
University of Pennsylvania
UPenn Biostatistics Working Papers

Year  Paper 

Quasi-Least Squares with Mixed Linear
Correlation Structures

Jichun Xie∗ Justine Shults† Jon Peet‡

Dwight Stambolian∗∗ Mary F. Cotch††

∗University of Penn, jichun@mail.med.upenn.edu
†Univeristy of Pennsylvania Department of Biostatistics, jshults@mail.med.upenn.edu
‡jonpeet@comcast.net
∗∗University of Penn, stamboli@mail.med.upenn.edu
††National Institutes of Health, mfc@nei.nih.gov

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/upennbiostat/art33

Copyright c©2009 by the authors.



Quasi-Least Squares with Mixed Linear
Correlation Structures

Jichun Xie, Justine Shults, Jon Peet, Dwight Stambolian, and Mary F. Cotch

Abstract

Quasi-least squares (QLS) is a two-stage computational approach for estimation
of the correlation parameters in the framework of generalized estimating equations
(GEE). We prove two general results for the class of mixed linear correlation struc-
tures: namely, that the stage one QLS estimate of the correlation parameter always
exists and is feasible (yields a positive definite estimated correlation matrix) for
any correlation structure, while the stage two estimator exists and is unique (and
therefore consistent) with probability one, for the class of mixed linear correlation
structures. Our general results justify the implementation of QLS for particular
members of the class of mixed linear correlation structures that are appropriate
for the analysis of familial data, with families that vary in size and composition.
We describe the familial structures and implement them in an analysis of opti-
cal spherical values in the Old Order Amish (OOA). For the OOA analysis, we
show that we would suffer a substantial loss in efficiency, if the familial structures
were the true structures, but were misspecified as simpler approximate structures.
We also provide software for implementation of the familial structures in R. Key-
Words: Quasi-least squares; linear correlation structure; mixed correlation struc-
ture; familial data.



1. Introduction

We consider a secondary analysis of optical spherical values in a study in
the Old Order Amish (OOA) (Wojciechowski et al., 2009). The families in
the OOA study varied in both size and composition, because some nuclear
families contained only siblings, while other families included siblings and
one or both parents. The goal of the OOA analysis was to relate the expected
spherical values, measurements that reflect quality of vision, with gender and
age, while also adjusting for the correlation among measurements within
each family. Because the correlations in the OOA study were thought to
vary according to familial relationship, it was important to allow the sibling-
sibling, sibling-father, and sibling-mother correlations to vary in value.

To model the pattern of association amongst measurements in families
in the OOA study, we implemented slight generalizations of familial corre-
lation structures considered by Karlin, Cameron, and Williams (1981) and
Gleseer (1992). Gleseer (1992) noted that it is computationally difficult to
obtain maximum likelihood (ML) estimates of the correlation parameters for
normal data, when family sizes are not constant. Gleseer (1992) therefore
obtained ML estimates that were weighted averages of estimates obtained
for sub-groups with families of equal size. One limitation of the approaches
of both Karlin et al. (1981) and of Gleseer (1992) was that they assumed
that the expected value of the outcome variable was constant between the
siblings. However, it is important to note that Karlin et al. (1981) and
Gleseer (1992) allowed the variance of the outcome variable to vary be-
tween parents and siblings, while we assume a constant standard deviation
of spherical values for all subjects.

We implement the familial correlation structures for analysis of the OOA
study with quasi-least squares (QLS). QLS is an approach based on GEE
that estimates the correlation parameters in two stages. In the following
summary, estimates of the correlation parameters are defined to be feasible
if they yield positive definite correlation matrices. Chaganty (1997) consid-
ered balanced data and established feasibility of the stage one estimates for
the first order auto-regressive AR(1), exchangeable, and tri-diagonal struc-
tures. Shults (1996) and Shults and Chaganty (1998) proved feasibility for
the afore-mentioned structures, in addition to the Markov structure, for
unbalanced data. However, although the stage one estimates exist and are
feasible, they are not consistent. Chaganty and Shults (1999) therefore intro-
duced a second stage of QLS and established consistency of the stage two
estimates for the AR(1), Markov, and tri-diagonal correlation structures.
The second stage of QLS updates the stage one estimate of α by obtaining
a solution to an estimating equation (stage two estimating equation for α)
with an estimating function that only depends on α and the stage one es-
timate of α. Theorem (3.2) of Chaganty and Shults (1999) establishes that
if there exists a unique solution to the stage two estimating equation for
α that is a continuous and one to one function of the stage one estimate,
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then that solution will be consistent for α. Software for implementation of
QLS is available in SAS (Kim and Shults, 2008), Stata (Shults, Ratcliffe,
and Leonard, 2007), MATLAB (Ratcliffe and Shults, 2008), and R (Xie and
Shults, 2009).

