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SUMMARY

It is oft observed in medicine that what works for one patient may not work for another. Deter-
mining for whom a treatment works and does not work is of great clinical interest. We propose
a methodology to estimate treatment effect heterogeneity, i.e. to ascertain for which subpopula-
tions a treatment is effective or harmful. The model studied assumes the relationship between an 15

outcome of interest (e.g. blood pressure, cholesterol, survival) and a set of covariates (e.g. treat-
ment, age, gender) is modified by a linear combination of a set of features (e.g. gene expression).
Specifically a threshold on the linear combination divides the population into two subpopulations
with different responses to treatment. Techniques from Latent Supervised Learning, a novel ma-
chine learning idea, is applied for model estimation, i.e. estimation of the linear combination and 20

the corresponding threshold. Consistency of the estimator is established. In simulations the pro-
posed methodology demonstrates high classification accuracy in a wide array of settings. Three
data analysis examples are presented to illustrate the efficacy and applicability of the proposed
methodology.

Some key words: Biomarker; Cox model; Empirical processes; Generalized linear model; Glivenko-Cantelli; Personal- 25

ized medicine; Sieve maximum likelihood; Sliced inverse regression; Subgroup analysis; Survival analysis; Treatment
interaction.

1. INTRODUCTION

Treatment effect heterogeneity is often observed in medical studies, i.e. different treatments
having different effects on different individuals. For instance, a treatment can be beneficial for 30

all the subpopulations but with varying magnitudes, or of more interest, a treatment is only
beneficial for certain subpopulations. Subgroup analysis is a commonly used approach to esti-
mate for which subpopulations a treatment is beneficial or harmful. However, its misuse is well-
documented and subgroup analysis remains quite controversial in the realm of medical research
(Rothwell, 2005; Lagakos, 2006). 35

In this paper we study a parsimonious model where the relationship between the outcome of
interest and a set of covariates is modified by a linear combination of a set of features. Specif-
ically, there exists a separating hyperplane in the feature space that divides the population into
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two subgroups with different regression coefficients. For example, the outcome of interest could
be survival time, the covariates could include a treatment indicator and a set of confounding vari-40

ables, and the set of features could be gene expression variables. The model then postulates the
existence of two subpopulations whose treatment response differ according to a linear combina-
tion of gene expression values.

We first present the model for the case when the outcome of interest belongs to the exponen-
tial family of distributions. The analogous model for Y being a right-censored survival time is45

presented later in Section 3. Recall the standard generalized linear model is characterized by the
following features:

Property 1. a linear predictor η = βTU .

Property 2. a differentiable one-to-one link function g which specifies the relationship be-
tween the mean E(Y ) = µ and the linear predictor: g(µ) = η.50

Property 3. a variance function V which specifies the relationship between the mean and the
variance: V ar(Y ) = ϕV (µ) where ϕ represents the dispersion parameter.

We introduce several additional components to the the standard generalized linear model.
First, we decompose the independent variable into two parts, a joint and individual one. Let U ∈
Rd denote the joint component and Z ∈ Rd′ denote the individual component. Per the setting55

motivated above, the term joint refers to the fact that there is a single regression coefficient for U
while the term individual reflects the condition that the regression coefficient for Z depends on
the features X ∈ Rp. This dependency is only through the value of the indicator 1{ωTX − γ ≥
0}. Here ω is of the same dimension as X and has unit length, ||ω|| = 1. Specifically, the linear
predictor has the following form:60

ηi = (β1 + (β2 − β1)1{ωTxi − γ ≥ 0})T zi + δTui. (1)

The primary interest is to estimate the separating hyperplane determined by ω and γ. This in turn
gives estimates of the regression coefficients β1, β2 and δ.

A subset of the feature X is allowed to be part of the joint variable or the individual variable
or both. In order to ensure identifiability, U and Z cannot contain the same variables, however.
To be as general as possible, the intercept term is included in the individual component Z and65

not in the joint component U .
The independent variables Z and U are often low-dimensional. In applications of primary

interest to us, Z is the treatment variable and U the confounding variables. The X features can
be higher-dimensional such as gene expression profiles.

Existing methodologies for estimating treatment effect heterogeneity have focused on70

treatment-covariate interaction. Taking a variable selection viewpoint, the methods proposed in
Imai & Strauss (2011) and Gunter et al. (2011) seek to identify variables with large interaction
effects with treatment for further analysis and validation. The personalized medicine methods in
Qian & Murphy (2011) and Zhao et al. (2012) focus on designing optimal treatment regimes for
each individual and thus indirectly estimate treatment effect heterogeneity. More commonly used75

methods such as Boosting (LeBlanc & Kooperberg, 2010), Bayesian Additive Regression Trees
(Chipman et al., 2010), and other tree-based approaches (Su et al., 2009) focus on prediction and
can be difficult to interpet.

