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Evaluating Prediction Rules for t-Year
Survivors With Censored Regression Models

Hajime Uno, Tianxi Cai, Lu Tian, and L.J. Wei

Abstract

Suppose that we are interested in establishing simple, but reliable rules for pre-
dicting future t-year survivors via censored regression models. In this article, we
present inference procedures for evaluating such binary classification rules based
on various prediction precision measures quantified by the overall misclassifica-
tion rate, sensitivity and specificity, and positive and negative predictive values.
Specifically, under various working models we derive consistent estimators for the
above measures via substitution and cross validation estimation procedures. Fur-
thermore, we provide large sample approximations to the distributions of these
nonsmooth estimators without assuming that the working model is correctly spec-
ified. Confidence intervals, for example, for the difference of the precision mea-
sures between two competing rules can then be constructed. All the proposals are
illustrated with two real examples and their finite sample properties are evaluated
via a simulation study.
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Abstract

Suppose that we are interested in establishing simple, but reliable rules for predicting

future t-year survivors via censored regression models. In this article, we present inference

procedures for evaluating such binary classification rules based on various prediction preci-

sion measures quantified by the overall misclassification rate, sensitivity and specificity, and

positive and negative predictive values. Specifically, under various working models we derive

consistent estimators for the above measures via substitution and cross validation estima-

tion procedures. Furthermore, we provide large sample approximations to the distributions

of these nonsmooth estimators without assuming that the working model is correctly speci-

fied. Confidence intervals, for example, for the difference of the precision measures between

two competing rules can then be constructed. All the proposals are illustrated with two real

examples and their finite sample properties are evaluated via a simulation study.

Key words: Cross validation; Gene expression; Model selection; Positive and negative pre-

dictive values; Prediction error; ROC curve; Survival analysis.
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1. INTRODUCTION

Suppose that we are interested in establishing reliable and parsimonious classification

rules for predicting future patients’ survival based on the data collected from a current study.

Typically the data consist of a set of survival times, possibly censored, and their corresponding

“baseline” covariates. To predict covariate specific survival, we fit the data with a parametric

or semi-parametric regression model, for example, the proportional hazards model (Cox 1972),

the accelerated failure time model (Wei 1992; Kalbfleisch and Prentice 2002, chap. 7), or

the transformation model (Cheng, Wei and Ying 1995). With this fitted model, one can

estimate the survival function for a future subject using its covariate information and then

predict, for example, whether the patient would survive more than t years. Oftentimes the

aforementioned survival models assume that the covariate effects on the patient’s survival or

hazard function are constant over the entire follow-up study period. This modeling assumption

may be reasonable for a global assessment of the covariate effects on survival. From the

prediction point of view, however, a good classification rule for predicting short term survivors

may perform poorly for predicting long term survivors. We will address this issue in this article

via a rather simple time varying binary regression modeling approach.

When there is no censoring, standard methods for binary outcomes such as logistic re-

gression, CART, neural networks and discriminant analysis (Breiman, Friedman, Olshen and

Stone 1984; McLachlan 1992; Ripley 1996) may be used to construct prediction rules. To

evaluate a classifier, various prediction precision measures, which quantify the discordance or

concordance between the observed and the predicted outcomes, have been utilized, for ex-

ample, the probability scores (Brier 1950; Spiegelhalter 1986), the explained variation (Korn

and Simon 1990; Mittlbock and Schemper 1996), the overall misclassification rate (OMR),
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the sensitivity (SE) and specificity (SP), and positive and negative predictive values (PPV &

NPV) (Zhou, Obuchowski and McClish 2002; Pepe 2003).

In the presence of censoring, especially when the censoring support is shorter than its

survival counterpart, very few methods are available for constructing and evaluating t-year

survivor prediction rules. For the case of a univariate covariate, Heagerty, Lumley and Pepe

(2000) proposed non-parametric estimators for the SE and SP, and Moskowitz and Pepe (2004)

considered marginal regression models for comparing the PPV and NPV of two competing

prediction rules based on hypothesis testing. When there are multiple covariates involved,

Heagerty and Zheng (2005) developed a prediction rule through a proportional hazards model

with time varying coefficients. Recently Zheng, Cai and Feng (2006) proposed a prediction rule

based on a time varying logistic regression model and evaluated its overall accuracy through

simulation. Note that all the aforementioned procedures are derived under the assumption

that the working model is correctly specified. Moreover, there are no theoretically justified

methods for constructing interval estimates of the prediction precision measures when more

than one covariate is available.