In this manuscript, we prove two general results for QLS that can be
used to justify implementation of QLS for the familial structures we consider.
First, we prove that the QLS stage one estimate of α will exist and is feasible
with probability one, for any correlation structure. Next, for the class of
mixed linear correlation structures, we prove the existence and uniqueness
of the QLS stage two estimates, both of which are required for consistency
of α̂. A benefit of our results is that not only do they justify implementation
of QLS for the familial structures we consider in this manuscript, but they
can also be used to justify QLS for other structures. For example, Shults,
Mazurick, and Landis (2006) implemented QLS for a banded Toeplitz (BT)
correlation structure, but did not provide proofs regarding the existence
and uniqueness of solutions of the QLS estimating equations for α for this
structure. The BT structure is a member of the class of linear correlation
structures, so that the results provided in this paper establish the consistency
of the QLS estimators of α for this structure. In general, our results for stage
one are applicable to any correlation structure, while our results for stage
two are applicable to any mixed linear correlation structure.

As an outline for our paper, in Section 2, we give some notation; describe
the familial structures we consider; and define mixed linear correlation struc-
tures. In Section 3 we then extend QLS for mixed linear correlation struc-
tures by proving several results for these structures. Next, we demonstrate
the benefit of fitting mixed linear correlation structures: In Section 4, we
conduct asymptotic relative efficiency (ARE) comparisons to show that the
loss in efficiency in estimation of the regression parameter could be substan-
tial in a QLS (or GEE) analysis of the OOA study, if the true mixed linear
correlation structures were misspecified as a simpler, approximate structure.
In Section 5 we then present our analysis of the OOA study that demon-
strates application of the mixed correlation structure with QLS. The proofs
of our theorems and lemmas are provided in the appendices.

2. Background

2.1. Notation. We assume that outcomes Y i = (Yi1, . . . , Yini)
T and as-

sociated covariates Xij = (Xij1, . . . , Xijp)T are collected on family i, for
i = 1, . . . , m. The expected value and variance of measurement Yij can be
expressed using a generalized linear model (GLM):

(1) E(Yij) = g−1(XT
ijβ) = µij and Var(Yij) = φh(µij)

respectively, where g−1(·) is the link function; h(·) is the variance function;
and φ is a known or unknown scale parameter. We assume that observations
from different families are independent. However, measurements within fam-
ilies are correlated, with a pattern of association that can be described with
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correlation structures for each family i, Cor(Yi) = Ri(α), that depend on
correlation parameter α. The covariance matrix of Y i is then given by
Cov(Y i) = φA

1/2
i Ri(α)A1/2

i , where Ai = diag(h(µi1), . . . , h(µini)).

2.2. Familial Structures in the Class of Linear and Mixed Corre-
lation Structures. Define ei as the unit vector with only the jth entry
equal to 1. We refer to a correlation matrix as linear if

(2) Ri(α) =
s∑

j=1

(Ri(ei)−Ri(0))αj + Ri(0),

so that each element of the matrix can be expressed as a linear combination
of α. In this case α is identifiable if and only if

(3)
s∑

j=1

(Ri(ei)−Ri(0))cj = 0 if and only if c = (c1, . . . , cs) = 0.

Several linear correlation structures were considered for analysis of the
OOA study, which included two-generation families that varied in both
size and composition. We assumed that the father-mother, father-sibling,
mother-sibling, sibling-sibling correlations were γ, ρ1, ρ2 and α, respectively.
If family i included both parents and siblings, this resulted in an extended
familial correlation structure Ri to describe the pattern of association among
the ni measurements on family i:

(4) Cor(Yi) =




1 γ ρ1 ρ1 . . . ρ1

γ 1 ρ2 ρ2 . . . ρ2

ρ1 ρ2 1 α . . . α
ρ1 ρ2 α 1 . . . α
...

...
...

...
. . .

...
ρ1 ρ2 α α . . . 1




ni×ni

.

For a family with only a father and siblings, Ri would have a familial struc-
ture:

(5) Cor(Yi) =




1 ρ1 ρ1 . . . ρ1

ρ1 1 α . . . α
ρ1 α 1 . . . α
...

...
...

. . .
...

ρ1 α α . . . 1




ni×ni

.
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For a family with only a mother and siblings, Ri would still have a familial
structure, but with ρ1 replaced by ρ2 in (5):

(6) Cor(Yi) =




1 ρ2 ρ2 . . . ρ2

ρ2 1 α . . . α
ρ2 α 1 . . . α
...

...
...

. . .
...

ρ2 α α . . . 1




ni×ni

.

Finally, for families with only siblings, the correlation structure would be
exchangeable:

(7) Cor(Yi) =




1 α . . . α
α 1 . . . α
...

...
. . .

...
α α . . . 1




ni×ni

.

In our analysis of the OOA data, different families were allowed to have
different correlation structures. However, all the structures were mixed
correlation structures (MCS), which we define as structures that may vary
between families but share correlation parameters, so that the parameters
for family i take value in {γ, ρ1, ρ2, α}. See Chaganty and Deng (2007) for
a discussion of ranges of measures of association for binary outcomes with
familial patterns of association.

