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False Discovery Rate Analysis of Brain
Diffusion Direction Maps

Armin Schwartzman, Robert F. Dougherty, and Jonathan E. Taylor

Abstract

Diffusion tensor imaging (DTI) is a novel modality of magnetic resonance imag-
ing that allows non-invasive mapping of the brain’s white matter. A particular
map derived from DTI measurements is a map of water principal diffusion direc-
tions, which are proxies for neural fiber directions. We consider an experiment
in which diffusion direction maps were acquired for two groups of subjects. The
objective of the analysis is to find regions of the brain in which the corresponding
diffusion directions differ between the groups. This is attained by first computing
a test statistic for the difference in direction at every brain location using a Watson
model for directional data. Interesting locations are subsequently selected with
control of the false discovery rate. More accurate modeling of the null distribu-
tion is obtained using an empirical null density based on the empirical distribution
of the test statistics across the brain. Further, substantial improvements in power
are achieved by local spatial averaging of the test statistic map. Although the
focus is on one particular experiment and imaging technology, the proposed infer-
ence methods can be applied to other large scale simultaneous hypothesis testing
problems with a continuous underlying spatial structure.



1 INTRODUCTION

A central statistical problem in brain imaging experiments is to find areas of the brain
that differ between two groups of subjects, namely a control group and another group
with a special characteristic of interest.

Diffusion tensor imaging (DTI) is a modality of MRI that allows insight into the
brain’s white matter. As opposed to functional MRI, which shows brain activity,
DTI reveals anatomical structure. DTI measures the diffusion of water molecules in
tissue (Basser and Pierpaoli, 1996; Le Bihan et al., 2001; Bammer et al., 2002). Since
the movement of water is affected by the cell structure, the pattern of diffusion is an
indicator of the microscopic properties of the tissue. DTI data differ fundamentally
from conventional imaging data in that values at each spatial location are not scalars
but 3× 3 positive definite matrices, also called diffusion tensors. The diffusion tensor
at a location in space can be thought of as the covariance matrix of a 3D Gaussian
distribution that models the local Brownian motion of the water molecules in that
location. The diffusion tensors are measured at discrete volume elements called voxels
arranged in a regular spatial grid. Voxels are typically about 2 mm in size. A typical
DTI image of the entire brain of a subject may contain a few hundred thousand
voxels.

Because of familiarity with scalar statistics, investigators frequently restrict their
analysis of DTI data to scalar quantities derived from the diffusion tensor (e.g. Bam-
mer et al., 2000; Deutsch et al., 2005). The two most important such quantites are
trace and fractional anisotropy (FA), both functions of the tensor’s eigenvalues re-
lated respectively to the total amount of diffusion and the degree of anisotropy within
a voxel. An important non-scalar quantity derived from the diffusion tensor is the
principal diffusion direction, defined as the eigenvector corresponding to the largest
eigenvalue of the tensor. It is generally assumed that diffusion is restricted in the di-
rection perpendicular to the nerve fibers, so the principal diffusion direction provides
an estimation of the fiber direction within the voxel (Le Bihan et al., 2001). To the
best of our knowledge, the first attempt to formally analyze diffusion direction maps
in a multi-subject experiment has been reported by the authors (Schwartzman et al.,
2005). The present article is an extension of the analysis reported there.

Given two sets of principal diffusion direction maps, the task at hand is to find
regions that differ between the two groups. After appropriate spatial registration so
that all images are aligned in the same coordinate system, the analysis can be broken
down into two main steps: 1) Computation of a statistic that tests the difference
between group mean directions at every voxel; 2) Inference on the overall test statistic
map.

For step one, we use a probability model for the principal diffusion direction
given by the bipolar Watson distribution on the unit sphere (Watson, 1965; Best and
Fisher, 1986; Mardia and Jupp, 2000). We chose this distribution because it is one
of the simplest that possesses the property of being antipodally symmetric, giving
to each direction and its negative the same probability. This is crucial because the
diffusion tensor is invariant under sign changes of the principal eigenvector. This
particular model leads to appropriate definitions of mean direction and dispersion
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for a random sample of directions, as well as a test statistic for testing whether
two samples of directions, i.e. same voxel across two groups of subjects, have the
same mean. According to this model, the test statistic under the null hypothesis has
an approximate F distribution for fixed sample size, asymptotically as the samples
become more concentrated around their mean. This is useful when the number of
subjects is small, as it is generally the case in imaging experiments.

The second step in the analysis corresponds to solving a multiple testing problem
among a large number of voxels. For this we use the procedure by Storey, Taylor
and Siegmund (2004) that controls the false discovery rate (FDR). FDR inference
has been applied successfully to microarray analysis (e.g. Efron, Tibshirani, Storey
and Tusher, 2001; Efron, 2004) but is still a relatively new technique in brain imaging
(Genovese, Lazar and Nichols, 2002; Pacifico, Genovese, Verdinelli and Wasserman,
2004) where, in contrast, the usual approach has been control of the family-wise error
rate (FWER) using Gaussian random field theory (Worsley et al., 1996). A practical
reason for our choosing FDR over FWER is that the Storey, Taylor and Siegmund
(2004) procedure depends only on the marginal distribution of the test statistics,
while FWER control would require knowledge of the covariance properties of the
random field defined by the test statistics. This is relevant because the marginal
distribution of the Watson statistic is easy to estimate while the field properties are
not. A methodological reason for using FDR is that sometimes researchers are not
so interested in controlling the error over the entire search region but rather finding
interesting regions that could be further investigated. For this reason it is appropriate
to use the convention introduced by Efron et al. (2001) of calling the selected voxels
“interesting”.