In this article, we propose classification rules for predicting t-year survival based on a

class of simple working models which only relate the covariates to the patient’s t-year survival

probability. Under the assumption that the censoring distribution of the current study is

independent of the covariates or can be modeled reasonably well, for each prediction rule we

show how to consistently estimate its OMR, SE, SP, PPV and NPV. Note that most existing

estimation procedures for the commonly used survival models may not be able to provide such

consistent estimators when the model is incorrectly specified (O’Quigley and Xu 2001). In

addition to providing point estimates for the prediction precision measures, we also derive the
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large sample distribution of the proposed estimators. Furthermore, since these estimators are

not smooth, a perturbation-resampling technique is utilized to approximate their distributions

without involving any nonparametric density-like function estimates. Base on these large

sample approximations, confidence intervals for the OMR, SE, SP, PPV and NPV, or functions

thereof, can be constructed accordingly, which provide much more information than their point

estimate counterparts for evaluating regression models and their resulting prediction rules.

If the same dataset is used to construct the prediction rules and evaluate their performance,

the above substitution or “apparent error” estimates may be biased (Efron 1983, 1986) espe-

cially when the sample size is not large with respect to the number of the covariates in the

model. To reduce the potential bias of the apparent error, methods such as cross-validation,

bootstrap, and covariance penalties have been proposed for certain regression models with

non-censored data (Mallows 1973; Efron 1986; Shao 1996; Efron and Tibshirani 1997; Ye

1998; Tibshirani and Knight 1999; Efron 2004). In this article, we also study properties of

bias corrected estimators for the OMR, SE, SP, PPV and NPV via various cross validation

schemes. Lastly, we provide interval estimates for the difference of the prediction precision

measures between two competing classification rules or models. Note that our procedures can

be easily generalized to the case when we are interested in making joint inferences about the

performance of prediction rules for a set of time points t. All the proposals are illustrated and

evaluated via two examples and a simulation study.

2. EVALUATING PREDICTION RULES FOR t-YEAR SURVIVORS BASED

ON OVERALL MISCLASSIFICATION RATE

Let T be a continuous failure time and Z̃ be a set of bounded potential predictors. Also,
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let C be the corresponding censoring variable. Assume that T and C are independent and

the survival function G(·) of C is free of Z̃. Let {(Ti, Z̃i, Ci), i = 1, · · · , n} be n independent

copies of (T, Z̃, C). For the ith subject, we only observe (Xi, Z̃i, ∆i), where Xi = min(Ti, Ci),

∆i = I(Xi = Ti), and I(·) is the indicator function.

Suppose that based on the data {(Xi, Z̃i, ∆i), i = 1, · · · , n}, we are interested in establish-

ing a rule which can “accurately” predict whether the survival time T 0 of a future subject with

Z̃ = Z̃0 is shorter than t-year or not, where t is a pre-specified time point and pr(X > t) > 0.

To this end, let Z, a function of Z̃, be a p-dimensional vector with the first component being

one and consider the following working model

pr(T < t|Z) = g(β′Z), (2.1),

where g(·) is a known strictly increasing, differentiable function and β is a p-dimensional

vector of unknown parameters. Note that if we assume Model (2.1) for all t ≥ 0 and the

first component of β depends on t, (2.1) is called the linear transformation model (Cheng et

al. 1995). In particular, if g(·) is 1 − exp(− exp(·)), (2.1) is the proportional hazards model.

On the other hand, if g(·) is the anti-logit function, (2.1) is the so-called proportional odds

model. In this article, for each time point t of interest, we let g(·) and all the components of

β in (2.1) depend on t. With this more flexible modeling, we may find, for example, that a

good prediction rule for short term survivors may be quite different from that for long term

survivors.

