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Semiparametric methods for identification of
tumor progression genes from microarray data

Debashis Ghosh and Arul Chinnaiyan

Abstract

The use of microarray data has become quite commonplace in medical and scien-
tific experiments. We focus here on microarray data generated from cancer stud-
ies. It is potentially important for the discovery of biomarkers to identify genes
whose expression levels correlate with tumor progression. In this article, we de-
velop statistical procedures for the identification of such genes, which we term tu-
mor progression genes. Two methods are considered in this paper. The first is use
of a proportional odds procedure, combined with false discovery rate estimation
techniques to adjust for the multiple testing problem. The second method is based
on order-restricted estimation procedures. The proposed methods are applied to
data from a prostate cancer study. In addition, their finite-sample properties are
compared using simulated data.
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1. Introduction

The use of DNA microarray technology has allowed for new understanding of various
cancers. The hybridization of cDNA to arrays containing thousands of genes and ESTs
permits a global genomewide evaluation of tumor samples. This technology has led to
development of statistical methodology in various areas of microarray data analysis,
such as methods for differential expression (Efron et al., 2001; Dudoit et al., 2002b),
clustering (Eisen et al., 1998) and classification (Hastie et al., 2000; Dudoit et al.,
2002a). However, it has been also realized that microarrays have a fundamental level
of experimental variation and that global tasks, such as reconstruction of gene networks,
still remains a very elusive task.

An alternative approach to analyzing these data is to incorporate available biological
knowledge. The motivating example is from a microarray experiment in prostate cancer
(Dhanasekaran et al., 2001). We have profiled tissue samples from various stages of
prostate cancer (e.g., normal adjacent prostate, benign prostatic hyperplasia, localized
prostate cancer, advanced metastatic prostate cancer). The samples are linked to a
patient clinical database that has other parameters, such as Gleason score, survival
time and status, and time to PSA recurrence. One of the main hypotheses of interest
to scientists is that there exist distinct sets of genes and proteins dictate progression
from precursor lesion, to localized disease, and finally to metastatic disease. This
hypothesis is biological in nature and is focused upon learning about which genes are
involved in cancer pathways. We will refer to genes satisfying this hypothesis as tumor
progressor genes.

The ideal design for studying development of gene expression profiles in tumors
would be a longitudinal experiment. The tumor is commonly thought to originate as a
progenitor cell and goes through several stages of progression (e.g., benign hyperplasia,
in situ). Such a model for tumor progression has been postulated by Fearon and
Vogelstein (1990). If it were possible to sample the same tumor in these various stages
of development and to generate gene expression profiles for each of the time points, then

this would provide the optimal setting for studying the effect of gene expression profiles
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on tumor progression. While this is possible for studying tumor volume progression in
mouse models (Ferrante et al., 2000), this is not feasible for humans as tumor tissue
is completely resected from the patient. The data typically available are the gene
expression profiles for the tumor sampled at one point of time in the tumor progression
for a given patient.

One can view the gene expression profile as a high-dimensional phenotypic property
of the tumor. There has been a rich literature existing on statistical models for tumor
progression in which the phenotype considered was size of the tumor (Kimmel and
Flehinger, 1991; Xu and Prorok, 1997). However, no such development has occurred for
gene expression profile and its effects on tumor progression. By incorporating clinical
information on stage of the tumor (e.g., precursor lesion, localized prostate cancer
and metastatic lesion), one can utilize microarray data potentially in a more efficient
fashion. However, an important feature that must be considered is that many of the
genes are noninformative about tumor progression. In this article, we seek to develop
statistical methods for characterizing the relationship of gene expression profile on
tumor progression. The gene expression profile is treated as a phenotype of the tumor
that we wish to associate with clinical progression. We develop two semiparametric
methods to address this goal. The structure of this paper is as follows. In Section
2, we describe the data structures and two statistical procedures for analyzing the
effects of gene expression on tumor stage. The first class of procedures is based on
the proportional odds model (Agresti, 2002) and complements some of the existing
methodology on multiple testing procedures (Efron et al., 2001; Tusher et al., 2001).
A second class of procedures attempts to exploits constraints on the ordering of the
gene expression profiles (Robertson, Wright and Dykstra, 1988; Peddada et al., 2003).
The methods are compared in simulation studies and illustrated with application to
the previously mentioned prostate cancer data in Section 3. We conclude with some

discussion in Section 4.
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2. Systems and Methods