3. Extension of Quasi-Least Squares for Mixed Linear
Correlation Structures

3.1. Quasi-Least Squares. Here, we briefly describe the method of QLS.
Stage one of QLS iterates between updating the regression parameter β via
(i) solution of the GEE estimating equation for β (Liang and Zeger, 1986):

(8)
m∑

i=1

DT
i A

−1/2
i R−1

i (α)A−1/2
i (Y i − Ui(β)) = 0,

where Ui(β) = E(Y i) and Di = ∂Ui
∂β ; and (ii) updating the correlation

parameter α by minimizing the generalized error sum of squares

(9) Q(β, R(α)) =
m∑

i=1

zT
i (β)R−1

i (α)zi(β)

with respect α ∈ Ω ⊆ Rs, where zi(β) = A
−1/2
i (Yi − Ui) = (zi1, . . . , zini)

are known as the Pearson residuals. In addition, Ω is defined as the feasible
region for the correlation structure (Ri(α))1,...,m, so that ∀α ∈ Ω and ∀i ∈
{1, . . . , m}, Ri(α) is positive definite. Stage one of QLS therefore involves
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solving the stage one estimating equation

(10) DG =
∂

∂α

{
m∑

i=1

zT
i (β)R−1

i (α)zi(β)

}
= 0.

In general, the solution of (10) is not necessarily the minimizer of (9). How-
ever, in Section 3.2 we prove that if the Ri(α) are linear for all i, the solution
of (10) does indeed minimize the generalized error sum of squares (9); Fur-
thermore, the solution will be unique and feasible almost surely.

The QLS stage one estimates β̂ for β and δ̂ for α are the solutions of (8)
and the minimizer of (9), respectively. However, Chaganty (1997) proved
that the stage one QLS estimate of α is not consistent. In order to correct
the asymptotic bias for the QLS stage one estimates, after convergence in
stage one, we next solve the stage two estimating equation that depends on
the stage one estimates δ̂ (Chaganty and Shults, 1999), for α:

(11)
m∑

i=1

tr
[
∂R−1

i (δ)
∂δ

Ri(α)
] ∣∣∣∣

δ=δ̂

= 0.

Theorem 3.2 of Chaganty and Shults (1999) established that if there is a
unique root α̂ for equation (11) that is a one to one and continuous function
of δ̂ and the structure is correctly specified, then α̂ is consistent. We refer
to α̂ as the stage two estimator of α, based on which, we obtain the final
estimator β̂ for β by again solving the GEE estimating equation (8) for β,
evaluated at the stage two estimates for α.

3.2. Results that Justify Application of Quasi-Least Squares for
Mixed Linear Correlation Structures. In this section we first provide
general proofs regarding the existence and feasibility of the stage one QLS
estimates in section 3.2.1. Next, in section 3.2.2 we prove the consistency
of the stage two QLS estimates for the mixed linear correlation structures.
The proofs for all results are provided in the appendices.

3.2.1. General Proof of Feasibility for Stage One QLS Estimates. We first
provide a theorem that establishes the feasibility of the global minimizer for
(9).

Theorem 1. If for each subject i, Ri(α) is a differentiable ni × ni matrix,
then the global minimizer for (9) in Ω is an inner point of Ω, where Ω is the
feasible region of (Ri(α))1,...,m.

Although the stage one QLS estimator of α is not the final estimator, its
existence and feasibility is very important because failure to yield feasible
estimates in stage one of QLS could cause a breakdown in the first phase
of the procedure. For example, Crowder (1995) described the potential for
breakdown in iterative procedures such as GEE that can occur when the
estimated correlation matrices are not positive definite. Theorem 1 ensures
that this type of failure will not occur in stage one of QLS.
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However, while Theorem 1 ensures the existence of solutions for the stage
one QLS estimating equation (10), it does not guarantee that the root is
unique. If (10) has multiple roots, it can be difficult to obtain all the roots.
Furthermore, it might not be straightforward to find the global minimizer
for (9), if the generalized error sum of squares has several local minimizers.
However, for correlation structures that meet the condition in (12), this
minimization problem is fairly straightforward, because under this fairly
general condition, (9) is convex almost surely, so that there will exist a
unique root for (10) almost surely.

Theorem 2. Suppose each cluster i ∈ {1, . . . , m} in the data under consid-
eration has correlation structure Ri(α) . If ∀ α ∈ Ω,

(12)
s∑

j=1

∂Ri(α)
∂αj

cj = 0 if and only ifc = 0,

then (10) has a unique solution in the feasible region Ω almost surely.

Corollary 3. Suppose for each cluster i ∈ {1, . . . , m} of the longitudinal
data, we have a linear correlation structure Ri(α) of the form (2). Then if
α is identifiable, (10) has a unique solution in the feasible region Ω almost
surely.

Theorem 2 provides the criterion (12) that will ensure that the stage one
estimating equation (10) has a unique solution; This requirement is fairly
general, and is be satisfied by several common structures, including the
exchangeable, tri-diagonal (Chaganty and Shults, 1999), BT (Shults et al.,
2006), and also by the familial structures implemented in this manuscript.

3.2.2. Consistency of the Stage Two QLS Estimates for Linear Correlation
Structures. Here we first prove that for linear correlation structures, the
stage two estimator exists and is unique, with probability one.

Theorem 4. If for each cluster i ∈ {1, . . . , m}, the within subject correlation
Ri(α) has a linear correlation structure of form (2), then the stage two
estimating equation (11) has a unique solution with probability one.