Suppose that β in (2.1) is estimated by β̂ based on the data {(Xi, Zi, ∆i)}. For a future

subject with a covariate vector Z = Z0, consider a class of binary prediction rules indexed by

c: I(g(β̂′Z0) ≥ c), where 0 < c < 1. For example, if c = .5, and g(β̂′Z0) ≥ .5, we predict that

5
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this subject would die by time t. To evaluate this class of prediction rules, consider the OMR

Dn(c) = E|I(T 0 < t)− I(g(β̂′Z0) ≥ c)|,

where the expectation is taken over {(Xi, Zi, ∆i)} and (T 0, Z0). Suppose that as n → ∞, β̂

converges to a constant vector β0, which is free of G(·), and Dn(c) goes to

D(c) = E|I(T 0 < t)− I(g(β′0Z
0) ≥ c)|. (2.2)

Now, let c0 be a minimizer of D(c) for 0 ≤ c ≤ 1, and let D(c0) = D0, which does not

depend on the nuisance censoring distribution. To evaluate the adequacy of Model (2.1) as a

prediction tool, we need to estimate D0 and c0.

When a working survival model is not correctly specified, it is not clear that the existing

estimator of the vector of regression parameters would converge to a constant vector, as

n →∞. Moreover, even when the estimator is stabilized for large n, its limit may depend on

the distribution of the nuisance censoring variable C. Consequently, the corresponding Dn(c)

converges to a quantity, which may also depend on the censoring and may not be a meaningful

criterion for evaluating prediction rules. Here, we propose a simple estimator β̂ for β in the

working model (2.1), which converges to a constant vector β0 that is free of the censoring

distribution.

Our estimator β̂ is based on the following estimating function (Zheng et al. 2006)

U(β) = n−1

n∑
i=1

wi

Ĝ(Xi ∧ t)
Zi{I(Xi < t)− g(β′Zi)}, (2.3)

where wi = I (Ti ∧ t ≤ Ci) = I (Xi ≤ t) ∆i + I (Xi > t) , and Ĝ(·) is the Kaplan-Meier estima-

tor of G(·). Note that if the ith subject is censored before time t, wi = 0. On the other hand,

such censored observations are included in the construction of Ĝ(·). Note that conditional on
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(Ti, Zi), the expected value of wi{G(Xi ∧ t)}−1 is one. Therefore, conditional on {(Ti, Zi)},

asymptotically the expected value of U(β) is u(β) = E[Z{I(T < t) − g(β′Z)}], which is free

of the censoring variable C.

Under a rather mild condition that there does not exist a β such that P (β′Z1 > β′Z2 |

T1 < t ≤ T2) = 1, using a similar argument given in Appendix A of Tian, Cai, Goetghebeur

and Wei (2005), one can show that u(β) = 0 has a unique solution, say, β0. Moreover, if there

does not exist a β such that ∆iI(Xi < t ≤ Xj) = 1 implies that I(β′Zi ≤ β′Zj) = 1, for any

pair 1 ≤ i ≤ j ≤ n, U(β) = 0 has a unique solution β̂ for any finite n. Since Ĝ(s) converges

uniformly to G(s), for s ≤ t, it follows from the uniform law of large numbers (Pollard 1990,

pp. 41) that U(β) is uniformly convergent to u(β) in probability around the neighborhood of

β0. This implies that β̂ converges to β0, in probability, as n → ∞ even when model (2.1) is

not correctly specified.

Now, to estimate D(c), first consider the so-called apparent error (Davison and Hinkley

1997, pp. 292)

D̂(c) =
1

n

n∑
i=1

wi

Ĝ(Xi ∧ t)
|I(Xi < t)− I(g(β̂′Zi) ≥ c)|. (2.4)

Let ĉ be a minimizer of D̂(c), for 0 ≤ c ≤ 1. In Appendix A, under the mild condition that

pr(T < t| β′0Z = y) is strictly increasing in y in the support of β′0Z, we show that ĉ and D̂(ĉ)

are consistent with respect to c0 and D0. Note that one can check this condition empirically

by estimating pr(T < t| β′0Z = y) via a nonparametric function estimate based on the “data”

{(Xi, ∆i, β̂
′Zi), i = 1, · · · , n}.