In the model proposed here, we are interested in estimating the treatment-subgroup interaction
effect as opposed to treatment-covariate interactions. Importantly, in the setting studied here, the80

subgroup term is unknown a priori and as such we cannot apply the above methodologies for
model estimation. The proposed model is worthwhile to study for its simplicity, ease of inter-
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pretability, and parsimony. Similar to the models studied in Imai & Strauss (2011) and Gunter
et al. (2011), variable selection is in some ways built into our framework. Namely, the coeffi-
cients of ω in Model (1) are rough indicators of the importance of a feature in terms of how 85

much it drives the separation in treatment responses between the two subpopulations. The main
advantage of the proposed model over those studied previously is the fact that a general classifi-
cation rule is learned for identifying subpopulations with treatment effect heterogeneity. This is
in contrast to the methods in Imai & Strauss (2011) and Gunter et al. (2011) which can only go
so far as to give soft characterizations of the subpopulations with different treatment responses 90

instead of a hard classification rule.
We apply techniques from a novel machine learning idea called Latent Supervised Learning

for model estimation. Latent Supervised Learning bridges the gap between unsupervised and
supervised learning. The basic idea is to use a continuous surrogate variable to supervise the
learning of a binary classifier. The following Gaussian classification problem was considered in 95

Wei & Kosorok (2013):

Y ∼ N(µ1, σ
2
1) when ωTX − γ ≥ 0

and

Y ∼ N(µ2, σ
2
2) when ωTX − γ < 0.

This model is a special case of Model (1) studied here. To see this, set Z = 1 and U to be empty
in (1). Besides introducing regressors, we also allow Y to be any member of the exponential
family of distributions rather than restricting its distribution to be Gaussian. Finally, we allow 100

the mean response to be related to the linear predictor through a link function g. These additions
require adaptation of the original Latent Supervised Learning methodology.

2. METHODOLOGY

2·1. Sieve maximum likelihood estimation
This section focuses on model estimation for the case when Y is in the exponential family of 105

distributions. The special case when Y is a right censored survival time is treated thoroughly in
Section 3. We also restrict our attention to the case when there is no overlap between Z and X .
The case when there is overlap is postponed to the Appendix.

The log likelihood of the data, denoted Ln, can be parametrized in terms of ω alone. Given
ω and γ, the regression coefficients β1, β2 and δ in (1) can be found via the standard Fisher 110

scoring method employed in generalized linear model estimation. Next, given ω, the cutpoint γ
in the separating hyperplane can be found via a simple grid search. Thus we only need concern
ourselves with a single parameter function Ln(ω).

A natural approach to estimate ω is via maximum likelihood. However, direct maximization
over Rp is computationally challenging when the dimension of the feature X is large. Instead we 115

consider maximization over a data-driven approximating space that grows dense as the sample
size increases. We will refer to such a sequence of approximating spaces as a sieve, following
the terminology in Grenander (1981).

A sieve maximum likelihood approach was also used in two previous papers on Latent Super-
vised Learning, first in the Gaussian classification problem studied in Wei & Kosorok (2013) and 120

next in the survival time classification problem in a technical report by the same authors available
online at Bepress (University of North Carolina, Chapel Hill, Department of Biostatistics). In
these papers, a preliminary sieve based on information in the covariate space is first constructed
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and the sieve is next improved by incorporating the response variable Y . The methodology em-
ployed here is adapted from this general strategy.125

The simple sieve is constructed as follows. The convex hull of the point cloud in the X feature
space is first computed. For each possible binary enumeration of the points on the convex hull,
calculate the direction which connects the means of the two classes. Note this is the normal vector
to the separating hyperplane produced by the simple binary classifier known as the centroid
method in Hastie et al. (2001). If the number of points on the convex hull is very large, randomly130

select a subset of m points. We recommend m no bigger than 10. The collection of the 2m

directions trained in this manner shall be referred to as the simple sieve.

Remark 1. In Wei & Kosorok (2013) and the subsequent technical report, the X space was
first partitioned into several regions and the simple sieve direction was calculated within each
region. This is much more computationally intensive than what is proposed here.135

Remark 2. Convex hull computation can be difficult in high dimensions. If necessary, first re-
duce the dimension of theX feature space via, say Principal Components Analysis. Interestingly,
in very high dimensions, all points are on the convex hull, see Hall et al. (2005). Thus, a random
number of points can be chosen instead of the actual computation of the convex hull when this
is the case.140

For each ω direction in the simple sieve, Sliced Inverse Regression Li (1991) is performed on
the bivariate (Y, ωTX). For simplicity assume X has already been standardized to have mean
zero and unit covariance. The improved sieve is created as follows.

Step 1. Slice the range of Y into several non-overlapping regions. Follow this by slicing on
the range of ωTX within each slice of Y . Let Ih denote the h-th slice for h = 1, . . . ,H .145

Step 2. Calculate the weighted sample covariance matrix

V̂n(ω) =
H∑

h=1

p̂hm̂h(ω)
′m̂h(ω) (2)

where m̂h(ω) is the unbiased estimate of mh(ω) = E(X | (Y, ωTX) ∈ Ih) based on the sample
average of X for (Y, ωTX) ∈ Ih and similarly for p̂h(ω), the unbiased estimate of the quantity
ph(ω) = pr((Y, ωTX) ∈ Ih).

