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The false discovery rate: a variable selection
perspective

Debashis Ghosh, Wei Chen, and Trivellore E. Raghuanthan

Abstract

In many scientific and medical settings, large-scale experiments are generating
large quantities of data that lead to inferential problems involving multiple hy-
potheses. This has led to recent tremendous interest in statistical methods regard-
ing the false discovery rate (FDR). Several authors have studied the properties
involving FDR in a univariate mixture model setting. In this article, we turn the
problem on its side; in this manuscript, we show that FDR is a by-product of
Bayesian analysis of variable selection problem for a hierarchical linear regres-
sion model. This equivalence gives many Bayesian insights as to why FDR is
a natural quantity to consider. In addition, we relate the risk properties of FDR-
controlling procedures to those from variable selection procedures from a decision
theoretic framework different from that considered by other authors.
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1. Introduction

Recently, scientific developments in areas such as genomics and brain imaging have led to
experiments in which thousands of hypotheses are simultaneously tested. An example of
this are DNA microarrays (Schena, 1999). These are biochips that assay the biochemical
activities for thousands of genes simultaneously. One of the major tasks in studies involving
these technologies is to find genes that are differentially expressed between two experimental
conditions. The simplest example is to find genes that are up- or down-regulated in cancerous
tissue relative to noncancerous tissue. Typically in these experiments, the number of genes,
represented as spots on the biochip, is much larger than the number of independent samples in
the study. Consequently, assessing differential expression in this setting involves performing
several thousand hypothesis tests, which leads to the problem of multiple comparisons.

Historically, in problems involving simultaneous inference, the goal has been to control the
familywise error rate (FWER) (Westfall and Young, 1993). However, in the current settings,
such control is too stringent. Recently, several authors have advocated use of the false dis-
covery rate (FDR) for the problem of testing multiple hypotheses simultaneously (Benjamini
and Hochberg, 1995; Efron et al., 2001, Storey, 2002,2003; Genovese and Wasserman, 2002,
Storey, Siegmund and Taylor, 2004). This quantity is different from FWER and generally
leads to greater power for detecting alternative hypotheses.

In this paper, we turn the simultaneous inference problem on its side and study the link
between the false discovery rate (FDR) with variable selection. We do this by using a Bayesian
framework. This allows for a new motivation for the false discovery rate and connections
with the literature on model selection. This also allows for consideration of FDR-controlling
procedures from a decision theoretic point of view different from that considered by Storey
(2003) and Genovese and Wasserman (2002). While the work of Abramovich et al. (2004)
addresses related topics, our motivation is based on a Bayesian analysis of a hierarchical
model, while theirs uses minimaxity ideas for a different type of model. The structure of
this paper is as follows. In Section 2, a brief background on false discovery rate is given. In
Section 3, we propose a hierarchical linear regression model and show that the false discovery

rate falls out as a matural quantity in this model. Another hierarchical model is considered
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in Section 4; this leads to another characterization of the false discovery rate and links to
traditional model selection criteria. In Section 5, we analyze the proposed methods from
a risk analysis point of view different from that considered by other authors. We examine
the finite-sample behavior of the procedures in Section 6. Finally, we conclude with some

discussion in Section 7.

2. Background

Suppose we have observations (Y;,X;), 2 = 1,...,n, a random sample from (Y, X), where X
is a p-dimensional vector of covariates and Y is a continuous response variable. The ideas
in this paper will be illustrated using this data structure. We first present a brief review of

simultaneous hypothesis testing and the false discovery rate.
2.1. Multiple Testing Procedures

Suppose we are interested in testing a set of m hypotheses. Of these m hypotheses, suppose
that for mgy of them, the null is true. To guard against making too many type I errors,
the familywise error rate (FWER) has typically been controlled. A review of methods for
controlling this quantity can be found in Shaffer (1995). To better understand the FWER

and FDR, we consider the following 2 x 2 contingency table:
[Note: Table 1 about here.]