The innovative aspects of the statistical analysis are twofold. The first is a new
empirical null for global modeling of the test statistic. Since the number of subjects
is small, a parsimonious model (such as the Watson) is needed at each voxel. On
the other hand, the number of voxels is large, so more accurate modeling of the null
distribution of the test statistic can be obtained by considering global parameters
common to all voxels. These global parameters are fit based on the empirical distri-
bution of the test statistic among voxels that may be considered to belong to the null
class. This empirical null concept was originally suggested for z-scores in a microarray
study setting (Efron, 2004). We introduce here a new version of the empirical null
adapted to the F nature of the Watson test statistic.

The second innovative aspect is the increase of power in FDR inference through
spatial smoothing. An important distinction between the multiple testing problems
in brain imaging and microarray analysis is that the former are accompanied by a
spatial structure. We take advantage of this property in order to increase statistical
power by applying local spatial averaging, which reduces the noise variance. While
routinely used in image processing, the effect of spatial smoothing on FDR inference
is only starting to be studied (Pacifico, Genovese, Verdinelli and Wasserman, 2004).
Here the empirical null helps again assess the marginal null distribution of the test
statistic after smoothing.

The article is organized as follows. Section 2 describes the data. Section 3, to-
gether with the appendix, summarize the relevant features of the Watson distribution.
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Section 4 describes the FDR inference, including the empirical null and the local aver-
aging. The data analysis is integrated into sections 3 and 4 and follows along with the
theory. Further evaluation and criticism of the analysis results are offered in Section
5.

2 THE DATA

Our particular data set concerns an observational study of anatomical differences
related to reading ability in children, conducted by a research team at Stanford
University that included one of the authors (RFD). The study was motivated by
a previous report of anatomical evidence of dyslexia in adults (Klinberg et al., 2000).
Two groups of children were recruited for the study: a control group consisting of
children with normal reading abilities and an experimental group of children with a
previous diagnosis of dyslexia. The subjects were physically and mentally healthy,
strongly right-handed, 7-13 years of age, had English as their primary language and
intelligence within the average range. There were no significant group differences in
age, gender, parental education, or socioeconomic status. More details on the study
and the image acquisition are given in Deutsch et al. (2005).

The data set consists of 12 diffusion direction maps, of which 6 belong to the
control group and 6 to the dyslexic group. Each diffusion direction map is a 95×79×68
array of voxels representing spatial locations in a rectangular grid with 2× 2× 3 mm
regular spacings. To every voxel corresponds a unit vector in R3 that indicates the
principal diffusion direction at that voxel. These vectors actually represent axes in
the sense that the vectors x and −x are equivalent.

For the purposes of statistical analysis, all diffusion direction maps are assumed
to be aligned in the same coordinate system so that each voxel corresponds to the
same brain structure across all subjects. Since subjects have different head sizes and
shapes and may lie slightly differently in the scanner, co-registration of the images
was necessary (Schwartzman et al., 2005). The common coordinate system used here
is based on a standard in the brain imaging field called the MNI template. The
vertical z axis corresponds to the inferior-superior direction for a subject standing
up, looking forward. The origin is located at an anatomical landmark low near the
center of the brain called the anterior commisure.

Investigators in the brain imaging field often restrict their analyses to a subset of
the brain, called search region or mask, that is relevant to the particular experiment.
The purpose is to increase significance by reducing the data volume and the multiple
comparisons problem. A trade-off exists because a search region that is too small will
exclude other regions of the brain where interesting differences may be found. Since
DTI is particularly good at imaging the white matter of the brain, the search region
in this experiment was defined as voxels that had a high probability of being within
the white matter for all subjects (Schwartzman et al., 2005). In our case, the white
matter mask contains N = 20931 voxels.

A previous analysis of this dataset (Deutsch et al., 2005) used scalar FA images
instead of the principal diffusion direction maps, and focused on a small white matter
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region (120 voxels). Our analysis searches for differences in principal diffusion direc-
tion over a much larger white matter region (20931 voxels) and reveals differences
in gross anatomical structure in other parts of the white matter that are invisible to
statistical analyses of FA.

Examples of diffusion direction maps are shown in Figure 1 (these are not maps
of individual subjects but rather the average maps for each group, as described in
Section 3; the data structure however is the same).

3 STATISTICS FOR DIFFUSION DIRECTIONS

3.1 The bipolar Watson distribution

Given the sign umbiguity property of diffusion directions, it is appropriate to consider
probability density functions on the sphere that are antipodally symmetric. If x is a
random unit vector in R3, we require that the density f(x) satisfies f(x) = f(−x).
One of the simplest models with this property is the bipolar Watson distribution
(Watson, 1965), whose density is given by (Mardia and Jupp, 2000, pp. 181)

f(x;µ, κ) = C(κ) exp(κ(µTx)2) (1)

The parameter µ is a unit vector called mean direction and κ is a positive constant
called concentration parameter. The Watson distribution can be thought of as a
symmetrization of the Fisher-Von Mises distribution for unit vectors on the sphere,
whose density is C(κ) exp(κµTx). The squared exponent in (1) ensures the required
antipodal symmetry. The density has maxima at ±µ and becomes more concentrated
around ±µ as κ increases. The density is also rotationally invariant around ±µ. The
normalizing constant C(κ) is not needed for the comparison methods used here. It is
nevertheless included in the appendix for completeness.