In the proof of Theorem 4 in Appendix A, we provide an explicit solution
for the stage two estimating solution for linear correlation structures. Sup-
pose we obtain the stage one estimator δ̂. Define Aij = R−1

i (δ̂)(Ri(ej) −
Ri(0)), Mjk =

∑m
i=1 tr(AijAik), and wj = −∑m

i=1 tr(AijR
−1
i (δ̂)Ri(0)). Sup-

pose M = (Mjk)s×s and w = (w1, . . . , ws)T. We can then express the stage
two estimator in a very simple form:

(13) α̂ = M−1(δ̂)w(δ̂),

which is very helpful with respect to computation, especially when the di-
mension of α is high. Chaganty and Shults (1999) proved that if a unique
solution α̂ exists to the stage two estimating equation for α that is a con-
tinuous and one to one function of the stage one estimate of α, then α̂ will
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be consistent. Therefore, we have proven that under correct specification of
the mixed linear correlation structure, there will exist a unique solution of
the stage two estimating equation that will be consistent for α.

4. Asymptotic Relative Efficiency Calculations

Here we assess the loss in efficiency that results from incorrectly specify-
ing the mixed correlation structure in the OOA analysis. We assume here
that the true structure for cluster i is the mixed structure Ri(α) described in
Section 5, for α = (ρ1, ρ2, γ, α), while the working structure is the exchange-
able structure Wi(γ) = (1− γ)Ini×ni + γJni×ni , where Ini×ni is an ni by ni

identity matrix and Jni×ni is an ni×ni matrix of ones. We consider the ex-
changeable working structure because this is a popular structure for analysis
of clustered data. In addition, we note that the true mixed familial struc-
tures include exchangeable structures for OOA families that contain only
siblings. Our misidentification scenario therefore represents the situation
in which we have correctly assumed that the sibling-sibling correlations are
equal, but have incorrectly assumed that the sibling-sibling, sibling-father,
sibling-mother, and father-mother correlations are identical.

The efficiencies are calculated using the same approach that was imple-
mented and described in Shults and Morrow (2002) and in Shults et al.
(2006). To briefly summarize, we first note that Chaganty (1997) proved
that

√
m(β̂ − β) is asymptotically normal with mean zero and covariance

matrix

(14) Vw = lim
m→∞Wt

{
m∑

i=1

X
′
iA

1/2
i W−1

i RiW
−1
i A

1/2
i Xi

}
Wt,

where

(15) Wt =

{
m∑

i=1

X
′
iA

1/2
i W−1

i A
1/2
i Xi

}−1

.

If the correct structure was specified, so that Wi = Ri, then the covariance
matrix Vw can be simplified as Vt = limm→∞Wt.

The efficiency for β̂j was then evaluated as the jth diagonal element of Vt

divided by the jth diagonal element of Vw. However, as noted by Sutradhar
and Das (1999), γ̂ may fail to be consistent when the true structure is
misspecified, so that the efficiencies should be calculated at the limiting
value of γ̂. We therefore evaluated the efficiencies at Wi(f(α)) and Ri(α),
where f(α) is the limiting value of γ̂ when the mixed correlation structure
is misspecified as exchangeable. An algorithm to obtain the limiting value
f(α) as a function of the true correlation parameter α is provided in the
Appendix. Because the efficiencies were calculated as the number of subjects
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m → ∞, we assumed that the covariate design for the OOA study was
replicated as m increases.

In addition, because the asymptotic distribution for β̂ is identical for QLS
and GEE, the approach for calculation of AREs described in this section
also applies when GEE is applied for an exchangeable working structure,
but the true structures are mixed familial structures. GEE implements the
following moment estimate for the exchangeable structure that is a function
of the Pearson residuals zij :

(16) α̂GEE =

∑m
i=1

∑
k 6=j zikzij∑m

i=1

∑ni
k=1(ni − 1)z2

ik

.

It is straightforward to show (Wang and Carey, 2003) that the limiting
value of α̂GEE is given by

(17)

∑m
i=1

∑
k 6=j Corr(yij , yik)∑m

i=1(ni − 1)ni
=

∑m
i=1

(
e
′
iRi(α)ei − ni

)
∑m

i=1(ni − 1)ni
,

where ei is an ni by 1 vector of ones. The limiting values were almost
identical for QLS and GEE. As a result, the efficiencies were almost identical
for the two approaches.

Table 1 displays the efficiencies for QLS. (An equivalent table for GEE,
with almost identical results, is available on request.) Lines 1-3 in Table 1
assess the situation when the father-sibling and sibling-sibling correlations
are negligible, but the mother-sibling correlations are non-negligible and get
increasingly larger (in going from line 1 to line 3). Lines 4-6 assess the situ-
ation when the father-sibling and mother-sibling correlations are negligible,
but the sibling-sibling correlations are non-negligible and get increasingly
larger (in going from lines 4 to 6). Lines 7-9 assess the situation when the
father-sibling and mother-sibling correlations are non-negligible and similar
in value, with sibling-sibling correlations that get increasingly larger (in go-
ing from lines 7-9). Table 1 indicates that, as we might anticipate, the loss
in efficiency is negligible when the true correlations are small, so that the
true structure is close to an identity structure, which is a special case of
an exchangeable structure (with γ = 0). However, as the true correlations
increase in value, the loss in efficiency can become substantial when the true
mixed familial structures are misspecified as exchangeable. For example, as
shown in line 6, when ρ1 = 0.02, ρ2 = 0.05, and α = 0.71, then the ARE for
age is only 79 percent.