Using the definitions from Table 1, the FWER is defined to be P(V > 1), which is the
probability that the number of false positives is greater than 1. The definition of FDR as put

forward by Benjamini and Hochberg (1995) is
Vv
FDR=FE 0 |Q>0[P(Q>0).

The conditioning on the event [@) > 0] is needed because the fraction V/R is not well-defined
when @@ = 0. Storey (2002) points out the problems with controlling this quantity and

suggests use of the positive false discovery rate (pFDR), defined as
v
pFDR=F [6 |Q>O] .

3
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Conditional on rejecting at least one hypothesis, the pFDR is defined to be the fraction
of rejected hypotheses that are in truth null hypotheses. In words, the pFDR is the rate at
which discoveries are false. This quantity is analogous to type I error rates in single hypothesis
testing problems.

The FDR and pFDR refer to one type of mistake that can be made during the hypothesis
testing process. The other class of mistake that can be made is that while the alternative
hypothesis is true, in practice we fail to reject the null hypothesis. This is similar to making
a type II error. Thus, we define the false non-discovery rate (FNR) and positive false non-

discovery rate (pFNR) to be
T
FNR=E [W \W>0] P(W > 0)

and
pFNR=FE [z |W>0] :
w
Conditional on failing to reject at least one hypothesis, the pFNR is the fraction of accepted
hypotheses that are in truth alternative hypotheses. As with pFDR, we condition on [W >
0] because T'/W is not well-defined when W = 0. Most of this paper focuses on pFDR.
Heuristically, pFNR can be thought of as the rate at which discoveries are missed.

Let Hyi,-..,Hog represent the G null hypotheses to be tested, and let p1,...,ps denote
the corresponding p-values. Benjamini and Hochberg (1995) propose a simple algorithm for
selecting the hypotheses that are significant that controls the false discovery rate (FDR). Let
a denote the rate at which it is desired to control the false discovery rate. The algorithm of

Benjamini and Hochberg (1995) is then summarized in Box 1.
[Note: Box 1 about here.]

It is shown in Benjamini and Hochberg (1995) that the procedure in Box 1 controls the
FDR at level a when the p-values are independent and uniformly distributed. Benjamini and
Yekutieli (2001) show that the procedure in Box 1 controls the FDR at level o under more

general forms of dependence. It involves replacing a by a/ (Zfil 1/i). Note that for large G,
oz/(Z:ZG:1 1/i) = a/log G.
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2.2. Mixture Model Motivation and Estimation of the pFDR

Suppose we have independent test statistics T = (11,...,T,,) for testing m hypotheses.

Define corresponding indicator variables Hi, ..., H,, where H; = 0 if the null hypothesis is
true and H; = 1 if the alternative hypothesis is true. We assume that Hi,...,H,, are a
random sample from a Bernoulli distribution where for i = 1,...,m, P(H; = 0) = mg. We

assume that T;|H; = 0 ~ fo and T;|H; = 1 ~ f; for densities fo and f1 (i = 1,...,m).
Suppose we use the same rejection region R for testing each of the m hypotheses. By a

theorem from Storey (2002), we have that

pFDR(R) = P(H=0T €R)
7T()P(T S R|H = 0)
P(T € R)

Using the same arguments, we can show that

pTNR(R) = P(H=1|T € R°)
7T1P(T € RC|H = 1)
P(T € R°) ’

where m; = 1 — mp and R° is the complement of R.

REMARK 1. Treating Hy,..., H, as parameters, we see that the definition of pFDR
and pTNR are posterior probabilities, but they do not represent fully conditional posterior
probabilities. The probability is conditional on the test statistic lying in a rejection region,
which is different than fully conditioning on all the data. The latter posterior probability,
P(H = 0|T), has been referred to as the local false discovery rate (Efron and Tibshirani,
2002). However, there is a substantial difference in interpretation between the positive false
discovery rate and the local false discovery rate; the interested reader is referred to Berger
and Sellke (1987) for further discussion.