More complex models exist for axial data. For instance, the Bingham distribution
(Mardia and Jupp, 2000, pp. 181) allows modeling data without assuming rota-
tional invariance about the mean axis. The benefit of flexibility in such models is
outweighted by the cost in degrees of freedom for the estimation of the additional pa-
rameters. Given the small number of subjects in our data, the simpler Watson model
is preferable. More flexible modeling is incorporated instead through the empirical
null (Section 4).

3.2 Mean direction and dispersion

Let x1, . . . ,xn be a sample of unsigned random unit vectors in R3. In our data these
would be principal diffusion directions from a single voxel for each of n subjects.
Because the data is sign invariant, the direct average is not well defined. Instead, the
sample mean direction x̄ is defined as the principal eigenvector (i.e. the eigenvector
corresponding to the largest eigenvalue) of the scatter matrix

S =
1

n

n∑
i=1

xix
T
i (2)
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S may be interpreted as the empirical covariance of the points determined by x1, . . . ,xn
on the sphere. Intuitively, if the points on the sphere have a preferential direction
then, as a group, they are also further apart in space from their antipodes. The prin-
cipal eigenvector of the scatter matrix points in the direction of maximal variance in
space, which is the preferential direction for the points on the sphere. It can be shown
(see appendix) that x̄ is the maximum likelihood estimator of the location parameter
µ when x1, . . . ,xn are iid samples from the Watson model.

The sample dispersion is defined as s = 1− γ, where γ is the largest eigenvalue of
S. Intuitively, when the sample is concentrated around the mean, the antipodes are
far apart as a group and so the principal variance γ is close to 1, giving a dispersion s
that is close to 0. Conversely, when the sample is uniformly scattered on the sphere,
the fact that trace(S) = 1 dictates that the three eigenvalues are equal to 1/3. The
dispersion s in that case takes its maximum value of 2/3. It can be shown (see
appendix) that s is the maximum likelihood estimate of 1/κ in the Watson model,
asymptotically when κ → ∞. Since κ controls concentration, this is consistent with
s as a measure of dispersion.

A useful interpretation of s in units of angle is obtained by computing the quantity
arcsin(

√
s), which we call the angle dispersion of the sample. This definition is a

direct consequence of the fact (see appendix) that s is the average sine-squared of the
angles the samples make with the sample mean direction x̄. This definition results in
a maximal angle dispersion of arcsin(

√
2/3) = 54.74◦ in the case of uniformity.

An example of mean direction maps is shown in Figure 1. This particular slice
was selected via the inference procedure described in Section 4 and it shows large
differences in diffusion direction of up to 46.1◦ in the upper left corner of the white
matter mask. The statistical test described next formalizes this observation.

3.3 A two-sample test for directions

Consider two samples of unsigned unit vectors of sizes n1 and n2, with respective
sample dispersions s1 and s2. We wish to test the null hypothesis H0 : µ1 = µ2. We set
this up as a one-sided test H0 : |µ1−µ2| = 0 against the alternative HA : |µ1−µ2| > 0.
The test statistic is contructed as follows (Mardia and Jupp, 2000, pp. 238).

Under the null, the two samples can be viewed as a single sample of size n = n1+n2

and corresponding sample dispersion s. Similar to an analysis of variance, the total
dispersion ns is decomposed as

ns = (n1s1 + n2s2) + (ns− n1s1 − n2s2)

where the two terms in parenthesis correspond to the intragroup and intergroup
dispersion, respectively. The test statistic T , which we shall call Watson statistic,
is defined as the ratio of the intergroup to the intragroup dispersion divided by the
corresponding number of degrees of freedom, 2 for the intergroup term and 2(n− 2)
for the intragroup term:

T =
(ns− n1s1 − n2s2)/2

(n1s1 + n2s2)/(2(n− 2))
. (3)
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If the underlying concentration parameter κ is the same in both samples then, asymp-
totically as κ→∞, the Watson statistic (3) has an F distribution with 2 and 2(n−2)
degrees of freedom. Because of the asymptotic assumptions, this is called a high con-
centration test rather than a large sample test. This means that the test is valid for
small sample sizes as long as the group dispersions are low. The appendix gives a
derivation of the null distribution of the Watson statistic in the general case of testing
equality of means between a number of samples possibly greater than two.

A map of the Watson statistics is shown in Figure 2a, at the same slice as Figure
1. In our case, n = 12 and so the theoretical null distribution is F (2, 20). For reasons
that will become clear in Section 4.2, the test statistics have been transformed to a χ2

scale by a one-to-one quantile transformation from F (2, 20) to χ2(2). Notice the local
maximum of the test statistic map on the upper left corner of the white matter mask,
indicative of the difference in direction alluded in Section 3.2. To assess significance,
we incorporate the multiple testing problem, as described next.

4 FALSE DISCOVERY RATE INFERENCE

4.1 FDR control

The inference problem of finding significant voxels is a multiple comparisons problem
of the type

H0(r) : |µ1(r)− µ2(r)| = 0 vs. HA : |µ1(r)− µ2(r)| > 0

where the location r ∈ R3 ranges over the search region. We overcome the multiple
comparisons problem by controlling the false discovery rate (FDR), the expected
proportion of false positives among the voxels where the null hypothesis is rejected.
As an alternative to the FDR-controlling procedures described in Benjamini and
Hochberg (1995) and Genovese et al. (2002), which are based on ordering of the p-
values, we use an equivalent interpretation of the procedure taken from Storey et al.
(2004), as follows.

