also set to n/10. The
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RIST procedure contains several tuning parameters including 1) the number of covariates

considered per split, 2) the minimum number of observed data in each node, 3) the number

of trees in each fold, and 4) the number of folds. We set these parameters to 5, 6, 50 and

1, respectively. For the sieve IPCW estimator, K and H are also each set to n/10, and a

standard Gaussian kernel is used in the IPCW estimation. For Li’s double-slicing method,

we used Wei Sun’s default implementation available at

http://www.bios.unc.edu/~weisun/software.htm

For each censoring setting, the parameters (and censoring percentage) for the Exponen-

tial PH, the Weibull PH, and the Weibull AFT, are respectively

1. independent: τ = 10 (42%); τ = 20 (32%); τ = 10 (58%)

2. linear: τ1 = 31.97, a = 20, τ2 = 3.2, b = 2 (32%); τ1 = 30, a = 15, τ2 = 9, b = 5 (34%);

τ1 = 15, a = 5, τ2 = 4, b = 2 (40%)

3. nonlinear: a = 1/10 (40%); a = 1/20 (39%); a = 1/20 (55%)
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(c) Li’s double-slicing SIR

Figure 4: The first panel shows the estimated survival functions of the ABC and Type

3 subgroups. The subgroups are not significantly different with respect to survival. The

middle and right panels regard the DLBCL training set and display the estimated survival

functions of the subgroups identified in the training set, by the sieve estimate and double-

slicing SIR estimate, respectively. Both estimates produce subgroups in the training set

which are significantly different with respect to survival.
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(b) Li’s double-slicing

Figure 5: DLBCL test set. The left and right panels display the estimated survival functions

of the subgroups identified in the test set, by the sieve RIST estimate and Li’s double-slice

estimate, respectively. The sieve RIST estimate produces subgroups in the test set which

are more significantly different with respect to survival.
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(b) Li’s double-slicing SIR

Figure 6: PBC training set. The left and right panels display the estimated survival func-

tions of the subgroups identified in the training set, by the sieve RIST estimate and Li’s

double-slicing estimate, respectively. Both pairs of subgroups are significantly different with

respect to survival. The sieve RIST estimate, however, results in subgroups with a higher

log hazards ratio (in terms of magnitude).
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(b) Li’s double-slicing

Figure 7: PBC test set. The left and right panels display the estimated survival functions

of the subgroups identified in the test set, by the sieve RIST estimate and Li’s double-

slice estimate, respectively. Both pairs of subgroups are significantly different. The sieve

RIST estimate, however, results in subgroups with a higher log hazards ratio (in terms of

magnitude).
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