REMARK 2. The framework above is what has been used by most authors to study
the false discovery rate (Storey, 2002; Genovese and Wasserman, 2002; Storey et al., 2003).
Genovese and Wasserman (2002) and Storey (2003) studied FDR-controlling procedures from
various points of view, including a risk point of view. We will be utilizing a different framework

for the derivation of our results.
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REMARK 3. So far, we have assumed that 17, ...,7T}, are independent. However, since
pFDR and pTNR are probabilities, Storey (2002) and Storey et al. (2004) have shown that
estimation of these quantities can be insensitive to certain forms of dependence asymptoti-

cally.

We now present a method for assessing differential expression direct estimation of the

FDR using the algorithm of Storey (2002). We consider the following model:
ElY:] = Boj + b1 Xij, (1)

where X;; is the jth (j =1,...,p) component of X;, i =1,...,n. Our scientific focus in (1)
is making inference about f;4. It is obvious that fitting (1) is equivalent to fitting univariate
linear models on a gene-by-gene basis. Model (1) can be fit using ordinary least squares
(OLS), yielding a set of statistics Ti1,...,T1p, where T1; is the least squares estimator of
B1; divided by its estimated standard error, j = 1,...,p. If we use a normal distribution
with mean 0 and variance 1 as the null distribution for testing Hy, : 814 = 0, then we have
G p-values pi,...,pg. We then can apply Algorithm 1 of Storey (2002) to estimate the

gene-specific FDR; it is summarized in Box 2.
[Note: Box 2 about here.]

REMARK 4. The previous authors who have addressed the behavior of false discovery
rate procedures have ignored the variation in estimating the statistics T1,...,7T1p. In what we
discuss in Sections 3 and 4, we will account for the variation in estimation using a hierarchical
framework.

Based on the algorithm in Box 2, Storey et al. (2004) consider a class of FDR-controlling

procedures. Define the following threshold function:
co(F)=sup{0 <t<1:F(t) <a},

where F' is a function. Based on the estimate of FDR from Box 2, Storey et al. (2004)
consider the thresholding rule ca(F/D\R) =sup{0 <t<1: F/D\R(t) < a}. This leads to the

class of FDR controlling procedures described in Box 3.
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[Note: Box 3 about here.]

Using martingale and empirical process arguments, Storey et al. (2004) demonstrate that
when the p-values are independent, the thresholding rule provides strong control of the false
discovery rate at level «. In addition, when the p-values satisfy an a-mixing type condition,
the procedure in Box 3 provides control of the false discovery rate. When A = 0 in their

framework, one obtains the Benjamini and Hochberg (1995) procedure.
3. FDR and Variable Selection: Part I

In this section, we derive the false discovery rate from a different point of view. An
alternative to fitting G models of the form (1) is to treat X; as the independent variables
and Y; as the response variable for the i¢th subject, : = 1,...,n. We can then consider a

hierarchical normal regression model. At the first stage of the model,
Y, %N (X B,0%).

For the second stage of the model, we introduce binary-valued latent variables yi,...,p;
conditional on them,

where c%,...,c?, and 72,...,72

» are variance components. If ; = 1, then this indicates that

that the jth covariate should be included in the model, while ; = 0 implies that it should
be excluded from the variable. We next assume an inverse gamma (IG) conjugate prior for
o? and that +; is distributed as Bernoulli with probability p;, i = 1,...,p. Thus, we have the

following multilevel model:

v, " NXTB,0? 2)
Bilvi ~ (1—=%)N(0,77) +7%N(0,¢77) (3)
v "™ Be(p) (4)
o2 ~ IG(v/2,v/2) (5)

This type of framework has been considered by George and McCulloch (1993) in their devel-

opment of Bayesian variable selection procedures. Note that while model (1) is fundamentally
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univariate in nature, the model defined by equations (2)-(5) specifies a joint hierarchical model
for (Y,X).