To make further inferences about D0, consider a standardized transformation of D̂(ĉ) :

n
1
2{log(-log)(D̂(ĉ))− log(-log)(D0)}, (2.5)
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which is asymptotically equivalent to

{D̂(ĉ)log(D̂(ĉ))}−1W,

where

W = n
1
2{D̂(ĉ)−D0}.

In Appendix B, we show that W is asymptotically equivalent to n
1
2{D̂(c0)−D0} and converges

in distribution to a normal with mean 0. However, the variance of W, which involves unknown

density-like functions, is difficult to estimate well directly. One may use a perturbation-

resamling method to obtain a good approximation to the distribution of W. To be specific, let

{Vi, i = 1, . . . n} be n independent copies of a random variable V from a known distribution

with mean one and variance one. Let D∗(c) be a perturbed version of D̂(c), where

D∗(c) = n−1

n∑
i=1

wi

G∗(Xi ∧ t)
|I(Xi < t)− I(g(Z ′

iβ
∗) ≥ c)|Vi, (2.6)

and G∗(·) and β∗ are the corresponding perturbed versions of Ĝ(·) and β̂. To construct G∗(·),

we use the martingale representation formula for the Kaplan-Meier estimate (Fleming and

Harrington 1991, pp. 98). Specifically, for t > 0, the unconditional distribution of Ĝ(t)−G(t)

can be approximated by the conditional distribution (given the data) of

−Ĝ(t)
n∑

i=1

Vi

∫ t

0

{
n∑

j=1

I(Xj ≥ s)}−1dM̂i(s),

where M̂i(t) = I(Xi ≤ t, ∆i = 0)− ∫ t

0
I(Xi ≥ s)dΛ̂(s), and Λ̂(·) is the standard Nelson-Aalan

estimator of the cumulative hazard function for the censoring variable C. It follows that

G∗(t) = Ĝ(t)− Ĝ(t)
n∑

i=1

Vi

∫ t

0

{
n∑

j=1

I(Xj ≥ s)}−1dM̂i(s). (2.7)
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To obtain a perturbed β∗, we solve the equation

U∗(β) = n−1

n∑
i=1

wi

G∗(Xi ∧ t)
Zi{I(Xi < t)− g(β′Zi)}Vi = 0. (2.8)

Note that since U(β) is a differentiable function in β, an alternative way to obtain (β∗ − β̂)

is by perturbing the first order expansion of n1/2(β̂ − β0). It follows from similar arguments

given in Park and Wei (2003) or Cai, Tian and Wei (2005) that the distribution of (2.5) can

be approximated by the conditional distribution of

{D̂(ĉ)log(D̂(ĉ))}−1W ∗,

given the data, where W ∗ = n1/2{D∗(ĉ)− D̂(ĉ)}.

In practice, one may generate a large number M of random samples W ∗ to approximate the

distribution of W. Confidence interval estimates of D0 can then be constructed accordingly

via (2.5). Note that if we let {Vi, i = 1, . . . , n} be the multinomial random vector with

size n and cell probability of n−1, the above resampling method is similar to the standard

Efron’s bootstrapping (Efron 1982). However, it is not clear how to justify the large sample

approximation to the distribution of W using perturbation with such dependent V ’s.

When the sample size n is not large with respect to the dimension of the covariate vector

Z, one may use cross-validation methods to estimate the prediction error D0. To this end,

we first consider the commonly used K-fold cross-validation, which randomly splits the data

into K disjoint sets of about equal size and label them as Ik, k = 1, · · · , K. For each k, an

estimate β̂(−k) for β via (2.3) is obtained based on all observations which are not in Ik. We

then compute the predicted error estimate D̂(k)(c) via (2.4) based on observations in Ik. Then,

an average prediction error estimate for D(c) is

D̂(c) = K−1

K∑

k=1

D̂(k)(c). (2.9)

9
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Let ĉv be a minimizer of D̂(c), for 0 ≤ c ≤ 1. When K is small with respect to n, it is

straightforward to show that ĉv and D̂(ĉv) are consistent for c0 and D0, respectively. Moreover,

in Appendix C, we show that the standardized D̂(ĉv)

W = n1/2{D̂(ĉv)−D0}

has the same limiting distribution as that of W based on the apparent error. Therefore, one

may use the standard error estimate of the apparent error to construct interval estimates for

D0, which are centered around the cross validation estimate.