Remark 3. In Wei & Kosorok (2013) and the subsequent technical report, the bivariate150

(Y, 1{ωTX − γ ≥ 0}) is sliced. Here we eliminate the need to first estimate γ. This results
in a computational improvement.

Remark 4. The number of slices H need not increase with n. We have found that slicing Y
into roughly n/10 slices and then further slicing ωTX into two slices works well in practice.

Under certain conditions we will detail in the next section, the largest eigenvector ν̂n(ω) of155

the weighted sample covariance matrix V̂n(ω) in (2) is guaranteed to be consistent for ω0. Let
Ω̂n be the collection of directions ν̂n(ω) where ω ranges over the simple sieve.

The final estimate for ω0 is

ω̂n = arg max
ω∈Ω̂n

Ln(ω). (3)
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2·2. Asymptotic results
We establish the asymptotic properties of the sieve maximum likelihood estimator in this 160

section. Let P be the probability measure generating the data under Model (1) conditional on
the variables U and Z. Let Pn be the empirical measure. The regression coefficients β1, β2 ∈
Rd′ , δ ∈ Rd are collected into the variable ψ. The direction vector ω is constrained to have unit
length. The unknown parameters can be collected as θ ≡ (ψ, ω, γ) and the subscript zero will be
used to denote the true parameter values. 165

Since Y is a member of the exponential family, we can write its density in the following form

f(y|ζ) = c(y) exp(ζy − b(ζ)) (4)

where we have written the distribution in the canonical form (or natural form). We can further
simplify the expression by using the canonical link function g which gives η = ζ in which case
the density in (4) can be rewritten as

f(y|η) = c(y) exp(ηy − b(η)) (5)

Remark 5. The original definition of Nelder & Wedderburn (1972) introduces an additional 170

nuisance parameter in (4). The maximum likelihood estimator of θ remains unchanged. Thus,
without loss of generality, we content ourselves to the simpler form in (4).

From Equation 5, it is easy to see that maximizing the log likelihood of the data is the same as
maximizing Mn(θ) ≡ Pnmθ, where

mθ(y, x) ≡ ηy + b(η) 175

= [(β1 + (β2 − β1)1{ωTx− γ ≤ 0})T z + δTu]y

+ b((β1 + (β2 − β1)1{ωTx− γ ≤ 0})T z + δTu) (6)

Let θ̂n be the sieve maximizer of Mn(θ), where θ̂n ≡ (ψ̂n, ω̂n, γ̂n).
The following conditions will be needed:

Condition 1. The parameter space of the regression coefficients ψ is compact. 180

Condition 2. The cuptoint γ is known to lie in a bounded interval [a, b].

Condition 3. The univariate random variable ωTX has a strictly bounded and positive density
f where ||ω|| = 1.

Condition 4. For any b ∈ Rp, the conditional expectation E(bTX|ωT
0 X) is linear in ωT

0 X .

Condition 5. The change-line regression coefficients β1,0 ̸= β2,0. 185

Condition 6. The covariate X has a continuous distribution.

Conditions 1 and 2 guarantee the existence of θ̂n. Condition 3 is used in establishing semicon-
tinuity of the theoretical objective function. Condition 4 is a key assumption in Li (1991) and is
satisfied when the distribution of X is Gaussian or more generally, elliptically symmetric. The
last two conditions guarantee the model is identifiable. 190

THEOREM 1 (CONSISTENCY). Under Conditions 1–6, the sieve estimator θ̂n is consistent.

Proof. Our approach to establishing consistency will be to utilize the argmax theorem (The-
orem 14.1 in Kosorok (2008). We first need to show that Mn  M in l∞(K) for all com-
pact K ⊂ H = R× Rd × Rd × Rd′ × Sp × [a, b] where M(θ) ≡ Pmθ and Sp is the collection
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of vectors in Rp with unit length. We will also need to show that θ 7→M(θ) is upper semi-195

continuous with a unique maximum at θ0. Near-maximization must then be established, i.e.
Mn(θ̂n) ≥Mn(θ0)− oP (1). Finally, the argmax theorem will yield that θ̂n converges to θ0 in
probability.