Note that because we have utilized conjugate priors, the conditional distributions can be
easily computed; this lends itself very easily to Gibbs sampling procedures for calculating the
posterior distribution. The posterior distribution of 8 given Y, ¢ and +y is normal with mean

A7(0)_2XTXBL5 and variance A, where
A=(?XTX+D 'R7'D7)7.

The variance, o2

, is sampled from its posterior given v and B, which is inverse gamma
with parameters (n + v/2) and {(Y — X1 8)1 (Y — X*8) + vA/2}. Finally, the vector v is
sampled componentwise from the posterior distribution, the ith component (i = 1,...,G)

being Bernoulli with probability

P(Bilyi = 1)ps
Bilvi = V)pi + P(Bilvi = 0)(1 —pi)

The Gibbs sampling algorithm that cycles through these conditional distributions was pro-
posed by George and McCulloch (1993).

From the point of view of selecting variables, we wish to consider the posterior distribution
of 71,...,7p. Based on the above model, the conditional distribution of Bl given o7,y = 0 is
normal with mean zero and variance 012 + Tl2, while that of 3, given g,y = 1 is normal with
mean zero and variance 0l2 + cl27'2. Observe that the relative heights of these two densities at

zero is

{al?/n? + }1/2
U =955 .

of/m? +1
It is also the case that u; = P(y, = 1|8, = 0), which is one minus the local false discovery

rate (Efron and Tibshirani, 2002) of the /th variable at zero. Thus, the local FDR at zero is
Py =0|4=0)=1—u,.

More generally, the false discovery rate based on B being in a critical region R is

Joer{2m(of + 1)} V2 exp{—a?/ (o} + c}1})}da
meR{27T(0l2 + 7'l2)}*1/2 exp{—acQ/(al2 + TlQ)}d.CC

FDR(R) =
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There are many points to note from this analysis. We have presented a characterization of
the false discovery rate based on a Bayesian framework vastly different from those considered
by Storey (2002) and Genovese and Wasserman (2002) and others. We have effectively
turned the problem on the side by formulating a joint model for (Y, X) instead of dealing
with multiple univariate models of the form (1). Note that some type of regularization will
probably required for the joint model; this is because no unique numerical solution exists
for B if p is much larger than n. The Bayesian framework provides a natural method of
regularization in this regard.

A second point to note is that we have utilized a variable selection framework to derive
the FDR. This suggests that procedures that select variables based on controlling the FDR
will have certain risk optimality properties in the hierarchical framework described above. In
particular, George and Foster (1994) have developed a framework for risk analysis that will
be applicable to the situation we are considering. In Section 5, we will apply results from
their work to derive optimality of FDR~controlling procedures.

Third, as was mentioned in the previous section, Storey (2002) and Genovese and Wasser-
man (2002) considered FDR in a mixture model setting. Their model is univariate in nature,
so it is not clear at all how to extend FDR to situations that are higher-dimensional. By
contrast, we have formulated a joint model and have derived FDR as a univariate quantity
within this joint framework. It is quite natural to extend the FDR into multiple dimensions
based on the posterior distribution of y. For example, we could consider the posterior distri-
bution of y; and -, fairly easily here. It is not as clear how this extension would work in the
other authors’ proposals.

Note that in the framework presented here, dependence between the predictor variables
is naturally incorporated into the definition of false discovery rate. As mentioned above,
a Gibbs sampling algorithm can be used to derive the posterior distribution for 7. Using
techniques described in Diebolt and Robert (1994) and Tierney (1994), we have the following
theorem:

Theorem 1: There ezists a unique invariant distribution w(y|y), 0 < p < 1 and C > 0 such
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that

/G 7™ (7]y) — w(yly)ldg < Co™

where m indexes the iteration of the Gibbs sampler.