Let T be a test statistic that rejects the null hypothesis at voxel r if its value T (r)
is large. In our case, T is the Watson statistic from (3), but the following description
applies more generally. Let the search region M contain N voxels, so that N is the
number of tests (in our case, N = 20931). The null hypothesis is true in an unknown
subset M0 ⊂ M with N0 voxels, while the alternative is true in the complement
MA = M \M0. The objective is to detect as much as possible of MA while controlling
the FDR. For any fixed threshold u, let R(u) and V (u) be respectively the number
of rejections and the number of false positives out of N . That is,

R(u) =
∑
t∈M

1(T (r) ≥ u), V (u) =
∑
t∈M0

1(T (r) ≥ u).

In terms of these empirical processes, the FDR is defined as

FDR(u) = E

[
V (u)

R(u) ∨ 1

]
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where the effect of the maximum operator ∨ is to set the ratio to 0 when R(u) = 0.
The natural empirical estimator of FDR(u) is the ratio

F̂DR(u) =
(N̂0/N) · E[V (u)/N0]

R(u)/N
=
p̂0PH0 [T (r) ≥ u]

P̂ [T (r) ≥ u]
(4)

where P̂ denotes a probability computed from the empirical distribution of the test
statistic T across M and PH0 is a probability computed from the exact distribution
of the test statistic according to the null hypothesis H0. The factor p̂0 is an estimate
of the true fraction of null voxels N0/N . Assuming that most voxels are null, p̂0 may

be taken to be 1, making the estimate F̂DR(u) slightly larger and thus conservative.
Expression (4) has a nice graphical interpretation as the ratio of the tail areas under
the null and empirical densities respectively. Notice that this formula assumes that
the null distribution of the test statistic is the same in all voxels.

Voxels in which the alternative hypothesis is true tend to have higher values
of the test statistic than expected according to the null hypothesis. As a result,

F̂DR(u) tends to decrease as u increases. For a given FDR level α, the threshold is

automatically chosen as the lowest u for which F̂DR(u) is smaller or equal to α:

uα = inf{u : F̂DR(u) ≤ α}.

It is shown by Storey et al. (2004) that when the truly null N0 test statistics are
independent and identically distributed, this procedure (with p̂0 = 1) is equivalent to
the Benjamini and Hochberg (1995) procedure, and therefore provides strong control
of the FDR. Moreover, it is shown in Storey et al. (2004) that the strong control also
holds asymptotically for large N under weak dependence of the test statistics, such
as dependence in finite blocks. Weak dependence may be assumed in brain imaging
data because the number of voxels is large and dependence is usually local with an
effective range that is small compared to the size of the brain.

4.2 Empirical null

A histogram of the Watson statistics for all N = 20931 voxels in the white matter
mask is shown in Figure 3a, except that the test statistics have been transformed
to a χ2 scale by a one-to-one quantile transformation from F (2, 20) to χ2(2). The
theoretical null χ2(2) (dashed curve) gives a reasonable description of the distribution
of the test statistics. The empirical null density (solid curve), however, provides a
much better fit to the data. The empirical null takes advantage of the large number
of voxels to globally correct for the lack of flexibility and possibly short-of-asymptotic
behavior of the distribution prescribed by the theoretical model.

The empirical null concept was originally proposed for z-scores (Efron, 2004),
whose theoretical null is N(0, 1). There, t-statistics were handled by transforming
them to z-scores via a one-to-one quantile transformation from the appropriate t
distribution to a N(0, 1). The effect of this transformation is to eliminate the depen-
dence on the number of subjects, which affects the estimation of the variance in the
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denominator of the t-statistic. In our case, the transformation from F (2, 20) to χ2(2)
has a similar effect. Keeping the numerator degrees of freedom intact preserves inter-
pretation of the dimensionality of the problem. The empirical null for χ2 statistics is
computed as follows (Schwartzman, 2006).

Let f(t) denote the marginal density of the test statistic T over all voxels. From
the setup of Section 4.1, we write it as the mixture

f(t) = p0f0(t) + (1− p0)fA(t)

where the fraction of voxels p0 = N0/N behave according to the null density f0(t)
and the remainder 1− p0 behave according to an alternative density fA(t). To make
the problem identifiable, it is assumed that p0 is close to 1 (say, larger than 0.9), so
that the bulk of the histogram N∆f̂(t) (left portion of Figure 3a, where ∆ = 0.2 is
the bin width) is mostly composed of null voxels. The density fA(t) may itself be a
mixture of other components but its form is irrelevant as long as it has most of its
mass away from zero, or equivalently, if its contribution to the mixture (1− p0)fA(t)
is small for values of t close to zero.

As an adjustment to the theoretical null N(0, 1), Efron (2004) proposed an em-
pirical null of the form N(µ, σ2). Similarly, as an adjustment to a theoretical null
χ2(ν0) with ν0 degrees of freedom, we propose an empirical null of the form aχ2(ν)
with ν degrees of freedom (possibly different from ν0) and scaling factor a (possibly
different from 1), i.e.

f0(t) =
1

(2a)ν/2Γ(ν/2)
e−t/(2a)tν/2−1 (5)

This is essentially a gamma distribution, but the scaled χ2 notation makes interpreta-
tion of the results easier. Under the above assumptions, the portion of the histogram
N∆f̂(t) close to t = 0 should resemble the scaled null p0f0(t). Proceeding as in Efron
(2004), we fit model (5) to the histogram N∆f̂(t) via Poisson regression using the
link

log
(
p0f0(t)

)
= − t

2a
+

(
ν

2
− 1

)
log t+ constant. (6)

This is a linear model with predictors t and log t and observations given by the
histogram counts. The estimated parameters â and ν̂ are solved from the estimated
coefficients of t and log t in the Poisson regression. An estimate of p0 is also obtained
by solving the expression for the constant in the regression.