Fix a compact K ⊂ H . We now verify that FK ≡ {mθ : θ ∈ K} is Glivenko-
Cantelli. The latent features X can be partitioned into four mutually exclusive sets:200

A1 ≡ {ωTX ≤ γ, ωT
0 X ≤ γ0}, A2 ≡ {ωTX ≤ γ, ωT

0 X > γ0}, A3 ≡ {ωTX > γ, ωT
0 X ≤

γ0}, A4 ≡ {ωTX > γ, ωT
0 X > γ0}. We can write

mθ(y, x) = {(βT1 Z + δTU)y + b(βT1 Z + δTU)}1{x ∈ A1}
+ {(βT1 Z + δTU)y + b(βT1 Z + δTU)}1{x ∈ A2}
+ {(βT2 Z + δTU)y + b(βT2 Z + δTU)}1{x ∈ A3}205

+ {(βT2 Z + δTU)y + b(βT2 Z + δTU)}1{x ∈ A4}. (7)

It is easy to see that the classes {βTZ : θ ∈ K} and {δTU : θ ∈ K} are separately Glivenko-
Cantelli classes. Thus the sum is also Glivenko Cantelli by Corollary 9.27 (i) in Kosorok (2008).
The product of the classes {βTZ + δTU : θ ∈ K} and {y} is also Glivenko-Cantelli by Corol-
lary 9.27 (ii) since the product of the two envelopes is integrable. The function b is continuous210

and by Corollary 9.27 (iii), the class {b(βT2 Z + δTU) : θ ∈ K} is Glivenko-Cantelli since the
envelope is integrable. It was shown in Wei & Kosorok (2013) and the subsequent technical
report the class of indicator function {1{ωTX − γ ≥ 0} : θ ∈ K} is Glivenko-Cantelli. Reap-
plications of Corollary 9.27 (i) and Corollary 9.27 (ii) shows Fk itself is Glivenko-Cantelli. Thus
Mn  M in l∞(K) for all compact K.215

We now establish upper semicontinuity of θ 7→M(θ). Using the same sets described above,
we have

M(θ) = P (ηy + b(η))

= {(βT1 Z + δTU)g−1(βT1,0Z + δT0 U) + b(βT1 Z + δTU)}P (A1)

+ {(βT1 Z + δTU)g−1(βT2,0Z + δT0 U) + b(βT1 Z + δTU)}P (A2)220

+ {(βT2 Z + δTU)g−1(βT1,0Z + δT0 U) + b(βT2 Z + δTU)}P (A3)

+ {(βT2 Z + δTU)g−1(βT2,0Z + δT0 U) + b(βT2 Z + δTU)}P (A4). (8)

The function g is differentiable and thus continuous, hence g−1 is continuous. Next, the function
b(η) is differentiable and thus continuous. Finally by Condition 3, ωTX and ωT

0 X have bounded
densities. Thus M(θ) is continuous and therefore upper semicontinuous.225

Identifiability plus the Kullback-Leibler discrepancy will show thatM has a unique maximum
at θ0. Condition 5 ensures the regression coefficients are identifiable. The normal vector to the
separating hyperplane ω and the cutpoint γ are identifiable up to sign. Condition 6 guarantees
that ω = ω′ whenever 1{ωTX − γ} = 1{ω′TX − γ0}.

Finally, we establish near maximizability. Lemma 1 in the Appendix establishes the sieve230

Ω̂n is dense, i.e. there exists a sequence ωn ∈ Ω̂n that converges to ω0. Let γn and ψn be the
cutpoint and regression estimates corresponding to ωn, respectively. Denote this sequence by
θn = (ψn, ωn, γn). Since θ̂n maximizes Mn(θ) over Ω̂n, we have Mn(θ̂n) ≥Mn(θn). By the
continuity of M(θ), we have Mn(θn)−Mn(θ0) = oP (1) and thus

Mn(θ̂n) ≥Mn(θ0)− oP (1).

Now the conditions of the argmax theorem are met, and the desired consistency follows. �235
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3. EXTENSION TO RIGHT-CENSORED SURVIVAL DATA

In this section we consider the case when Y is a right-censored survival time. Let T denote
the true lifetime and C the censoring time. The observed data consists of Y = min(T,C), the
censoring indicator 1{T ≤ C}, along with the covariates Z and U and the feature vector X .
Censoring is assumed to be independent of survival, conditional on X . 240

For simplicity assume there is no overlap between X and Z. The linear predictor η takes on a
similar form as in Equation (1) except Z no longer contains an intercept term. The intercept term
can only be added to one subgroup, otherwise the model would not be identifiable. We have the
following form for the linear predictor:

ηi = (β1 + (β2 − β1)1{ωTxi − γ ≥ 0})T zi + intercept ∗ 1{ωTxi − γ ≥ 0}+ δTui. (9)

Our model is a Cox model with the linear predictor as in (9). The conditional hazard function is 245

h(t|z, u, x) = exp(η)h0(t)

where h0(t) is the baseline hazard function.
The survival model above generalizes the survival classification problem studied in the tech-

nical report by Wei and Kosorok which was

h(t|x) = exp(β)h0(t) when ωTX − γ ≥ 0

and

h(t|x) = h0(t) when ωTX − γ ≥ 0.

To see this, set Z = 1 and U to be empty. 250

We follow the general strategy in the technical report by Wei and Kosorok of accounting
for censoring. Let 0 = t1 < t2 < · · · < tH <∞ = tH+1 be a partition of the observed survival
times and let Ih be the h-th slice from slicing on the pair (T, ωTX). Because T is not always
observed, we must be careful in estimating mh(ω) = E(X|T, ωTX ∈ Ih). As in the technical
report by Wei and Kosorok, we use a method called Recursively Imputed Survival Trees, intro- 255

duced in Zhu & Kosorok (2012), to estimate the weight function

w(Y, t,X) = P (T ≥ t|X)/P (T ≥ Y |X).