A consequence of Theorem 1 is that the estimated FDR based on the output from the
Gibbs sampler converges geometrically to the true FDR at the same rate as that described
in the Theorem 1. The dependence structure on the covariates needed is needed to satisfy
detailed balance. This includes all of the dependence structures described by Storey (2003):
independence, block independence, a-mixing, etc. Because we are using a Gibbs sampling
algorithm in order to derive the posterior distribution in the model, the false discovery rate
can be derived fairly easily. Fixing a rejection region R, we simply count the proportion of
MCMC samples in which the v =0 and 8 € R. By Theorem 1 and the continuous mapping
theorem, the estimated false discovery rate converges to the true false discovery rate.

Based on the posterior distribution described above, we can develop a univariate variable
selection procedure analogous to those given in Box 1 and 3. We can rank P(y; = 0[Y1,...,Y},)
(1 =1,...,G) and select the variables with small posterior probabilities. The algorithm is

given in Box 4.
[Note: Box 4 about here.]

Note that while the ranking is based on marginal posterior probabilities (i.e, we integrate
over «y; for j # i), the dependence between the predictor variables is incorporated in the im-
plementation of the Gibbs sampling algorithm. When the predictor variables are orthogonal,
the algorithm in Box 4 is equivalent to the Benjamini and Hochberg (1995) procedure. This is
because the posterior probabilities P(y; = 0]Y) (Y = (Y3,...,Y})) are monotonic functions
of the absolute value of the univariate statistics from fitting (1), i = 1,...,G. We have thus
provided an alternative motivation for the Benjamini-Hochberg procedure different from that
presented in Storey et al. (2004). In addition, the procedure in Box 4 will be equivalent to
Benjamini-Hochberg whenever P(y; = 0|3; € R) is a monotonic function of the univariate
p-values. As we will see later in Section 5, in this framework, the procedure in Box 4 will be

shown to have certain optimality properties from a risk point of view.

10
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4. FDR and Variable Selection: Part II

In this section, we formulate a slightly different hierarchical regression model in order to

consider the false discovery rate. At the first stage of the model,
Y ™ N(XTB,0%)

as before. We will consider o2 to be known here, in contrast to the model in Section 3. Again,
binary-valued latent variables 71, ...,7, are included here. The priors we consider are of the
form p(By,v|d, w) = p(B,|7, d)p(y|w), where p(B,|y,d) is the pdf of a ¢,-dimensional normal
random variable with mean zero and variance do?(X7X,) ™" (d > 0) and p(y|w) is the pmf

of a Binomial random variable with probability w. Thus, we have the following multilevel

model:
Y, % NXTB,0% (6)
Blv,d ~ Ng (0,d(X7X,)7") (7)
Y|lw ~  Bin(g,w). (8)

Observe that hierarchical models (2-5) and (6-8) are different. No prior is assumed for o2
here, since we are treating it as known. In addition, the prior for § depends on the covariates
X. Based on (7) and (8), the parameter d controls the size of the nonzero coefficients of 3,
while w controls the number of coefficients that are nonzero. Smaller values of w correspond
to smaller models, while larger values tend to favor less parsimonious models. This model
formulation has been utilized by Smith and Kohn (1996) and George and Foster (2000). We
can again perform a Bayesian analysis of (6)-(8) construct a variable selection procedure

similar to that given in Box 4. The procedure is selected in Box 5.
[Note: Box 5 about here.]

In the situation where the design matrix is orthogonal, the selection procedure from Box 5
is equivalent to the Benjamini-Hochberg (1995) procedure.
As for the hierarchical model studied in the previous section, Gibbs sampling methods can

be used to calculate the posterior distribution of the parameters. The posterior distribution
11
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of 8 given Y, o and + is normal with mean Av(a)_QXTXﬁALS and variance A, where
A= (@’ X"X+D'R'DH)L.