2.1. Notation and Preliminaries

Let D denote the stage of disease; we assume that it takes values (1,...,d), where
increasing numbers corresponding to progressively advanced stages of disease. Thus,
D will be treated as an ordinal variable here and in the sequel. We will assume that
d > 2. Let X denote the G-dimensional gene expression profile. We observe the data
(D, X;), i = 1,...,n, iid observations from the joint distribution of (D,X). In most
situations we consider, GG is typically much larger than n. We will assume throughout
the paper that the gene expression data Xi,...,X, have been suitably preprocessed

and normalized both within and across slides.
2.2. Proportional odds model

Define Pr(A) to be the probability of the event A. One simple model for associating
gene expression with stage of disease is the proportional odds model (Agresti, 2002,
§7.2.2): forr=0,1,...,d,

P’I‘(DZST‘)
lo {PT(DZ'>T‘)

where (g, - .., qy) are gene-specific cutpoints, (3, is a gene-specific regression coef-

} = Qyy + /BgXiga (1)

ficient, and X, is the gth component of X; (i = 1,...,m;¢9 = 1,...,G). Note that
Qg is increasing in 7 since Pr(D; < r|X,,) is increasing in r. Positive values of 3,
indicate that higher values of gene expression are associated with increased odds that
D is small, while negative values of 3, demonstrate the converse.

An alternative motivation of model (1) is to use a latent underlying random variable
Zig, where Z;; — 5, X, has a standard logistic distribution, i.e. Pr(Z;; — f,Xig < u) =
exp(u)/{1+exp(u)}. Then the event {D; = d} corresponds to the event ay_1 < Z;y <

ag. This implies that
Pr(D; <d) = Pr(Z; <ay)

= Pr(Zi — ByXig < ag — ByXig)

exp(ad — ﬁgXig)
1+ exp(ad - ﬁgXig)

4
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The proportional odds model can be fit using many standard software packages, such
as SAS or S-Plus.
In most microarray studies, G is much larger than n. The model in (1) is univariate

and does not incorporate dependence between genes. One method of doing this is to

incorporate a second stage in which fi,...,Bg is a random sample from a mixture
distribution:
jid
BngZ\JW()Fl-f—(l—’]T())FQ. (2)

In model (2), 7o represents the proportion of genes that are noninformative about tumor
progression, while the remaining percentage, 1 — 7wy are indicators of gene progression.
F, and F5 are the distribution functions for the noninformative and informative tumor
progressor genes, respectively. The two-stage formulation (1) and (2) implies that gene
expression measurements are dependent.

It turns out that the model (1)-(2) has a connection with multiple testing procedures
based on the false discovery rate (Benjamini and Hochberg, 1995; Storey, 2002). We
consider the G univariate null hypotheses Hy, : 8, = 0, ¢ = 1,...,G. Mimicking the
arguments of Theorem 1 in Storey (2002), we have that based on the two-stage model
(1)-(2), the gene-specific false-discovery rate is given by FDR, = Pr(H,|T, € R,),
where R is the rejection region for the gth test statistic 7,, g = 1,...,G. We have the

following algorithm for the estimation of gene-specific false-discovery rates:
1. Fit (1) for each gene g using maximum likelihood for g = 1,...,G.
2. Calculate a p-value using |Blg‘/SF(Blg)7 g=1,...,G.

3. Let p1,...,pe denote the G p-values. Estimate 7y, the proportion of differentially
expressed genes and Fp(x), the cdf of the p-values, by
A W(A)
) = 7
(1-XNG

and

min{R(y), 1}
G )

where R(v) = #{p; < v} and W(X) = #{p; > \}.

Fp(.’E) =

5
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4. For any rejection region of interest [0, ], estimate the gene-specific FDR as

FDR(Y) = = 0 -
Fp(y){1 - (1 —-7v)°¢}
5. Estimate FDR as
FDR = 20
FP(’Y)

There are two issues in this algorithm that need to be resolved. The first is method
of calculating the p-value in step 2 of the algorithm. We use permutation methods
where the sample labels Dy,..., D, are permuted. Note the validity of the method
depends on the assumption that under the global null hypothesis of no difference in
progression groups for any of the genes, the data are exchangeable. The second issue
is the choice of A. Observe that there is a bias-variance tradeoff in the choice of \. Tt
turns out that the bias of 7y is minimized when A = 1. This leads to the following

algorithm to determine g, described by Storey and Tibshirani (2003):