For a general cross-validation, let nt and nv be the sizes of the training and validation

sub-samples, where n/nv is roughly a fixed positive integer, and nt and nv →∞, as n →∞.

We randomly choose a training set to obtain an estimate for β via (2.3), then compute D̂(c)

in (2.4) with the validation set. We repeat this process by taking a fresh random training and

validation partition. Let D̂(c) be the average of all D̂(c) over the entire set of possible random

splits of the training-validation sub-samples. Let ĉrv be a minimizer of D̂(c). In Appendix C,

we show that the distribution of n1/2(D̂(ĉrv)−D0) is the same as that of W in the limit, and

thus can be approximated well by that of W ∗.

Now, suppose that we are interested in comparing two working models (2.1) with possibly

different covariate vectors, say, Z(l), l = 1, 2. To this end, all the above notations are sub-

indexed by l, l = 1, 2. For example, for Model l with the optimal cut-off point c0 = cl0, the

link function in Model (2.1) is gl(·). Let τ = D2(c20) − D1(c10) and τ̂ = D̂2(ĉ2) − D̂1(ĉ1).

Then, the distribution of Wτ = n1/2(τ̂ − τ) is approximately normal with mean 0. Now,

let τ ∗ = D∗
2(ĉ2) − D∗

1(ĉ1). Note that for D∗
1(·) and D∗

2(·), we need to use the same set of

perturbation variables {Vi, i = 1, · · · } in (2.6), (2.7) and (2.8). Then, the distribution of Wτ
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can be approximated well by the conditional distribution of W ∗
τ = n1/2(τ ∗ − τ̂). Confidence

intervals for τ can then be constructed via this approximation. For the aforementioned K-fold

and random cross-validation schemes, we can construct the corresponding estimates D̂l(ĉv)

and D̂l(ĉrv), l = 1, 2 to make inferences about τ.

Now, we use two examples to illustrate our proposals. The first one is from the well-known

Mayo primary biliary cirrhosis study (Fleming and Harrington 1991, app. D). The dataset

utilized here consists of 418 patient records, each of which contains the survival time and

seventeen potential prognostic factors. To simplify the illustration, we considered only five

covariates: age, log(albumin), log(bilirubin), edema and log(protime), which were selected as

the most important predictors based on a Cox regression model (Dickson, Fleming, Grambsch,

Fisher and Langworthy 1989; Fleming and Harrington 1991, pp. 195). Suppose that we

are interested in establishing prediction rules for ten-year survivors based on the above five

covariates. First we considered two different models (2.1) with g(y) = 1 − exp{− exp(y)} to

fit the data. The first model uses age only, and the second one takes the above five covariates

additively. With apparent errors D̂(c), for all cases studied here, ĉ ≈ .5. We report D̂(ĉ) and

the corresponding standard error estimates for D0 in Table 1. All standard error estimates

were constructed based on M = 2000 sets of {Vi}, where V is the unit exponential. In the

Table, we also report the point estimates based on the 10-fold and random cross validation

procedures. For the random cross validation, we let the training set size be 2n/3 for each of

200 iterations. For Model II, the apparent error estimate appears noticeably small compared

with its random cross validation counterpart. From the Table, based on the random cross

validation point estimates, 95% intervals for the misclassification rate for Model I and II are

(.24, .44) and (.14, .31), respectively. We also report 95% confidence intervals for the difference
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of error rates between two fitted models in Table 1. For example, the interval estimate for

the difference of two rates D0, Model I minus II, is (.03, .21), indicating that Model II,

which includes clinical biomarkers, is better than Model I with respect to the 10-year survival

prediction. On the other hand, the degree of improvement ranges from 3% to 21%, reflecting

rather large sampling variation.