The results shown in Table 1 therefore indicate that incorrect applica-
tion of the exchangeable structure (which is a popular structure in analysis
of clustered data) for all families can result in a substantial loss in effi-
ciency in estimation of β. The results in Table 1 are important because it is
sometimes claimed that careful modeling of the correlation structure is not
crucial, because even if the structure is misspecified, GEE (and QLS) will
yield a consistent estimate of the regression parameter. However, our ARE

http://biostats.bepress.com/upennbiostat/art33



9

calculations demonstrate that if the structure is misspecified, even though
β̂ is consistent, we can suffer a substantial loss in efficiency in estimation of
β.

Table 1. Percent efficiencies for the regression coefficients
for the constant term, gender, and age, when the true mixed
correlation structure is misspecified as exchangeable. True
structure = mixed Ri(α) where α = (ρ1, ρ2, α); working
structure = exchangeable with parameter γ. limit = f(α)
is the limiting value of γ̂ when the true mixed structure is
misspecified as exchangeable in the analysis of the OOA
study.

ρ1 ρ2 α limit constant gender age
0.02 0.11 0.05 0.0510 0.99 0.99 0.99
0.02 0.31 0.05 0.0604 0.97 0.98 0.97
0.02 0.41 0.05 0.0652 0.88 0.72 0.88
0.02 0.05 0.41 0.3582 0.94 0.96 0.95
0.02 0.05 0.51 0.4422 0.90 0.92 0.92
0.02 0.05 0.71 0.6092 0.81 0.79 0.79
0.30 0.20 0.50 0.4657 0.95 0.94 0.96
0.30 0.20 0.70 0.6345 0.87 0.83 0.86
0.30 0.20 0.90 0.8029 0.73 0.48 0.53

5. Analysis of the Motivational Study

Here we present our results of the OOA analysis, to demonstrate im-
plementation of the familial structures considered in this manuscript. The
OOA population is ideal for studying familial association because the OOA
live within a structured and uniform society where most individuals share
a common life style. The data considered here represent information on
296 individuals organized from 60 families, of which 33 had both parents
and some siblings; 1 had only a father and siblings; 4 had a mother and
siblings; and 22 had only siblings. The mean number of siblings in a family
was 3.8 (range = 1-11). The mean age was 37.6 (range = 18-85). Recruit-
ment and data collection of the parent study which provided the data for
our secondary analysis has been described elsewhere (Wojciechowski et al.,
2009).

The main outcome measure used in this analysis was the spherical compo-
nent of each subject’s refractive error. Briefly, refractive error relates to an
individual’s spectacle prescription. Refractive error is a spherical correction
which denotes the power of a spherical lens (a lens whose properties do not
change based on orientation) placed in front of a subject’s eye to optimize
their vision. For some subjects spherical correction alone is sufficient to
correct their vision. Lens values for the spherical component of a subject’s
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refraction can have either a positive or negative value and are expressed in
units of optical power called diopters. The outcome for our analysis was
the spherical (correction) value, which measures the power of a lens placed
in front of the eye that does not depend on orientation. We considered the
spherical values of the left eye, right eye, and the average spherical value of
both eyes. The covariates we considered included gender (gender = 1 for
males and gender = 0 for females) and the age in years at which the eye
exam was conducted.

Our primary objective was to relate the expected spherical values with
gender and age. We assumed that the families with both parents and sib-
lings had an extended familial correlation structure (4) with zero correlation
between parents, so that γ = 0 in (4). Families with only a father and sib-
lings, only a mother and siblings, or only siblings, were assumed to have
correlation structures (5), (6), and (7), respectively.

Table 2 displays the estimates of the regression parameter estimators.
(QLS and GEE share the same asymptotic distribution for β̂; The results
shown here are based on application of a “sandwich based” estimate of the
covariance matrix of β̂ for calculation of standard errors (Chaganty and
Shults, 1999), and p-values for the tests that βj = 0.) As shown in Table
2, the estimated constant was negative, while the regression coefficients for
(male) gender and for age were positive. Although the regression coefficients
for age and gender did not differ significantly from zero at a 0.05 level
(perhaps as a result of limited power due to the modest number of OOA
families studied), the coefficients did differ significantly from zero at a 0.10
level. These results suggest that male gender and higher age are associated
with less myopia, where myopia is indicated by negative spherical values.

Table 2. The regression parameter estimators for the OOA
ophthalmology study. Gender = 1 for male and 0 for female.
Age is in years.

intercept gender age
Outcome est. p value est. p value est. p value
Right Sphere −2.67 < .0001 0.75 0.067 0.016 0.102
Left Sphere −2.80 < .0001 0.77 0.051 0.015 0.098
Average Sphere −2.77 < .0001 0.76 0.055 0.016 0.074

Next, Table 3 displays the QLS estimates of the correlation parameters.
Notice that the estimated correlations were similar for the right sphere,
left sphere, and average sphere. The estimated correlations were greatest
between father and siblings, and smallest between siblings. These findings
are consistent with the method of family ascertainment.
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Table 3. The correlation parameter estimators for the OOA
ophthalmology study. ρ̂1 is the estimated correlation between
father and siblings, ρ̂2 is the estimated correlation between
mother and siblings and α̂ is the estimated correlation within
siblings.