2 is sampled from its posterior given v and 3, which is inverse gamma

The variance, o
with parameters (n + v/2) and {(Y — X78)T(Y — XT8) + vA/2}. Finally, the vector v is
sampled componentwise from the posterior distribution, the ith component (i = 1,...,G)

being Bernoulli with probability

P(Bi|vi = 1)p;
Bilyi = 1)pi + P(Bilvi = 0)(1 — ps)

P(’YZ = 1|’Y(i)a/850-) = P(

In model (6)-(8), selecting models corresponds to finding the combinations of variables
with the largest posterior probabilities of y. By the arguments of George and Foster (2000),

the posterior distribution of v, given Y, d and w is proportional to

d 2
m{ssv/a — H(d,w)gy},

where
58, = (Y = XJ8,)"(Y = XJB,)/(n — qy),

and H(d,w) = d~*(1+d)[2log{(1 — w)/w} + log(1 + d)]. Using Theorem 1 from George and
Foster (2000), if S, /o? — H(d,w)gy, > SS,/0? —H(d, w)q,, for models ; and 2, then the
posterior distribution of 7 is larger than that of y9; the converse is also true. If H(d, w) = 2,
log G or log n, then selecting models based on the posterior probability is equivalent to model
selection based on AIC (Akaike, 1973), BIC (Schwarz, 1978) and RIC (Foster and George,
1994).

From the previous section, we have that the local FDR for the ith variable is P(y; =
0/3; = 0) and that the FDR for a given rejection region R is P(y; = 0|3; € R). Based on the
hierarchical model presented here, we can motivate selection procedures based on the local
FDR and FDR as model selection procedures. The univariate selection procedure described
in Box 4 can be thought of as selecting between models with one independent variable. One
major difference between the model selection criteria and the FDR quantities is that while

the former corresponding to posterior distributions of v given the full data, the local FDR

12
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and pFDR correspond to the posterior distribution of 7y given a partial conditioning of the
data. To be specific, the local FDR is the the posterior probability of v equalling zero, given
the region of the data x where B (x) = 0. Similarly, the pFDR is the the posterior probability
of v equalling zero, given the region of the data x where B(x) falls in the rejection region
R. However, by the same arguments leading to Theorem 1 of George and Foster (2000),
we have that ranking variables univariately based on P(y = 0|[3 = 0) leads to a proper
calibration. Similarly, a proper calibration is achieved by ranking variables univariately
based on P(y = 0|3 € R) for a given rejection region R.

In the model (6)-(8), we have assumed that the design matrix can allow for general
dependence between the predictor variables. However, in the situation where the design
matrix is orthogonal, the procedure described in Box 5 reduces to that proposed by Benjamini
and Hochberg (1995).

Note that we have assumed that o2 is known in this discussion. In practice, this will not
be the case. For this analysis, we can plug in an estimator for o2 in (6) that accounts for the
selection procedure. Potential choices for estimators of the variance can be found in Section
1 of George and Foster (2000). In certain examples, G can be on the order of the sample size
(n) or even much larger than n. An example of the former is wavelet regression (Vidakovic,
1999), while in microarray data analysis, G is much larger than n. How to estimate o2 in the

latter setting for this model formulation remains an open question.
5. A Decision Theoretic Framework

Here, we consider the hierarchical regression model from Section 3 and study the proper-
ties of the variable selection procedure in Box 4 from a decision theoretic perspective. Much
of the discussion here is based on that in Foster and George (1994). Define R(8, 8) to be the

predictive risk of the estimator 3, i.e.
R(B,B) = Es|Xp — Xp*.

We know that the vector 7 can take 2P possible values. Let ¢ = ((1,.-..,(g) denote the true
model, so {; = I(B; #0),4i=1,...,G. The risk inflation (Foster and George, 1994) is given

13
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=su R(/BaB’Y)
RI(y) = sup RG.Fo) (9)

Observe that the denominator in (9) is the lowest possible risk, since it represents the risk
for the ideal model. In most variable selection settings, we first select the variables, and
then estimate ( using the selected variables. The risk inflation (9) reflects the worst-possible
increase in risk with using a combination selection/estimation procedure. Based on this
setting, we wish to find procedures that minimize (9) over a large class of procedures.