Let the resulting estimate be denoted by ŵ. In the technical report by Wei and Kosorok, unbiased
estimates of mh and ph were derived using ŵ to adjust for censoring. The expressions are

m̂h(ω) =
1

np̂h(ω)

∑
zi{(yi, ωTxi) ∈ Ih}+ ŵ(yi, th, xi)1{yi < th, δi = 0, ωTxi ∈ Ih}

− ŵ(yi, th+1, xi)1{yi < th+1, δi = 0, ωTxi ∈ Ih}}, (10) 260

where

p̂h(ω) = n−1
∑

1{(yi, ωTxi) ∈ Ih}+ ŵ(yi, th, xi)1{yi < th, αi = 0, ωTxi ∈ Ih}

− ŵ(yi, th+1, xi)1{yi < th+1, αi = 0, ωTxi ∈ Ih}. (11)

The remaining steps are the same as the methodology outlined in Section 2·1. Namely, calcu-
late the weighted sample covariance matrix in Equation (2) based on Equations (10) and (11). 265

Follow by taking the largest eigenvector of the weighted sample covariance matrix which will
become a candidate direction in the sieve. Finally, the estimate of ω is the direction in the sieve
that maximizes the likelihood of the data.
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Fig. 1: Exponential family distributions: the classification accuracy of the proposed methodology
when X is not in U (solid) and X is in U (dashes) for various distributions of Y . Error bars are
also indicated.

We briefly given an outline for the consistency of the sieve maximum likelihood estimator in
the survival setting. Instead of a true likelihood, we work with a profile likelihood in the survival270

model proposed here. That the profile likelihood is continuous with a unique maximum follows
from the consistency proof given in the technical report by Wei and Kosorok. The Glivenko-
Cantelli component of the Argmax Theorem can be established similar to the argument given
in Section 2·2. Finally, demonstrating near-maximizability is quite straightforward given the
continuity.275

4. SIMULATIONS

Simulations are conducted to examine the performance of the proposed methodology under
various settings. In particular, the following factors are investigated: 1) the dimension of the
feature vector X , 2) overlap between X and U , and 3) the distribution of the response variable
Y .280

The dimensions p = 4, 10, 20, 50 are considered for X . When there is no overlap between X
and U , the dimension of U is set to 5. Otherwise the first two marginals ofX are added, bringing
the dimension of U to 7. We also consider several different distributions for the outcome variable
Y – Gaussian, Poisson, Bernoulli, and Binomial with 10 trials.

The sample size is fixed at 100 observations. The direction ω is set to the unit vector285

in the direction of (1, . . . , 1,−1, . . . ,−1) where the number of positive 1’s is roughly half
of p. The cutpoint γ is fixed at 0. The individual regression coefficients are set to β1 =
(1/2,− log p, . . . ,− log p) and β2 = (1/4, log p, . . . , log p). The value of the joint regression
coefficient δ is drawn from a d-variate random variable with uniform(−1, 1) independent
marginals.290
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Fig. 2: Survival time: the classification accuracy of the proposed methodology when X is not in
U (solid) and X is in U (dashes). Error bars are also indicated.

We perform 100 Monte Carlo realizations for each simulation setting. The same δ is used for
each dimension of X . In contrast, the joint and individual variables U and Z and the feature vec-
tor X are randomly drawn from the standard multivariate Gaussian distribution for each Monte
Carlo realization.

Accuracy of the methodology is measured by the percentage of subjects classified correctly 295

on a large independent test set. This only involves generating realizations of the feature vector
X . Figure 1 displays the average classification accuracy over 100 Monte Carlo simulations for
different distributions of Y in the exponential family. A general trend across all four panels is a
decrease in classification accuracy as dimension of X increases. However even up to dimension
50, the classification accuracy is reasonably high considering the sample size is fixed at n = 100. 300

The classification performance is comparable for the Gaussian, Poisson and Binomial distribu-
tion. The Bernoulli setting proves to be a bit more challenging than the Binomial since there is
less data here. Finally, the performance of the method does not seem very sensitive to whether
there is overlap between X and U .