It is interesting to note that for Model II, unlike the results from the standard Cox model

fitting, edema and log(protime) are not statistically significant (the p-values for testing no

covariate effect are .37 and .23, respectively). To explore if these two clinical markers are

needed for prediction, we fit the data with Model III, which consists of three covariates: age,

log(bilirubin) and log(albumin). The resulting points and the standard error estimates are

reported in Table 1. The 95% interval estimate for the difference of the error rates between

Models III and II is (-.03, .05), indicating that edema and protime have no added value over the

other three covariates for predicting ten-year survivors with respect to the overall prediction

rate.

Now, it is also interesting to investigate that a statistically significant covariate may not

add any substantial value for prediction. To this end, we create Model IV by deleting a

highly, statistically significant covariate, log(albumin), from Model III. We report the point

and standard error estimates for this model in Table 1. The 95% confidence interval for

the difference of the OMR between Model IV and III is (−.07, .06), indicating that age and

bilirubin appears to be sufficient for predicting the 10-year survivors with respect to the OMR.

The second example is from a recent study on prognostication in breast cancer with mi-

croarray gene expression data (van de Vijver et al. 2002). There are 295 breast cancer patients

in the study. For each patient, we have her survival time, baseline lymph-node status, estro-
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gen receptor status, and “gene signature score” (http://www.rii.com/publications/). The gene

score, which is continuous and between 0 and 1, was derived from the gene expression data

based on 70 selected genes via a supervised classification algorithm for predicting the distant

metastases within five years after patient’s surgery. A patient with a high score is expected

to have a long survival time. One of the clinical objectives for this study is to identify future

patients via gene score values, who may benefit from potentially toxic, adjuvant systemic

therapy. van de Vijver et al. (2002) proposed a binary prediction rule based solely on the

gene score. For illustration, suppose that we are interested in predicting ten-year survivors

and consider three models (2.1). The first one does not use any covariate, the second model

uses the above two clinical marker values, and the third one uses clinical markers and also

the gene score. Again, for all cases studied here, ĉ ≈ .5. Since the ten-year survival rate for

this study is approximately .7, Model I essentially produces a rule which predicts all future

patients would survive beyond ten years. The error rate for this naive rule is .3. In Table 2,

we present the apparent errors D̂(ĉ) and the corresponding standard error estimates for D0.

For the present case, the estimates based on cross validation are quite similar to the apparent

errors. In the Table, we also include the estimated error rate for the prediction rule proposed

by van de Vijver et al. (2002) for comparisons. With respect to the overall misclassification

rate, it is interesting to note that the prediction rules, which utilize the “baseline” clinical or

gene expression information, do not perform better than the aforementioned naive rule (Model

I). In fact, the error rate for the rule by van de Vijver et al. (2002) is 35%, which is higher

than the ten-year mortality rate of 30%. Since for the present case, it is critical to accurately

identify future breast cancer patients who would likely die before ten years after surgery, the

overall misclassification rate may not be a good criterion for evaluating prediction rules. We
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discuss other evaluation criteria in the next two sections. Note that for both examples, for all

models considered here the nonparametric function estimates for pr(T < 10| β′0Z) appear to

be monotone in β′0Z.

To examine finite sample properties of the proposed estimation procedures based on D̂(ĉ),

D̂(ĉv) and D̂(ĉrv), we conducted a simulation study under a practical setting. Specifically,

we mimicked the Mayo study to generate realizations of T, Z̃ and C. Here, Z̃ = (1, Z ′
cov)

′

and Zcov is a multivariate normal whose mean and covariance matrix are estimated based on

the 282 completely observed vectors consisting of age, log(bilirubin), log(albumin), log(sgot),

log(protime), log(cholesterol), and log(copper) from the Mayo study. Now, let Z ′
0 = (age,

log(bilirubin), log(albumin)). For each realized Z0 from the above normal, the survival time T

is generated via an exponential with a scale parameter of exp(b′Z0), where b is estimated by the

above 282 observed censored failure times and their corresponding observed covariate vectors

of age, log(bilirubin) and log(albumin) with this exponential model. Lastly, the censoring

distribution of C is the Kaplan-Meier estimate from the Mayo study. Note that the proportion

of the above Mayo patients among complete cases whose survival times were censored at year

10 is about 52%.