As in Efron (2004), the fitting interval is arbitrary. In Figure 3a we used an
interval from 0 up to the 90th percentile of the histogram. The fitted parameters
were â = 1.000 and ν̂ = 1.78. Although the scaling is unaffected, the reduced number
of degrees of freedom may be capturing some additional structure not accounted for
by the Watson model, such as correlation or spherical asymmetry.

With the empirical null, the FDR estimate (4) is now replaced by

F̂DR
+

(u) =
p̂0P̂H0 [T (r) ≥ u]

P̂ [T (r) ≥ u]
(7)
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Notice the extra “hat” in the numerator, indicating that the empirical null is being
used instead of the theoretical null.

The FDR analysis is summarized in Figure 3b. The FDR curve corresponding to
the theoretical null (dashed) was computed using (4) with p̂0 = 1. The FDR curve
corresponding to the empirical null curve (solid) was computed using (7) with the
fitted parameters described above. The value of the curve for u = 0 is our empiricall
null estimate of p0, equal to 0.974. Notice that the FDR curves have a general
tendency to decrease as the threshold increases. The empirical null gives better FDR
values than the theoretical null, but that is not necessarily true in general (Efron
(2004) provides a counterexample).

The FDR level α = 0.2 intersects the empirical null FDR curve at a threshold
of 15.92, marked in the figure as a vertical dashed segment. As a reference, this
threshold corresponds to an uncorrected p-value of 3.5 × 10−4. The 15.92 threshold
resulted in 23 interesting voxels. Although these selected voxels are located in several
areas of the white matter, it is in slices z = 23 mm to z = 25 mm that they are closer
together and have the highest values of the Watson statistic. These three slices are
shown in the top row of Figure 4, with the corresponding subset of 8 voxels marked
in white. The group difference in this region can also be seen as a local maximum in
the test statistic map of Figure 2a. A hierarchical clustering analysis of the selected
voxels showed that the 23 voxels can be grouped into 14 clusters, the largest of which
has size 3. These results are also indicated in Table 1.

4.3 Improved power by local averaging

So far, the analysis has been based on marginal densities and has not taken into
account the information available in the location index r. Neighboring voxels tend
to be similar because the anatomical structures visible in DTI are typically larger
than the voxel size. The logical spatial units are the various brain structures, not the
arbitrary sampling grid of voxels, and therefore it is desirable to select clusters rather
than individual voxels. Spatial smoothing may reduce noise and may better detect
clusters that correspond to actual anatomical structures.

Consider a simple box smoother hb(r) = 1(r ∈ Bb)/|Bb| where the box Bb is a
cube of side b voxels and volume |Bb| = b3. Convolution of the test statistic map T (r)
with the box smoother results in the locally averaged test statistic map

Tb(r) = T (r) ∗ hb(r) =
1

|Bb|
∑
v∈Bb

T (r − v). (8)

In the null regions, the smoothed test statistic Tb(r) at every voxel is the average
of b3 χ2(2)-variables. If the test statistics were independent, Tb(r) would be exactly
χ2(2b3)/b3. It is known that the sum of identically distributed exponentially corre-
lated gamma-variables can be well approximated by another gamma-variable (Kotz,
1964). Instead of theoretically deriving the parameters of the gamma distribution and
estimating the correlation from the data, an easier solution is given by the empirical
null. Exponential correlation being a reasonable model for spatial data, we take the
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empirical null to be a scaled χ2 (gamma). We then estimate the null parameters a
and ν directly from the histogram of Tb(r) following the same recipe as in Section 4.2.

A slight change from the previous analysis of Section 4.2 is in the size of the mask.
In order to minimize edge effects, the local averaging (8) was applied to the unmasked
images and the mask reapplied for the purposes of statistical analysis. Edge effects
due to some external anatomical features close to our search region (such as cerebro-
spinal fluid) resulted in the exclusion of some voxels, causing as slight reduction in
the size of the mask from the original N = 20931 at b = 1 to N = 17050 at b = 9.
(Table 1).

The locally averaged test statistic map for b = 5 is shown in Figure 2b. The
corresponding histogram is shown in Figure 3c. Notice the narrowing of the histogram
around the global mean value 2 as a result of the averaging. Figure 3d shows the
corresponding FDR curve. The smoothing has greatly helped differentiate the two
major components of the mixture. This time we can afford to reduce the inference
level substantially with respect to the previous analysis. Setting α = 0.05 results in
1609 interesting voxels out of 19856. Figure 4, bottom row, shows the largest two
out of 21 discovered clusters. These clusters actually extend vertically in the brain
all the way from z = 5 mm to z = 27 mm.

Repeated analyses for b = 3, 5, 7, 9 result in the selection of two large clusters
in about the same location. The effect of b on the number of selected voxels and
cluster size is summarized in Figure 6. The total fraction of selected voxels out of
N increases dramatically even with the least amount of smoothing, but it reaches a
maximum at b = 7. A similar plateau effect is also observed in the size of the two
largest clusters, especially at FDR levels 0.05 and 0.01. Notice that the second largest
cluster disappears at b = 9 and FDR level 0.01. Increasing b beyond 9 is impractical
due to the limited size of the white matter mask.