Before describing how the FDR procedures in Boxes 4 and 5 fit into this framework, we
first start by considering the risk inflation for various procedures. For the sake of simplicity,
we consider the case where X7 X is diagonal. In this case, variable selection can be reduced
to the situation of ranking variables based on the magnitude of the corresponding univariate
statistics. Suppose we estimate § using least squares and that n > G. For this situation,
the risk inflation is G. If we use AIC (Akaike, 1973) for variable selection, the risk inflation
turns out to be approximately 0.57G. For variable selection using BIC (Schwarz, 1978), the
risk inflation is approximately logn if G << n!'/? and (2logn/(7n))'/? if G >> n'/2.

Foster and George (1994) prove that for the case of diagonal XX, the optimal rule (i.e.,
the rule that minimizes (9)) is a threshold rule that selects the top (2log G) variables based
on the absolute magnitude of the univariate statistics. Equivalently, the optimal threshold
rule selects the 2log G variables with the smallest univariate p-values. Note that XX
corresponds to the situation of independent statistics from §2.2. The Benjamini-Hochberg
(1995) procedure is a data-dependent threshold rule that is a special case of the class of
FDR-controlling procedures proposed by Storey et al. (2004) in Box 3. Thus, when k ~
(21og G), then the Benjamini-Hochberg (1995) procedure will be optimal from a risk inflation
framework.

In the general case where X7 X is nonorthogonal, Foster and George (1994) show that
the risk inflation (9) is bounded from below by 2log G — o(log G). Heuristically, we can argue
that when k ~ 2log G, then the Benjamini-Yekutieli (2001) procedure will be approximately

optimal in this framework as well.

14
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6. Simulation Studies

We next sought to study the finite-sample properties of the proposed methodologies using
simulation studies. We considered two situations. The first is where p is smaller than n, while
the second is when p is larger than n. We considered the model from Section 2. In the first
set of simulations, n = 50 and p = 10. The true model is E(Y) = X; + 1.5X5 + 3X3.
The variance of the error term in all simulation studies is one. The predictors were generated
with correlation p = 0.1,0.3,0.5,0.7 and 0.9. A receiver operating characteristic (ROC) curve
was constructed based on taking the top k variables (k = 1,2,3,4,5, and 10) based on the
estimated posterior probability from the algorithm in Box 3. The ROC curves averaged across
250 simulations for each setting are shown in Figure 1; as is shown there, ranking variables
based on the estimated univariate posterior probabilities accurately identifies the true model.
To study the finite-sample properties of the risk behavior of the proposed procedures, a second
simulation study was done in which the true mean-squared error (MSE) was compared with
estimated mean-squared errors based on selecting the top k£ variables. Here we considered
the same model as above with p = 0.5; values of £ = 3,5 and 8 were considered. The MSE
values are taken over 250 simulations. The results are provided in Figure 2. We find that
even though a selection of k = 3 virtually mimics the behavior of the true MSE, selecting
k = 5 yields on average a lower MSE. In keeping with the results of Foster and George (1994),
they would suggest a model using the top 2log(50) = 8 variables. The estimated MSE from
that criterion is competitive with the true MSE.

Next, the situation in which p is larger than n was considered. For this situation, we took
p = 20 and n = 10. We considered the same true model as in the previous paragraph, along
with the same correlation values. Cutoff values k = 1,2, 3,4,5,10,15 and 20 were used. The
ROC curves averaged across 250 simulations for each setting are shown in Figure 3. Based on
this, we find that there is substantial difference in the performance of the procedure depending
on how much correlation is in the data. More correlation leads to better performance; this
is due to the fact that such a situation leads to a smaller effective dimension size of the
model. Next, the mean-squared errors from variable selection procedures were considered in

a manner analogous to that in Figure 2. The plot is shown in Figure 4. Because of the fact
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that p is bigger than n, we find that the mean-squared errors from the selection procedures
are smaller than the true mean-squared error. These results suggests that procedures based

on a univariate selection criterion for model selection might have nice risk properties.
7. Discussion