Outcome ρ̂1 ρ̂2 α̂
Right Sphere 0.2932 0.2241 0.0234
Left Sphere 0.2740 0.1420 0.0130
Average Sphere 0.2880 0.1996 0.0177

6. Discussion

In this paper, we considered QLS, a two-stage approach based on GEE
that uses the same estimating equation for estimation of β, but that differs
from GEE with respect to estimation of α. We proved that the stage one
QLS estimates exist and are feasible, while the stage two QLS estimates will
be consistent with probability one, for the class of mixed linear correlation
structures. We considered familial correlation structures that are members
of the class of mixed linear correlation structures. Our general results justi-
fied implementation of QLS for the familial structures, in addition to other
members of the class of mixed linear structures, e.g. the banded Toeplitz
structure that was considered by Shults et al. (2006).

Our work was motivated by a study of spherical optical values in the Old
Order Amish (OOA). For this analysis, we implemented QLS for mixed fa-
milial correlation structures, which allowed the father-sibling, mother-sibling
and sibling-sibling correlations to vary in value. An important feature of the
OOA study was that the families varied in size; Our implementation of QLS
therefore relaxed the assumption of constant family size and composition
that is sometimes made in analysis of familial data.

We also conducted efficiency calculations based on the covariate design of
the OOA study, to demonstrate that if the mixed familial structures were
the true structures, but were misspecified as exchangeable structures, then
we could suffer a serious loss in efficiency in estimation of the regression
parameter. Our analysis and efficiency calculations demonstrated that it
can be important to carefully model the correlation structure of the data, in
order to maximize the information from the data and improve efficiency in
estimation of the regression parameter. To encourage the use of the mixed
familial correlation structures in practice, we also provide R functions that
extend our previous software for application of QLS in R (Xie and Shults,
2009) for implementation of these structures. The R functions, and an R
script file that demonstrates their use, is available on request from the first
and second authors.
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Future research that builds on our methods would be helpful. In ex-
tending this exploratory analysis to a larger sample ascertained without
regard to myopia status, it will be useful to develop a test that incorporates
the gender of each type of family member and to test whether like gen-
der relationships differ from mixed gender relationships within and between
families. For example, are the father-son and father-daughter correlations
equal in value and are they significantly different from the mother-son and
mother-daughter correlations? In addition, in this manuscript we consid-
ered spherical values that were measured on the left eye and right eye of
each subject, and that were computed as the average of measurements on
both eyes. Future work might extend our approach to allow for simultane-
ous analysis of both eyes. For example, the approach of Shults and Morrow
(2002) and Shults, Whitt, and Kumanyika (2004) might be applied to adjust
for two sources of correlation: due to the potential similarity of spherical
values that are measured on the same subject, or between two members of
the same family.

Appendix A. Proofs of Main Results

Proof of Theorem 1. To prove this theorem, we need the following lemma:

Lemma 5. R(ρ) is a differentiable n × n correlation matrix. Ω0 is the
margin of the feasible region for R(ρ). Then we have

(18) Prob
(

lim
ρ→Ω0

zTR−1(ρ)z = ∞ | z ∈ Rn

)
= 1.

We prove Lemma 5 in Appendix B. Here, we directly use this lemma
to prove Theorem 1. Suppose the feasible region for Ri(ρ) is Ωi, and the
margin of Ωi is Ωi0. Then the overall feasible region is Ω = ∩Ωi, and the
margin is Ω0 j ∪Ωi0. Therefore,

Prob

(
lim

ρ→Ω0

m∑

i=1

zT
i R−1

i (ρ)zi = ∞ | zi ∈ Rn, ∀i
)

(19)

≥Prob

(
lim

ρ→∪Ωi0

m∑

i=1

zT
i R−1

i (ρ)zi = ∞ | zi ∈ Rn, ∀i
)

≥Prob
(

lim
ρ→Ωi′0

zT
i′R

−1
i′ (ρ)zi′ = ∞ | zi′ ∈ Rn

)

=1.

Ω = ∪Ωi is an open set. Because of (19), we know the minimized point
of (9) is taken within Ω. And thus the stage one estimators exist and are
feasible almost surely.
Proof of Theorem 2. We only need to show that (9) is convex when
α ∈ Ω, and it is equivalent to show that

(20) H =
∂2Q(β, R(α))

∂α2
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is positive definite for all α ∈ Ω.
Using the fact that

(21)
∂R−1

i (α)
∂α

= −R−1
i (α)

∂Ri(α)
∂α

R−1
i (α),

we get
(22)

Hjk =
∂2Q(β, R(α))

∂αj∂αk
=

m∑

i=1

zT
i R−1

i (α)
∂Ri(α)

∂αj
R−1

i (α)
∂Ri(α)

∂αk
R−1

i (α)zi

Therefore, ∀ nonzero x = (x1, . . . , xs) ∈ Rs,

xTHx =
∑

j,k

xjHjkxk(23)

=
m∑

i=1

∑

j,k

xjz
T
i R−1

i (α)
∂Ri(α)

∂αj
R−1

i (α)
∂Ri(α)

∂αk
R−1

i (α)zixk)

Define γ
(i)
j = ∂Ri(α)

∂αj
R−1

i (α)zixj and G(i) = (β(i)
1 , . . . , β

(i)
s ). Then,

(24) xTHx =
m∑

i=1

1TG(i)TR−1
i (α)G(i)1

For all α ∈ Ω, since R−1(α) is positive definite, to show xTHx > 0, we only
need to show G(i)1 6= 0 when x 6= 0.