Next we examine the performance of the methodology for survival outcome. Let η be as in 305

Equation (9) with the individual regression coefficients set to β1 = (− log p, . . . ,− log p) and
β2 = (log p, . . . , log p), and the intercept to 1/2. The true survival time T is exponential dis-
tributed with mean 2/ exp(η). We observe Y = min(T,C) where the censoring time C is dis-
tributed uniform(0, 10). The percentage of censoring is approximately 30%. In all other regards
the parameters for the survival simulation is as above. 310

Figure 2 shows the classification performance of the methodology for survival outcome.
Again, we see the accuracy decreasing as dimension increases. The classification accuracy is
just above 50% when the dimension of X is 50. The dimensionality of X proves to be more
challenging in the survival setting perhaps due to the presence of censoring. Still, the classifica-
tion at moderately high dimensions is reasonably accurate. 315
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Fig. 3: Horse colic dataset: estimated coefficients (and error bars) in the logistic regression mod-
els (i) Y ∼ Z + U on the training set, (ii) Y ∼ Z + Z1{ω̂T

nX − γ̂n ≥ 0}+ U on the training
set, and (iii) Y ∼ Z + Z1{ω̂T

nX − γ̂n ≥ 0}+ U on the test set. Filled circles indicate signifi-
cance at the 0.05 level.

5. DATA EXAMPLES

5·1. Horse colic disease
In this section, we study a dataset containing information on 368 horses suffering from colic.

We are interested in determining whether it is beneficial to perform surgery on horses with colic.
Let Y be the binary endpoint dead versus alive, coded 1 and 0, respectively. Let Z be the treat-320

ment indicator, 1 for surgery and 0 for traditional treatment. The joint variable U consists of the
confounding variables rectal temperature, pulse, respiratory rate, capillary refill time, abdominal
distension, packed cell volume, and abdomcentesis total protein.

The dataset is split into a training set (n = 300) and a test set (n = 68). We first fit a standard
logistic regression model Y ∼ Z + U . The estimated coefficients are displayed in the first panel325

of Figure 3. Surgery is significantly associated with mortality but it is a negative effect, i.e. the
horse has a higher chance of dying if it is treated with surgery.

The proposed methodology is applied to discover subgroups with possibly different treatment
responses. The X variables considered for possible interaction with treatment include age (1 for
old, 0 for young) and the surgical possibility of the lesion (1 for surgical, 0 for not surgical). The330

output of the proposed method is the following separating hyperplane

0.9010 ∗ age + 0.4338 ∗ surgical lesion ≥ 1.3348. (12)

Thus class 1 (when the above expression is true) is comprised of old horses with lesions that are
indeed surgical. Class 0 (when the above expression is false) is comprised of young horses and
horses whose lesions were not surgical.

The second panel of Figure 3 shows the coefficients of the model Y ∼ Z + Z1{ω̂T
nX − γ̂n ≥335

0}+ U on the training data. We see that surgery has a significantly beneficial effect for class 1
horses, i.e. old horses with surgical lesions. On the other had, surgery is seen to be significantly
harmful in young horses and horses who do not have surgical lesions.
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Fig. 4: Depression dataset: estimated coefficients (and error bars) in the linear regression models
(i) Y ∼ Z on the training set, (ii) Y ∼ Z + Z1{ω̂T

nX − γ̂n ≥ 0} on the training set, and (iii)
Y ∼ Z + Z1{ω̂T

nX − γ̂n ≥ 0} on the test set. Filled circles indicate significance at the 0.05
level.

We next fit the same model on the test set to assess the generalizability of the estimated
hyperplane in Equation (12). The third panel of Figure 3 shows the coefficients of the model 340

Y ∼ Z + Z1{ω̂T
nX − γ̂n ≥ 0}+ U on the test set. The sign of the coefficients in the test set

agree with that of the coefficients fitted on the training set. The p-values are not as significant as
in the training set but still quite low. Thus we can comfortably conclude that we have found two
subgroups whose treatment responses are different.

5·2. Nefazodone-CBASP trial 345

The Nefazodone-CBASP trial compared three different treatments for patients suffering
chronic depression. Patients with non-psychotic chronic major depressive disorder (MDD) were
randomized to either 1) the Nefazodone drug, 2) cognitive behavioral-analysis system of psy-
chotherapy (CBASP), or 3) a combination of the two. The primary outcome measurement used
in assessing the efficacy of the treatments is the score on the 24-item Hamilton Rating Scale 350

for Depression (HRSD). Lower HRSD is desirable. For the detailed study design, Keller et al.
(2000) can be consulted.

The data (courtesy of John Rush) consists of 570 patients which we split into a training set
(n = 399) and a test set (n = 171). Let Y in Model (1) be the HRSD score, assumed to be
Gaussian distributed. Psychotherapy is taken to be the baseline treatment and coded Z = (0, 0), 355

Nefazodone is coded Z = (1, 0) and the combined treatment Z = (0, 1). Since the patients were
enrolled in a randomized controlled trial, we take U in Model (1) to be empty. We considered 25
pretreatment variables for the feature vector X .

The original analysis in Keller et al. (2000) indicates that the combination of the drug and
psychotherapy is significantly more efficacious than either treatment alone. Fitting the lin- 360

ear model Y ∼ Z, we confirm this is indeed true, the result of the fit is displayed in the
first panel of Figure 4. Next, we apply the proposed methodology to discover subgroups of
patients with possibly different responses to treatment. The coefficients of the linear model
Y ∼ Z + Z1{ω̂T

nX − γ̂n ≥ 0} on the training data are displayed in the second panel of Figure
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Fig. 5: DLBCL dataset: estimated coefficients (and error bars) in Cox models (i) Y ∼ Z on
the training set, (ii) Y ∼ Z + Z1{ω̂T

nX − γ̂n ≥ 0} on the training set, and (iii) Y ∼ Z +
Z1{ω̂T

nX − γ ≥ 0} on the test set. Filled circles indicate significance at the 0.05 level.