5 DISCUSSION

We have compared two groups of diffusion direction maps using a Watson model for
directional data. The inference procedure was built upon voxel-wise test statistics
and depended only on their marginal distribution. Taking advantage of the large
number of voxels and the spatial structure of the data, were able to improve the
model fit to the data using global parameters and improve the statistical power using
local averaging.

The choice of the null distribution is crucial for the inference process. Why is
the theoretical null not enough? The F (2, 20) theoretical null (Section 3.3) is a high
concentration asymptotic based on a normal approximation to the Watson density
(see Appendix). The asymptotic density is actually approached quickly as κ increases
(Figure 5). For reference, the 0.001-quantile is 8.5 for κ = 5 and 9.4 for κ = 10,
compared to 9.9 for the F (2, 20) distribution. Since the 25th and 50th percentiles of
the distribution of the estimated κ among all 9203 voxels are 5.0 and 9.8, we may say
the high concentration assumption is reasonable for many voxels, yet the minority
that is not highly concentrated may have an effect on the overall mixture.
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Although not clear from Figure 5, the F (2, 20) density is heavier tailed than for
finite κ. Notice in the above calculation that the 0.001-quantile 9.9 from the F (2, 20)
density is higher than it would be if the true concentration were used instead. Since
the Watson density has a finite domain on the sphere, it is necessarily lighter tailed
than the normal density that approximates it when κ is large. This effect is stronger
in the numerator of the Watson statistic (3), thus making the F distribution heavier
tailed than necessary for the data. The empirical null provides the lighter tail, as
needed.

The discrepancy between the theoretical and empirical nulls for low values of T
may be explained by the distribution on the sphere not being spherically symmetric.
The numerator degrees of freedom in F (2, 20) corresponds to the dimensionality of
the normal approximation to the Watson density on the tangent plane when κ is
large. The number of degrees of freedom 1.78 in the empirical null, somewhat smaller
than 2, suggests that the proper approximation may not be bivariate normal with
circular contours but rather with elliptical contours. Again, instead of paying extra
parameters at each voxel, this is captured globally by the empirical null. The empirical
null is also effective because it provides a model for a mixture of distributions from
a large number of voxels, adjusting for unknown hetereoschedasticity and correlation
between individual voxels. It should be noted, however, that there is not necessarily
a direct increase in power associated with the empirical null (Efron (2004) provides
counterexamples). The empirical null only answers a question of model validity.

Local averaging has a tremendous impact on statistical power because the power at
every single voxel is indeed low. Consider the power at a single voxel with the observed
peak separation of 46.1◦ as the effect size. Simulation of the Watson statistic under
this alternative hypothesis reveals that the power of a single test of the F (2, 20)
null at level α = 0.001 is 0.180 for κ = 5 and 0.804 for κ = 10. A very high
concentration is required in order to have sufficient power. Under the assumption
that the signal changes slowly over space, local averaging has the effect of reducing
variance, effectively increasing the concentration associated with the smoothed test
statistic and thus increasing power.

The reduction in variance provided by local averaging increases with the size of
the smoothing kernel. Too much smoothing, however, results in a reduction of the
signal. This effect is seen in Figure 6, where the detection rate goes down if b is
too large. The shape of the graphs in Figure 6 suggests there may exist an optimal
kernel that maximizes power, although the exact choice of r might not be critical as
long as it is within certain neighborhood of the optimum. The choice of kernel size is
an interesting question for further research and prompts questions about the proper
definition of power for FDR inference of spatial signals.

Another interesting effect is seen in the behavior of the estimated parameters of
the empirical null as a function of the kernel size b (Figure 7). While p̂0 resembles
Figure 6, â and ν̂ are very close to functional forms of b, 1/

√
b3 and 2

√
b3 respectively.

These are slower rates than we would expect if neighboring voxels were independent.
The actual rates might shed light into the actual correlation structure of the data.

Despite the apparent success of smoothing, there are some caveats. As b increases,
so does the dependence between the test statistics, shaking the ground on which
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the strong control of FDR relies (Section 4.1). Furthermore, there is a problem
of interpretation of the results. The inference after smoothing is no longer about
the original set of hypotheses but about a smoothed set of hypotheses. We might
gain significance, but loose spatial localization. Also anatomically, smoothing with a
kernel larger than the stuctures of interest will prevent interpretation of the results
as differences in brain structure.

The choice of smoothing the test statistic map, as opposed to the original data,
was a practical one. To smooth the subjects’ direction maps was problematic because,
even if the Watson model were correct, the mean direction of a Watson sample is no
longer Watson. Smoothing of the test statistic map is a more general platform that
can be studied independently of how the test statistics were generated.

While some structural differences were found between the two groups, not enough
is known yet about the anatomical basis for dyslexia in order to interpret these results.
Insights about dyslexia would require tracking the neural connections between the
deep white matter regions discovered in this study and the peripheral gray matter
regions involved in reading. This is a challenge beyond the scope of this paper.

In summary, we have developed a methodology for comparing two groups of dif-
fusion direction maps and finding interesting regions of difference between the two
groups. The Watson model was necessary because of the directional nature of the
data. The inference procedure, on the other hand, was built upon voxel-wise test
statistics. The key elements in the inference procedure were the empirical null and
smoothing of the test statistic map. The procedure can be applied more generally
to other large scale simultaneous hypothesis testing problems with a continuous un-
derlying spatial structure. The requirements are an approximate theoretical null
distribution of the test statistics, upon which an empirical null distribution can be
computed, and a spatial structure where spatial smoothing of the test statistics is
well defined.