1. Order the G' p-values as p1y < pe) < -+ < pg)-

2. Construct a grid of L X values, A1,..., Ar and calculate
R _ #p > A}
o) ="Ga =
l=1,...,L.

3. Fit a cubic smoothing spline to the values {\;, 7o(N)}, I =1,..., L.

4. Estimate 7y by the interpolated value at A = 1.

Given this algorithm, one can then estimate gene-specific q-values (Tusher et al., 2001;
Storey and Tibshirani, 2003) for the individual genes. For the gene with the largest

p-value the g-value is given by

. TGt
mim —————
t>pc) #{p; < t}

and for i = G — 1,G — 2,...,1, q(p)) = min(7oGpg) /i, Pat1))- This guarantees that

1(p) = = ToP(a)»

the g-values will be monotonically increasing as a function of p-values.

6
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While the proportional odds model is a popular model to fit to ordinal data, there
is little biological basis for such a model to hold in this setting. In the next section,
we will describe an approach to finding tumor progressor genes that does not rely on
model (1) and instead incorporates constraints on mean expression profiles. This will

lead to estimation of mean profiles under order restrictions (Robertson et al., 1988).
2.3. Order-restricted methods

The biological concept that underlies a tumor progressor gene is that in normal
tissue, this gene functions normally, but as a normal cell progresses to precursor lesion
to localized cancer to metastatic cancer, the expression of the gene shows a trend. One
example of a tumor progressor gene might be an oncogene, which is activated when
the normal cell function becomes dysregulated. Such a gene will tend to show higher
expression as the tumor develops. Another example of a tumor progressor gene is a
tumor suppressor gene. Such genes are inactivated in tumors so that their expression
tends to decrease with increasing levels of tumor progression.

Let pg = (Ug1, g2, - - - » hga) denote the population gene expression means at each of

the d stages of progression. Their empirical estimate is given by X, = nl_l St Xgis

where n4 is the number of tumor samples in disease stage [, [ = 1,...,d. The idea is
to estimate (ug1, .. ., fgq) under two sets of constraints:

Cur = {pg € R*: pigr < g < -+ < piga} (3)
and

Cup = {u, € R*: [tg1 > flg2 > = > [gal- (4)

It is implicitly assumed that there is at least one strict inequality in constraints (3)
and (4). We will refer to (3) and (4) as monotonically increasing and monotonically
decreasing candidate profiles for the gth genes, g = 1,...,G. Thus, we have specified
a priori that our interest is in finding genes whose expression profiles are consistent
with (3) and (4). The goal is to develop a statistical framework for classifying genes

into one of these profiles.
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If we wish to estimate y, subject to the constraints (3) and (4), then order-restricted
techniques (Robertson et al., 1988) must be used. For estimation subject to (3), the

optimization problem is to find py, € Cpsr that minimizes

d
Z wz(ng - ,U'gl)Qa
=1

where w, = (67/n;) ™", and

n

—1
gl_nl_1 E: !]Z_

i=1
An analogous optimization problem can be written for estimation subject to p, €
Cup- Note that we have incorporated weights wy, . . ., w, into the optimization problem
because of the variation in sample sizes across various tumor progression stages and
difference in gene-specific variability. The estimation problem is an isotonic regression
problem and can be solved using the pooled adjacent violators algorithm (Robertson
et al., 1988).
For each gene, we can estimate a profile subject to (3) and (4). Denote these profiles
S (fig1’s -+, figy’) and ()77, al3P), g = 1,...,G. We then want to classify the

observed gene profile as being more consistent with the former or latter pattern. To

LMI LMD — /nMD

do this, we will calculate = fipy" — fig1" and figy” — 1P for the gth gene,
g=1,...,G. Suppressing dependence on g, the quantities L™! and LM? are special
cases of the [, norms used in other order-restricted inference procedures (Dunnett,
1955; Williams, 1977). If L)' > L)}, then we classify the gene as having a tumor
expression pattern consistent with a monotone increasing candidate profile; otherwise,
we classify the profile gene as monotone decreasing profile.

Define the null candidate profile CY = {u, € R%: g1 = pgo = -+ = pga}. For the
gth gene (g = 1,...,G), we wish to test the null hypothesis Hy : p, € CV versus the

alternative Hy : p, € CM' U CMP. We employ the following algorithm:

1. Estimate y, under constraints C* and C™! using the weighted pooled adjacent

violators algorithm.
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2. For the gth gene, calculate L, = max(L}", L})P), g =1,...,G.

3. Resample the dataset by sampling n; samples with replacement for the /th stage.
Repeat steps 1 and 2 for the genes in the bth bootstrapped dataset; calculate
LY and L3P for the gth gene in the bth dataset (9 = 1,...,G;b =1,..., B).