In this article, we have attempted to approach the false discovery rate from a different
angle relative to that in the previous literature (Benjamini and Hochberg, 1995; Genovese
and Wasserman, 2002; Storey, 2002). We find that the local false discovery rate is a natural
quantity that arises in the variable and model selection context. By finding this link, we are
then able to tie in results from the model selection literature and risk analysis. The results
suggest that procedures for ranking variables for consideration in a model based on univariate

posterior probability criteria behave well from a risk point of view.
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Table 1: Qutcomes of m tests of hypotheses

Accept | Reject | Total
True Null U A% my
True Alternative T S my
W Q m

Box 1. Benjamini and Hochberg (1995) procedure

(a) Let pay < pg) < --- < pg) denote the ordered, observed p-values.

(b)
(c)

Find k = max{1 <k < G 1y < ak/G}.

If k exists, then reject null hypotheses p(;) <--- < Piy- Otherwise, reject nothing.

Box 2. Proposed Algorithm for estimating pFDR and FDR

(e)

Fit (1) for each gene g, g =1,...,G.

Calculate a p-value using Blg/SE(Blg), g=1,....G.

Let pi1,...,pg denote the G p-values. Estimate 7, the proportion of differentially

expressed genes and Fp(z), the cdf of the p-values by

W(A)
1-NG

Ty —
and
s oy min{R(y),1}
Fp(z) = —a
where R(vy) = #{pi <~} and W(A) = #{p; > A}.

For any rejection region of interest [0,7], estimate pFDR as

— oY
pFDR(y) =

Fp(y){1 -1 -7y}

Estimate FDR as

FDR, =
K Fp(7)

Note: For details on choosing v, see Section 9 of Storey (2002).
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Box 3. Storey et al. (2004) procedure

(a) Estimate FDR using FDR, from Box 2.

(b) Reject null hypotheses p; < to(FDR,),i=1,...,G.

Box 4. Proposed Bayesian variable selection procedure # 1

(a) Set level to be a and fix a rejection region R.
(b) Fit model (2) - (5) using Markov Chain Monte Carlo (MCMC) methods.
(c) Based on the MCMC output, calculate pp; = P(vy; = O|BZ €R),i=1,...,G.

(d) Let pp1y < pp(ay < -+ < pp(g) denote the sorted values of ppy,...,pp, in increasing

order.

(¢) Find k = max{1 < k< G : pp(ky < ak/GY; select variables 1,...,G.
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Box 5. Proposed Bayesian variable selection procedure # 2

(a) Set level to be a and fix a rejection region R.
(b) Fit model (6) - (8) using Markov Chain Monte Carlo (MCMC) methods.
(c) Based on the MCMC output, calculate pp; = P(vy; =0|8; € R), i = 1,...,G.

(d) Let ppay < pp(2) < --+ < pp(g) denote the sorted values of ppi,...,pp, in increasing

order.

(¢) Find k = max{1 < k< G : pp(ky < ak/GY; select variables 1,...,G.
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ROC for n=50 p=10
cutoff points: 1,2,3,4,5,10
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Figure 1: Plot of ROC curve for simulation setting when n = 50 and p = 10. Variables ranked
univariately based on marginal posterior probability. ROC averaged across 250 simulations.
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boxplot 250 MSEs: n=50 p=10 rh0=0.5
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Figure 2: Mean squared errors based on taking top k variables (k = 3,5,8) and true MSE
averaged across 250 simulations.

23

Hosted by The Berkeley Electronic Press



Sensitivity

1.0

0.9

0.8

0.7

0.6

0.5

04

0.3

ROC for n=10 p=20
cutoff points: 1,2,3,4,5,10,15,20

— rho=0.1
--- rho=0.3
""" rho=0.5
-=-= rho=0.7
—— rho=0.9

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Figure 3: See caption to Figure 1.
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boxplot 250 MSEs: n=10 p=20 rh0=0.5
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Figure 4: See averaged across 250 simulationscaption to Figure 2.
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