G(i)1 =
s∑

j=1

γ
(i)
j(25)

=




s∑

j=1

∂Ri(α)
∂αj

xj


R−1

i (α)zi

By hypothesis, for all x 6= 0,

(26)




s∑

j=1

∂Ri(α)
∂αj

xj


 6= 0.

Since zi ∈ Rni , R−1
i (α)zi does not lie in the solution space for (26) almost

surely. And therefore, (25) does not equal to 0 almost surely.
Proof of Corollary 3. It is easy to show that for linear correlation struc-
ture, α is identifiable if and only if (12) is satisfied.
Proof of Theorem 4. If Ri(α) has the form as (2), then

(27)
dR−1

i (δ)
dδj

∣∣∣∣
δ=δ̂

= −R−1
i (δ̂)(Ri(ej)−Ri(0))R−1

i (δ̂).
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Plug (2) and (27) into (11) and define Aij = R−1
i (δ̂)(Ri(ej)−Ri(0)), we

can rewrite the stage two estimating equation as

(28)
m∑

i=1

s∑

k=1

tr(AijAik)αk = − tr(AijR
−1
i (δ̂)Ri(0)), ∀j = 1, . . . , s.

Let Mjk =
∑m

i=1 tr(AijAik), wj = −∑m
i=1 tr(AijR

−1
i (δ̂)Ri(0)). Suppose

M = (Mjk)s×s and w = (w1, . . . , ws)T, then (28) can be written as a linear
form

(29) Mα = w.

We have the following lemma, which will be proved in Appendix B.

Lemma 6. Let Aij = R−1
i (δ̂)(Ri(ej) − Ri(0)), Mjk =

∑m
i=1 tr(AijAik). If

for each cluster i ∈ {1, . . . ,m}, Ri has the linear correlation structure form
(2), then M = (Mjk)s×s is positive definite.

Therefore, the stage two estimator α̂ = M−1w always exists and is
unique.

Appendix B. Proofs of Other Results

Proof of Lemma 5. Suppose eigenvalue, eigenvector pair of R(ρ) is

{(λ1(ρ), v1(ρ)) , . . . , (λn(ρ), vn(ρ))}.
Note that the corresponding eigenvalue and eigenvector pairs of R−1(ρ) is

{(1/λ1(ρ), v1(ρ)) , . . . , (1/λn(ρ), vn(ρ))}.
Let X1(ρ) = span{vi(ρ) : λi(ρ) = 0}. X2 = Rn\X1.

Note that the feasible region Ω, which requires all the eigenvalues of R is
positive definite, is an open region. It is obvious that Ω, R−1 is continuous
and differentiable too, since R−1 = det(R)R∗, where R∗ is the companion
matrix of R.

Forall z and M1, let’s fix them temporarily. We take a point ρ0 in the
feasible region. ∀ρ1 ∈ Ω0, if R(ρ1) = 0 (I will prove the other situation
later), we choose 0 < ε < ‖z‖2M1, ∃δ > 0, such that if ‖ρ − ρ1‖ < δ,
‖R(ρ) − R(ρ1)‖F < ε. According to Hoffman-Wielandt Theorem, there
exists a permutation π(1), π(2), . . . , π(n) of 1, 2, . . . , n, such that ∀ρ ∈ Θ1,

(30)

(
n∑

i=1

|λ(ρ)π(i) − λ(ρ1)i|2
) 1

2

< ‖R(ρ)−R(ρ1)‖F < ε.

From (30), we know that ∀ρ ∈ Θ1, λ(ρ) < ε, and therefore 1
λ(ρ) > 1

ε . Thus,
we have

(31) z′R−1(ρ)z > ‖z‖2min (1/λρ) > ‖z‖2/ε > M1.
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If R(ρ1) 6= 0, let’s suppose λ1(ρ1) = . . . = λk(ρ1) = 0, and 0 <
λk+1(ρ1) ≤ . . . λn(ρ1). Since ρ1 ∈ Ω0 and R(ρ1) 6= 0, 1 ≤ k ≤ n− 1. Then
X1(ρ1) = span{v1(ρ), . . . , vk(ρ)}. Obviously, X1 ⊥ X2. Since X1(ρ1) 6= φ,

(32) Prob{Proj(z | X1) = 0} = 1.

Therefore, with probability 1, M2 = Proj(z | X1) > 0.
Suppose M3 = λk+1(ρ1).∀0 < ε < min{M2M3/4,M2/(2M1)}, ∃δ > 0,

when ‖ρ − ρ1‖ < δ, ‖R(ρ) − R(ρ1)‖2 < ε, and ‖R(ρ) − R(ρ1)‖F < ε.
From Hoffman-Weilandt Inequality, we know that λi(ρ) < ε, ∀i = 1, . . . , k.
(The induction is the same as (30)). According to Stewart Inequality, since
‖R(ρ) − R(ρ1)‖2 < ε, dist(X1(ρ),X1(ρ1)) ≤ 2ε/M3 = M2/2. If Proj(z |
X1(ρ1)) = M2 6= 0, then Proj(z | (X)1(ρ)) > M2/2 > 0. Thus,

(33) z′R−1(ρ)z ≥ ‖Proj(z | X1(ρ))‖2/ε > M1.