Calculate Lyp = max(L)f, L)4P), 9=1,...,G,b=1,...,B.

4. Calculate a critical value for L, based on the empirical distribution of Ly, b =
1,...,B. If L, is bigger than the upper ath percentile, then classify it into the

observed profile; otherwise do not classify into a profile.

We denote the proportion of bootstrapped datasets with Ly, < L, as the r-value. A
high r-value corresponds to increased confidence that the observed profile is inconsistent
with the null hypothesis; note that this interpretation is inverse that of a p-value or
g-value. The procedures developed in this section attempt to use information on the
shape of the gene expression profile over tumor progression stages in order to identify
tumor progression genes and does not rely on an assumption such as proportional odds

in model (1).
3. Numerical Examples
3.1. Simulation studies

To examine the finite-sample properties of the proposed methodologies, several
simulation studies were conducted. We generated data for d = 3 classes of tumors; we
considered 10 and 30 samples in each group. Data on G' = 1000 genes were generated;
two models were considered. For the first model, the tumor sample label and gene
expression measurement, (D;, X;,), were generated from a logistic distribution so that

. _explag — By Xyg)
Pr(D; <d) = T+ explag — By Xog):

At the second stage of this model, 5, were generated from (2) with F; being the cdf of
a N(0,1) r.v., and F;, being that of a N(4,1) r.v. Different values of my were considered;
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mo = 0.7,0.8,0.9. In this situation, the proportional odds model holds. The second
scenario consisted of generating gene expression measurements from a normal model,
where for a fraction of genes, 7y, mean values did not increase across groups, while for
the remaining (1 — 7p), mean values increased across group. We set my = 0.7,0.8,0.9
and p; = —2, uo = 0 and pg = 2; all gene expression variances were taken to be 1. For
this setting, the proportional odds assumption is not satisfied. 2000 simulation samples
were considered for each setting; for both the proportional odds and order-restricted
methodology described earlier, 1000 permutations were used to calculate g-values or
p-values, as appropriate. Because we knew in this simulation which genes were differen-
tially expressed and which genes were not, we used a sensitivity and specificity measure
to summarize each simulation study. For the FDR-based proposed methodology, we
defined sensitivity as having a g-value <= 0.05 among the differentially expressed genes
and specificity as having a g-value > 0.05 among the non-differentially expressed genes.
For the order-restricted method, we defined sensitivity as being above the 95th per-
centile of the bootstrap distribution for differentially expressed genes and specificity as
being below the 95th percentile of the bootstrap distribution among nondifferentially
expressed genes. The results are summarized in Tables 1 and 2. Based on these results,
we find that the proportional odds method tends to be more powerful than the order-
restricted inference method in both situations. We also note that there are substantial

increases in power of detection due to sample size.
3.2. Prostate cancer data

The dataset we will be using to illustrate the ideas in the paper is from a molec-
ular profiling study in prostate cancer (Dhanasekaran et al., 2001). The benign and
malignant prostate tissues were analyzed using a 9984 element (10K) human ¢cDNA mi-
croarray. A two-channel (Cy5/Cy3) scheme was utilized. While there are 9984 genes
on the original array and 101 samples from d = 3 tumor classes: benign precursor, lo-
calized prostate cancer and metastatic prostate cancer. We did some preprocessing to

reduce the number of genes considered; namely, we filtered out genes that are reported
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as missing in more than 10% of the samples. This left a total of G = 7910 genes for
analysis.

We first performed the analysis based on fitting the proportional odds model de-
scribed in Section 2.2. A spreadsheet containing gene names, estimated regression
coefficients and associated Wald statistics can be downloaded as the file pgenesl.csv

from the following website:
http://www.sph.umich.edu/~ghoshd/COMPBIO/TPROG/.

Based on permutation methods, we calculated p-values and then applied the false
discovery rate estimation procedure of Storey and Tibshirani (2003). The results are
summarized in Figure 1. Based on the graphs, 1582 genes have g-values less than 0.001,
753 have those less than 0.0001, and 313 less than 0.00001.

We next applied the order-restricted methodology described in Section 2.3. A list
of genes, statistics and r-values can be downloaded as the file pgenes3.csv at the URL
given above. Based on the analysis, we find 1141 genes that have an r-value greater
than 0.9, 956 with an r-value greater than 0.95, 663 greater than 0.99, 426 greater than
0.999, and 309 with an r-value greater than 0.9999.