In our numerical study, we considered six working models (2.1). For Model I, we let g(·)

be the inverse function of 1-log(-log)(·) and Z = Z0. Note that Model I is the correct model

for pr(T < t| Z0). For Model II, we deleted the covariate log(albumin) from the above Z.

For Model III, we let Z = (1, age, bilirubin, albumin), a case with wrong transformations of

covariates. For Model IV, we considered the case with a wrong link function, that is, we let

1 − g(·) be the anti-logit function with Z = Z0. In Model V, we let g be the above wrong

link, and also ignored the log-transformation of bilirubin and albumin. For Model VI, we
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considered an “overfitting” case, that is, we let Z = Z̃ with the correct link function.

For each working model, we generated 100,000 realizations of (T, Z) to obtain its model-

specific β0 and used another fresh 100,000 realizations to estimate the true OMR D0. Then,

we generated 2000 sets of realizations {Ti, Ci, Z̃i, i = 1, · · · , n} from the aforementioned true

model and obtained 2000 sets of realized D̂(ĉ), D̂(ĉv) and D̂(ĉrv) with nt = 2n/3. Note that

for the random cross validation, we used 100 random splits of the sample. Based on these

realized point estimates, we obtained the average bias and root mean-square error (RMSE).

Furthermore, we obtained 2000 standard error estimates. Each of these estimates is based on

2000 perturbed W ∗. Then, for each of the above three types of point estimates, we constructed

2000 95% confidence intervals for D0. In Table 3, we reported the results with n = 300 and

t = 10 years under the heading “Observed censoring”. The cross-validation indeed reduces

bias of the apparent error. However, the bias of the apparent error seems rather small with

respect to the true error D0 for each working model. Moreover, with respect to RMSE, the

three estimation procedures are compatible with each other. On the other hand, the empirical

coverage level of the confidence interval centered about the apparent error tends to be lower

than its nominal counterpart. In Table 3, we also report results for the case that there is

no censoring involved. Again, with respect to the coverage probability, the interval estimate

centered about the cross-validation point estimate appears to be better than its apparent error

counterpart.

3. EVALUATION BASED ON SENSITIVITY AND SPECIFICITY

To evaluate a prediction rule for a binary outcome, one may also consider its sensitivity

and specificity. For the prediction rule: I(g(β̂′Z) > c), the sensitivity is SE(c) =pr(g(β′0Z
0) ≥
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c| T 0 < t) and the specificity is SP(c)= pr(g(β′0Z
0) < c| T 0 ≥ t). These conditional probabili-

ties can be estimated consistently by

ŜE(c) =

∑n
i=1 wi{Ĝ(t ∧Xi)}−1I(g(β̂′Zi) ≥ c,Xi < t)∑n

i=1 wi{Ĝ(t ∧Xi)}−1I(Xi < t)
, (3.1)

and

ŜP(c) =

∑n
i=1 wi{Ĝ(t ∧Xi)}−1I(g(β̂′Zi) < c, Xi ≥ t)∑n

i=1 wi{Ĝ(t ∧Xi)}−1I(Xi ≥ t)
, (3.2)

respectively. To evaluate a specific working model (2.1), one may construct the commonly

used receiver operating characteristic (ROC) curve using (3.1) and (3.2) (Heagerty and Zheng

2005). Furthermore, one can obtain the K-fold and random cross-validation estimates for

SE(c) and SP(c).

To illustrate our proposal, we fitted the breast cancer data (van de Vijver et al. 2002)

with Models I, II and III presented in Table 2 and then constructed the corresponding ROC

curves based on {(1 − ŜP (c), ŜE(c)), 0 ≤ c ≤ 1}. These curves are presented in Figure 1.

For Model I, the ROC curve only assumes a single point (the black circle). The estimated

sensitivity of this naive rule is zero, which generally is not acceptable. Due to the discrete

nature of the clinical marker values (both are binary), the curve for Model II only assumes

three distinct values (denoted by open circles). For the prediction rule proposed by van de

Vijver et al. (2002), the curve assumes only one value which is denoted by “✴”. Based on the

ROC curves, Model III appears to be better than Models I and II. Moreover, Model III can

produce a rule which has almost identical SE and SP to those proposed by van de Vijver et

al. (2002). For the present case, the 10-fold and random cross validation estimates for SE(c)

and SP(c) are similar to the apparent error counterparts.