Therefore, we have
(34)

Prob{z′R−1(ρ)z > M1} = Prob{Proj(z | X1(ρ1))} = 1, ∀‖ρ− ρ1‖ < δ.

Since Ω0 is a close region, there exists finite round discs which can cover
Ω0. Within every disc, (34) stands. Therefore, within all the finite round
discs, (34) stands. Thus, we proved Lemma 5, and therefore demonstrated
that the stage one estimates will have feasible solution with probability 1
for any correlation structure.
Proof of Lemma 6. ∀x ∈ Rs, we will show xTMx > 0. Suppose x =
(x1, . . . , xs).

xTMx =
m∑

i=1

s∑

j=1

s∑

k=1

xj tr(AijAik)xk(35)

=
m∑

i=1

s∑

j=1

s∑

k=1

tr(BijBik)

=
m∑

i=1

tr
(
B2

i

)
,

where

Bij = xjAij = R−1
i (δ̂)(Ri(xjej)−Ri(0)),(36)

Bi =
k∑

j=1

Bij = R−1
i (δ̂)




s∑

j=1

(Ri(xjej)−Ri(0))


(37)

= R−1
i (δ̂)(Ri(x)−Ri(0)).

Thus,

(38) B2
i = GiHi,
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where

Gi = R−1
i (δ̂)(39)

Hi = (Ri(x)−Ri(0))R−1
i (δ̂)(Ri(x)−Ri(0)).(40)

Since δ̂ is the final stage one estimates for the correlation parameters, by
Theorem 1 Gi is positive definite. ∀y ∈ Rs, yTHiy = [(Ri(x)−Ri(0))y]TGi[(Ri(x)−
Ri(0))y] ≥ 0, and thus Hi is semi-positive definite.

Kleinman and Athans (1968), in the context of design of suboptimal con-
trol systems, obtained that, for any two semi-positive definite matrix A and
B,

(41) λn(A) tr(B) ≤ tr(AB) ≤ λ1(A) tr(B),

where λi(A) is the ith largest eigenvalue of A.
Because Gi is positive definite, λn(Gi) > 0; and because Hi is semi-

positive definite and Hi 6= 0, tr(Hi) > 0. Therefore,

(42) tr(B2
i ) = tr(GiHi) ≥ λn(Gi) tr(Hi) > 0.

As a result,

(43) xTMx =
m∑

i=1

tr
(
B2

i

)
> 0,

and thus M is positive definite.

Appendix C. The limiting value of the QLS estimate of γ when
the true mixed correlation structure is

misspecified as exchangeable

Assume the true mixed correlation structures Ri(α) have been misspeci-
fied as exchangeable Wi(γ). Next, using arguments similar to those given in
Theorem 3.2 of Chaganty and Shults (1999), we note that E(Zi(β)Z

′
i(β)) =

φRi(α). It is then easy to show that the solution to the stage one estimating
equation (10) converges in probability to the solution (for γ) to the following
estimating equation:

(44) trace

(
m∑

i=1

∂

∂α
W−1

i (γ)Ri(α)

)
= 0.

The inverse of an exchangeable structure Wi(γ) can be expressed as

W−1
i (γ) =

1
(1− γ)

Ini −
γ

(1− γ)(1 + (ni − 1)γ)
ej e′j , where Ini is the iden-

tity matrix and ej is a ni × 1 column vector of ones. Next, if we note that
trace(ej e′jRi(α)) = trace(e′jRi(α)ej) = e′jRi(α)e), equation 44 can easily
be simplified as follows:
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(45)
m∑

i=1

ni −
m∑

i=1

1 + γ2(ni − 1)
(1 + γ(ni − 1))2

e′jRi(α)ej = 0.

In general, a solution g(α) (for γ) to (45) can be obtained using the bisec-
tion method. We next note that under an assumption of an exchangeable
structure, the stage two estimate is obtained as the solution f(γ) to the
stage two estimating equation (11) that is evaluated at γ̂ for exchangeable
structures Ri(γ). Since γ̂

p→ g(α), it then follows that the limiting value
of the stage two estimate for γ converges in probability to f(g(α)), so that
the limiting value of γ̂ can be obtained by solving (11) at δ̂ = g(α). The
stage two estimating equation has a closed form solution for the exchange-
able structure that is provided in (C.3) of Shults and Morrow (2002), for si

= ni and when (C.3) is calculated over all i, i.e. when gi = 1 for all i, so
that we only have one group of subjects.

An algorithm to obtain the limiting value can then be expressed as follows:
(i) For assumed true values of α, use the bisection method to obtain a

solution g(α) to 45.
(ii) Next, obtain the limiting value of γ̂ by evaluating (C.3) of Shults and

Morrow (2002) at τ̂1 = g(α), where si = ni and gi = 1 for all i.
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