4. We see that neither of the interaction terms are significant. This suggests that the combination365

treatment may indeed be superior to psychotherapy for all patients.
It also turns out that the estimated hyperplane divides the training data such that the over-

whelming majority (93%) fall in one subgroup. This is strong evidence that there is only one
subgroup. Indeed, we see from the last panel of Figure 4 that the class variable and the interac-
tion terms are not significant in the test set.370

We also performed the analysis using Nefazodone as the baseline which also showed the
combination treatment to be the superior treatment for all subjects. Other independent analysis
have also drawn similar conclusions, see Qian & Murphy (2011), Gunter et al. (2011), and Zhao
et al. (2012).

5·3. Diffuse large B-cell lymphoma375

Diffuse large B-cell lymphoma (DLBCL) is a cancer of white blood cells and the most com-
mon type of non-Hodgkin lymphoma among adults. Here we analyze a survival dataset collected
on 240 patients with DLBCL of which there are 138 patient deaths at follow-up (42% censoring).
The outcome of interest Y is survival. Our goal is to measure the association between survival
and the International Prognostic Index (IPI), a well-established predictor of the survival of DL-380

BCL patients. It has been noted in the literature that the survival outcome in patients who have
identical IPI values can vary considerably. As such, we expect there to be subgroups of patients
whose IPI is differentially connected to survival.

We split the data into a training set (n = 149) and a test set (n=73). The censoring percentages
are 47% and 34%, respectively. We first fit the Cox model Y ∼ Z on the training data. The first385

panel of Figure 5 shows there is a significant difference between IPI group 2 and IPI group 1 as
well between IPI group 3 and IPI group 1.

The proposed methodology is then applied with U set to be empty and X to include four gene
expression signatures 1) Germinal center B cell, 2) Lymph node, 3) Proliferation, and 4) MHC
class II, and the gene expression of the BMP6 gene. Let Z = (0, 0) for IPI group 1, Z = (1, 0)390
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for IPI group 2, and Z = (0, 1) for IPI group 3. The estimated hyperplane splits the subjects
in the training set into two groups at roughly a 75–25 split. The coefficients of the model Y ∼
Z + Z1{ω̂T

nX − γ̂n ≥ 0} on the training set is displayed in the second panel of Figure 5. We
see that there is no significant difference between IPI group 2 and IPI group 1. Within class 0,
IPI group 3 experiences significantly better survival than IPI group 1. In class 1, the opposite is 395

true.
We now fit the same model on the test set. The coefficients of the model Y ∼ Z + Z1{ω̂T

nX −
γ̂n ≥ 0} on the test set are summarized in the third panel of Figure 5. The magnitude and sign
of the estimated coefficients in the training set and the test set are similar, with the exception of
the IPI group 2 variable and its interaction with the class variable. This is not surprising since 400

the p-values for these variables were not significant in the training set. Thus we can conclude
that patients in IPI subgroup 3 have different survival depending on which class they are in. In
addition, there is no significant survival difference between IPI group 2 and IPI group 1.

6. DISCUSSION

In this article we introduced a model to study treatment effect heterogeneity and an effective 405

methodology for its estimation. Several improvements and extensions are important to consider.
An obvious extension of the method is to ultra-high dimensional X features. One idea is to add
a penalty term on the coefficients of ω to the log likelihood. Alternatively it is also feasible to
construct the sieve in such a way that the candidate directions therein are already sparse.

Performing inference for ω and γ is also important and challenging. To guard against overfit- 410

ting in the data analysis examples, we applied the separating hyperplane to an independently held
out test set and assessed the significance of the interaction effects. This in some sense wastes part
of the data, as we have to set aside a test set to perform model diagnostics. A theoretical basis for
performing inference would be preferable. Establishing the weak convergence of the estimator
will lead to confidence intervals for instance. 415

Another interesting future research area is to build variable selection into the methodology.
Currently as each variable is weighted in the final classifier, these weights can be loosely inter-
preted to indicate a variable’s importance. This should be assessed in a more rigorous way how-
ever and work in this direction could help identify predictive biomarkers, i.e. a marker which can
be used to identify subpopulations of patients who are most likely to respond to a given therapy. 420
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APPENDIX 1
In this section, we treat the case where the variables X and Z overlap. Let v̂1n(ω) and v̂2n(ω) be the

eigenvectors corresponding to the two largest eigenvalues of the weighted covariance matrix in Equation 430

(2).
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Let L′
n be the log likelihood of the data under the following modification to the linear predictor com-

ponent

ηi = (β1,0 + (β2,0 − β1,0)
exp{ωT

0 xi − γ0 ≥ 0}
1 + exp{ωT

0 xi − γ0 ≥ 0}
)T zi + δT0 ui. (A1)

As with the log likelihood Ln, the modified log likelihood L′
n can also be parametrized solely in terms of

the direction vector. Now consider the following optimization problem435

argmax
c1,c2

−L′
n(c1v̂

1
n(ω) + c2v̂

2
n(ω)). (A2)

For each ω in the simple sieve, let the solution to the above minimization problem be the boosted direction.
This optimization problem can be solved using the fminsearch function in Matlab which implements the
Nelder-Mead algorithm for multidimensional unconstrained nonlinear minimization.