In studies such as these, investigators are typically interested in developing a gene
list of candidate biomarkers that they would be interested in performing further vali-
dation analyses, such as immunohistochemistry or quantitative RT-PCR. Because we
do not know the true underlying model for the data, we used a consensus approach
combining the results of the two analyses described in Section 2.2 and 2.3. We first
considered only genes that had an r-value greater than 0.9999. Then, genes were ranked
on the t-statistic from the proportional odds model and then based on the estimated
coefficient. Here, we focus on genes that show decreased expression with increasing
tumor progression. We focus on three results from such an analysis. The first is the
identification of homologs of mammalian transcription factors. Among the top 200
genes are a homolog of a yeast transcription factor (Sec23 - Hs. 753381), a homolog of

the FAT tumor suppressor in Drosophila (Hs. 591266), a homolog of a transcription
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factor in Xenopus laevis (Hs. 760299), a homolog of the snail transcription factor in
Drosophila (Hs. 293339) and another Drosophila transcription factor homolog, frizzled,
(Hs. 298122). Given the recent discovery (Varambally et al., 2002) of a prostate cancer
biomarker that is a homolog of a Drosophila transcription factor, EZH2, it is of interest
to the investigator to identify other homologs of mammalian transcription factors that
might be involved in cancer dysregulation. Another finding is the decreased expression
of cell surface and cell adhesion genes and products in the top 200 list. This includes
genes such as catenin (Hs. 364921), moesin (Hs. 131362), integrin (Hs. 502527), and
integrin, beta 1 (Hs. 343072). Given that a hallmark of metastatic tumors is the lack
of cell differentiation and loss of adhesion to epithelial cells, it is worthwhile to follow
these genes up further.

A caveat of these results is that they are not confirmatory but rather hypothesis-
generating. Further computational and/or biological experiments would be needed to

validate these findings.

4. Discussion

In this article, we have described a model-based and model-free procedure for iden-
tifying genes that associate with tumor progression in cancer studies using microarray
data. These techniques complement the multiple testing methods currently available
for microarray data (Efron et al., 2001; Dudoit et al., 2002b).

A crucial assumption in the methods developed so far is that there is no confounding
of gene expression by other clinical factors. One could imagine that sample character-
istics, such as age of the patient or tissue heterogeneity, could confound the association
between gene expression and tumor progression. If these characteristics have been
measured, then we would extend the proportional odds model approach by including
them as covariates. As discussed in Ghosh and Chinnaiyan (2003), the validity of p-
values derived from permutation testing in this setting would be questionable. How to
incorporate covariates in the order-restricted procedure remains an open question.

We have attempted to treat gene expression as a phenotypic property of the tumor

12
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sample and correlate it with tumor progression. An alternative approach, not consid-
ered in this paper, would be to formulate a stochastic modelling approach in which a
mechanistic model for gene expression development is postulated. This has precedents
in the mathematical modelling literature (Yakovlev and Tsodikov, 1996). This is an

area that is currently under exploration.
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Table 1: Summary of simulation results for proportional odds scenario.

Proportional Odds

Order-restricted

N m Sens. Spec. Sens. Spec.
10 0.70 0.32 0.78 0.14 0.75
10 0.80 0.30 0.85 0.12 0.81
10 0.90 0.28 0.91 0.11 0.86
30 0.70 0.82 0.88 0.55 0.85
30 0.80 0.74 0.93 0.61 0.87
30 0.90 0.66 0.95 0.63 0.89

Table 2: Summary of simulation results for non-proportional odds scenario.

Proportional Odds

Order-restricted

N m Sens. Spec. Sens. Spec.
10 0.70 0.24 0.71 0.16 0.76
10 0.80 0.22 0.79 0.14 0.84
10 0.90 0.18 0.86 0.12 0.88
30 0.70 0.72 0.82 0.95 0.80
30 0.80 0.76 0.88 0.98 0.85
30 0.90 0.82 0.91 0.99 0.89
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Figure 1: Output of proportional odds method combined with false discovery rate
estimation procedures. The plot in the upper left-hand corner shows the estimated
false discovery rate using the method of Storey and Tibshirani (2003). The upper
right-hand plot shows the conversion of p-values to g-values as discussed in Section
2.2. The graph on the lower left-hand side shows the number of significant tests as
a function of g-value cut-off. The lower right-hand graph displays the expected false
positives as a function of number of significant tests; the estimated false discovery rate
is the ratio of these quantities.
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