A APPENDIX: COMPUTATIONS FOR THE BIPO-

LAR WATSON DISTRIBUTION

The following summary is a reinterpretation of material from Mardia and Jupp (2000,
pp. 181, 202, 236-240), Watson (1965) and Best and Fisher (1986). It includes a
new asymptotic approximation for the integration constant and a new interpretative
quantity called angle dispersion.

A.1 Integration constant

Define a spherical coordinate system on the unit sphere so that the z-axis coincides
with the mean vector µ. For a unit vector x, let θ be the co-latitude angle between
x and the z-axis. Denote the longitude angle by φ. The Watson density in this
coordinate system is given by

f(θ, φ) = C(κ)eκ cos2 θ sin θ dθ dφ, 0 ≤ θ < π/2, 0 ≤ φ < 2π.
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The restriction of the density to half the sphere accounts for the antipodal symmetry.
This formulation is slightly different than the one in Best and Fisher (1986), which
defines the density on the entire sphere. An expression for C(κ) is obtained integrating
the density with the change of variable u = cos2 θ, yielding

C(κ) =

[
2π

∫ 1

0

eκu
2

du

]−1

.

The definite integral in the above expression is a special case of the Dawson integral
Abramowitz and Stegun (1972, pp. 298).

An explicit asymptotic expression can be found in the large concentration case.
When κ is large, most of the probability density is concentrated around µ and x is
close to µ with high probability. Intuitively, the region of the sphere close to µ looks
locally like a two-dimensional plane. A scaled projection of the density onto this
plane is obtained with the change of variable r =

√
2κ sin θ, giving

f(r, φ) =
2πC(κ)eκ

2κ
· e
−r2/2 r dr dφ

2π
√

1− r2

2κ

, 0 ≤ r <
√

2κ, 0 ≤ φ < 2π. (9)

For large κ the second factor in the density looks like a bivariate Gaussian density
and its integral should converge to 1. Indeed, another change of variable u = r2/2κ
and integrating by parts the second factor in (9) yields∫ 2π

0

dφ

2π

∫ 1

0

e−κu κ du√
1− u

= 2κ

(
1− κ

∫ 1

0

e−κu du
√

1− u
)
.

The bounds

1− u

2
− u2

2
≤
√

1− u ≤ 1− u

2
, 0 ≤ u ≤ 1

then lead to

1 + (κ− 1)e−κ ≤
∫ √2κ

0

e−r
2/2 r dr√
1− r2

2κ

≤ 1 +
2

κ
−
(

3 +
2

κ

)
e−κ.

Replacing in the integral of (9) we obtain

πC(κ)eκ

κ
∼ 1 ⇒ C(κ) ∼ κ

πeκ
, κ→∞. (10)

A.2 Maximum likelihood estimates

Let x1, . . . ,xN be a random sample from the Watson distribution. The log-likelihood
is

κ
N∑
i=1

(xTi µ)2 +N logC(κ) = N{κµTSµ+ logC(κ)} (11)
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where S is the scatter matrix 2. For κ > 0, the MLE µ̂ is the maximizer of µTSµ
constrained to µTµ = 1 and is given by the eigenvector of S that corresponds to the
largest eigenvalue γ. At the maximum,

µ̂TSµ̂ = µ̂Tγµ̂ = γ. (12)

Differentiation of (11) with respect to κ gives µ̂TSµ̂ = A(κ̂), where

A(κ) = −C
′(κ)

C(κ)
=

∫ 1

0
t2eκt

2
dt∫ 1

0
eκt2 dt

. (13)

Using (12), κ̂ is thus found by solving

A(κ̂) = γ. (14)

The function A(κ) is monotonically increasing in the range [1/3, 1) as κ increases
from 0 to∞. Replacing the asymptotic (10) in (13) we obtain the large concentration
approximation

A(κ) ∼ 1− 1

κ
, κ→∞.

Setting the dispersion s = 1 − γ in (14) and using the previous approximation for
A(κ) we get that at the point of maximum likelihood s ∼ 1/κ̂, which justifies the
interpretation of s as a measure of dispersion.

We now obtain an interpretation of s in terms of angle units. Replacing (2) in
(12) we obtain

γ = µ̂TSµ̂ =
1

N

N∑
i=1

(µ̂Txi)(µ̂
Txi)

T =
1

N

N∑
i=1

cos2 θ̂i,

and so

s = 1− γ =
1

N

N∑
i=1

sin2 θ̂i, (15)

In other words, s is the average sine-squared of the angles that the samples make
with the mean direction. An interpretation of s in units of angle is obtained thus by
computing the quantity arcsin(

√
s), which we call angle dispersion.