APPENDIX 2
LEMMA 1. Under Conditions 1–6, there exists a sequence ωn in Ω̂n that converges to ω0.440

Proof. For simplicity, let us consider the case where there is no overlap between X and Z. Recall the
definition of ν̂n(ω). It is the largest eigenvector of the weighted covariance matrix V̂n(ω) where ω is a
direction in the simple sieve.

Let ph(ω) = E1{Y, ωTX ∈ Ih} be the theoretical proportions in each slice. Let Z = Σ−1
xx [X − EX]

be the standardized covariate and mh(ω) = E[E(Z|Y )|Y, ωTX ∈ Ih] be the theoretical mean in each445

slice. Define the matrix

V (ω) =
H∑

h=1

ph(ω)mhmh(ω)
′.

It is easy to see V̂n(ω) is uniformly consistent for V (ω, γ) over (ω, γ) ∈ Sd × [a, b]. By Corollary 3.1 in
Li (1991) which uses Condition 4, the largest eigenvector of V (ω) falls in the linear space generated by
ω0Σ

1/2
xx . Since ν̂n(ω) is consistent for the largest eigenvector of V (ω) and Σ̂xx is consistent for Σxx, we

have ν̂n(ω)T Σ̂
−1/2
xx → ω0 uniformly over ω ∈ Sd.450

REFERENCES

CHIPMAN, H. A., GEORGE, E. I. & MCCULLOCH, R. E. (2010). Bart: Bayesian additive regression trees. Annals
of Applied Statistics 4, 266–298.

GRENANDER, U. (1981). Abstract Inference. New York: Wiley.
GUNTER, L., ZHU, J. & MURPHY, S. (2011). Variable selection for qualitative interactions. Statistical Methodology455

8, 42–55.
HALL, P., MARRON, J. S. & NEEMAN, A. (2005). Geometric representation of high dimension, low sample size

data. Journal of the Royal Statistical Society Series B 67, 427–444.
HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. (2001). The Elements of Statistical Learning. New York: Springer-

Verlag.460

IMAI, K. & STRAUSS, A. (2011). Estimation of heterogeneous treatment effects from randomized experiments, with
application to the optimal planning of the get-out-the-vote campaign. Political Analysis 19, 1–19.

KELLER, M. B., MCCULLOUGH, J. P., KLEIN, D. N., ARNOW, B., DUNNER, D. L., GELENBERG, A. J.,
MARKOWITZ, J. C., NEMEROFF, C. B., RUSSELL, J. M., THASE, M. E., TRIVEDI, M. H. & ZAJECKA, J.
(2000). A comparison of nefazodone, the cognitive behavioral-analysis system of psychotherapy, and their com-465

bination for the treatment of chronic depression. New England journal of medicine 342, 1462–70.
KOSOROK, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. New York: Springer,

1st ed.
LAGAKOS, S. W. (2006). The challenge of subgroup analyses: Reporting without distorting. New England Journal

of Medicine 354, 1667–1669.470



Latent Supervised Learning for Estimating Treatment Effect Heterogeneity 15

LEBLANC, M. & KOOPERBERG, C. (2010). Boosting predictions of treatment success. Proceedings of the National
Academy of Science 107, 13559–13560.

LI, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical Association
86, 316– 327.

NELDER, J. A. & WEDDERBURN, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical 475

Society. Series A 135, 370–384.
QIAN, M. & MURPHY, S. A. (2011). Performance guarantee for individualized treatment rules. Annals of Statistics

39, 1180–1210.
ROTHWELL, P. M. (2005). Subgroup analysis in randomized controlled trials: importance, indications, and interpre-

tation. The Lancet 365, 176–186. 480

SU, X., TSAI, C.-L., WANG, H., NICKERSON, D. M. & LI, B. (2009). Subgroup analysis via recursive partitioning.
Journal of Machine Learning Research 10, 141–158.

WEI, S. & KOSOROK, M. R. (2013). Latent supervised learning. Journal of The American Statistical Association
In press.

ZHAO, Y., ZENG, D., RUSH, A. J. & KOSOROK, M. R. (2012). Estimating individualized treatment rules using 485

outcome weighted learning. Journal of the American Statistical Association 107, 1106–1118.
ZHU, R. & KOSOROK, M. R. (2012). Recursively imputed survival trees. Journal of The American Statistical

Association 107, 331–340.

[Received. Revised ]