A.3 A multi-sample large concentration test

Given q samples of sizes N1, . . . , Nq, we wish to test H0 : µ1 = . . . = µq against the
alternative that at least one of the means is different. For simplicity, we assume that
all samples have the same unknown large concentration κ.
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Consider first the entire sample of size N = N1 + . . .+Nq with common mean µ
and pooled dispersion s. Using (15), we write the total dispersion as

2κNs =
N∑
i=1

2κ sin2 θ̂i =
N∑
i=1

r̂2
i

where r̂i =
√

2κ sin θ̂i. When µ is known, the density (9) indicates that each ri
(without the “hat”) is approximately standard bivariate Gaussian when κ is large.
2κNs is thus the sum of N independent approximately χ2

2 random variables. The
estimation of µ reduces two degrees of freedom so

2κNs
�∼
H0

χ2
2(N−1). (16)

For q independent samples of sizes N1, . . . , Nq and dispersions s1, . . . , sq, 2q param-
eters are fitted and we have the intragroup sum of squares

2κ

q∑
j=0

Njsj
�∼
H0

χ2
2(N−q). (17)

In the “analysis of variance” decomposition

2κNs = 2κ

q∑
j=0

Njsj + 2κ

[
Ns−

q∑
j=0

Njsj

]
,

the asymptotics (16) and (17) imply that the second term on the RHS is approxi-
mately χ2 with 2(N −1)−2(N − q) = 2(q−1) degrees of freedom and approximately
independent of the first term. The second term represents the intergroup disper-
sion. Proceeding as in the analysis of variance for normal variables, we construct the
Watson test statistic as the ratio between the intergroup and the intragroup terms di-
vided by the appropriate number of degrees of freedom. Correspondingly, the Watson
statistic is asymptotically F -distributed as

T =

[
Ns−

∑q
j=0 Njsj

]
/2(q − 1)[∑q

j=0 Njsj
]
/2(N − q)

�∼
H0

F2(q−1),2(N−q).

Notice that the actual value of κ, although assumed large, is not needed in the final
formula of the statistic.
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Table 1: Interesting voxels selected at various smoothing sizes and FDR levels. Listed
are the mask size (N), the estimated empirical null parameters, fitting limit, FDR
level, threshold, number of selected voxels, number of clusters and size of the largest
clusters. The ≤ sign implies there are other smaller clusters than listed.

b N p̂0 â ν̂ T90 α uα R(uα) # clust clust sz

1 20931 0.974 1.000 1.78 4.84 0.2 15.92 23 14 ≤ 1,2,3
3 20613 0.938 0.203 8.66 3.51 0.2 4.14 1273 53 ≤ 59,282,478

0.05 5.46 452 25 ≤ 34,89,192
0.01 6.80 164 13 ≤ 21,36,57

5 19856 0.928 0.091 20.01 3.03 0.2 3.23 1609 25 ≤ 90,427,711
0.05 3.90 790 21 ≤ 42,216,431
0.01 4.60 345 10 ≤ 33,86,167

7 18720 0.926 0.052 36.10 2.80 0.2 2.90 1606 18 ≤ 83,509,889
0.05 3.35 829 12 ≤ 17,256,517
0.01 3.79 442 8 ≤ 13,108,316

9 17050 0.930 0.035 54.31 2.66 0.2 2.76 1410 12 ≤ 11,519,852
0.05 3.13 691 6 ≤ 3,187,494
0.01 3.52 227 6 ≤ 4,216

http://biostats.bepress.com/cobra/art19



a b

Figure 1: Mean diffusion direction map for control group (a) and dyslexic group
(b) at transverse (axial) slice z = 23 mm. Colors indicate coordinate directions:
superior-inferior (blue), right-left (red) and anterior-posterior (green). The figure was
constructed by taking the absolute value of the vector entries of the diffusion direction
at each voxel and mapping each (now positive) entry to a scale in the corresponding
color. Mixed colors represent directions that are oblique to the coordinate axes. The
white matter mask is delineated by the colored area. The gray background is a
standard T1-weighted MRI scalar image of the same slice, superimposed for visual
reference. Two major brain structures are visible in this picture: the corona radiata
(blue vertical stripes on both sides of the brain) contains fibers that run superior-
inferior and connect brainstem and cerebellar regions at bottom of the brain with
cortical regions at the top of the brain; the corpus callosum (red) connects the left
and right brain hemispheres. Notice the difference in direction in the upper left corner
of the white matter mask (red in the control group, blue in the dyslexic group).
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a b

Figure 2: Watson statistic map T (r) (after transformation to χ2(2)) (a) and locally
averaged map T5(r) using a 5× 5× 5 box smoother (b), shown at slice z = 23 mm.
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a c

b d

Figure 3: FDR analysis with no smoothing (left column) and smoothing using b = 5
(right column). Top row: observed histogram of the T statistic (after transformation
to χ2(2)) compared to theoretical null density (dashed curve) theoretical and empirical
null (solid curve). Bottom row: Estimates of FDR as a function of the threshold u
according to theoretical null (dashed curve) and empirical null (solid curve). No
theoretical null is available for the smoothed test statistic (right column).
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a b c

d e f

Figure 4: Interesting voxels (white) thresholded from unsmoothed test statistics at
FDR level 0.2 (top row) and using kernel size b = 5 at FDR level 0.05 (bottom row).
Both analyses are based on the empirical null. Shown slices are z = 23 mm (left
column), 25 mm (middle column) and 27 mm (right column).
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Figure 5: Simulated null densities for various values of the concentration parameter
κ. The high-concentration asymptotic F (2, 20) is labeled as κ =∞.

a b c

Figure 6: Selected voxels as a fraction of total mask size N for FDR levels 0.2 (a),
0.05 (b) and 0.01 (c). Indicated are the total set of selected voxels and the largest
two clusters.

a b c

Figure 7: Empirical null parameters as a function of kernel size b: p̂0 (a), â (b) and
ν̂ (c). Both â and ν̂ resemble explicit functional forms of b.
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