To make further evaluation of a working model, for a patient with covariate Z, one may
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choose the binary prediction rule: I(g(β̂′Z) > c†), such that SE(c†) = γ, where 0 < γ < 1 is a

predetermined acceptable level for sensitivity. It is straightforward to show that when pr(T <

t| β′0Z = y) is positive for y in the support of β′0Z, c† is unique between 0 and 1. Let ĉ† be a

solution to ŜE(c) = γ. Then, ĉ† is consistent to c†. Moreover, ŜP(ĉ†) converges to SP(c†). To

obtain confidence intervals for SP(c†), we utilize the perturbation-resampling method discussed

in Section 2 to obtain an estimated standard error of ŜP(ĉ†) or a transformation thereof. To

be specific, the perturbed ŜE(c) is

SE∗(c) =

∑n
i=1 wi{G∗(t ∧Xi)}−1I(g(Z ′

iβ
∗) ≥ c,Xi < t)Vi∑n

i=1 wi{G∗(t ∧Xi)}−1I(Xi < t)Vi

.

The perturbed SP∗(c) can be obtained similarly. Now, let c∗ be a solution to the equation

SE∗(c∗) = γ. It follows from similar arguments as given for the OMR that when n is large, the

distribution of n1/2(ŜP(ĉ†)−SP(c†)) can be approximated well by the conditional distribution

of n1/2(SP∗(c∗)− ŜP(ĉ†)) given the data. Confidence intervals for SP(c†) can then be obtained

via this large sample approximation. Note that for the cross validation methods discussed

in Section 2, the corresponding standardized ŜP(ĉ†) has the same limiting distribution as

that of the above standardized apparent error. Moreover, any reasonable summary prediction

precision constructed from SE(c) and SP(c), for example, the area under the ROC curve, can

be estimated consistently via ŜE and ŜP and a large sample approximation to the resulting

estimator can be obtained based on SE∗(c) and SP∗(c).

Now, we use the breast cancer data to illustrate the above procedure. Specifically, we

compare Models II and III presented in Table 2. From the ROC curve for Model II in Figure

1, we let γ = .69, an attainable value for this working model empirically. The corresponding

ĉ = .23 and ŜP(ĉ) = .45. On the other hand, for Model III with the same γ, ĉ = .29 and
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ŜP(ĉ) = .75. Furthermore, the 95% confidence interval for the difference of two SP(c†)’s

(Model III minus Model II) is (.11, .45), indicating that the gene score adds substantial value

for predicting ten-year survivors on the top of the two clinical markers.

4. EVALUATION BASED ON POSITIVE AND NEGATIVE PREDICTIVE

VALUES

For the prediction rule: I(g(β̂′Z) > c), the estimated sensitivity and specificity may be

difficult to interpret in clinical practice. An alternative way is to use the positive and negative

predictive values, denoted by PPV and NPV, respectively, where

PPV(c) = pr(T 0 < t|g(β′0Z
0) ≥ c)

and

NPV(c) = pr(T 0 ≥ t|g(β′0Z
0) < c).

These conditional probabilities can be consistently estimated by

ˆPPV(c) =

∑n
i=1 wi{Ĝ(t ∧Xi)}−1I(g(β̂′Zi) ≥ c,Xi < t)∑n

i=1 I(g(β̂′Zi) ≥ c))
, (4.1)

and

ˆNPV(c) =

∑n
i=1 wi{Ĝ(t ∧Xi)}−1I(g(β̂′Zi) < c, Xi ≥ t)∑n

i=1 I(g(β̂′Zi) < c))
, (4.2)

respectively.

Note that for c close to the two ends of the interval [0, 1], ˆPPV(c) and ˆNPV(c) may not

be able to estimate their theoretical counterparts well. For each working model, one may plot

the curve {(1− ˆPPV(c), ˆNPV(c)), 0 < cL ≤ c ≤ cU < 1}, where cL and cU are given constants.

Figure 2 gives such curves with the breast cancer gene-expression data based on Models II
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and III and the prediction rule by van de Vijver et al. (2002) presented in Table 2. Here,

we let cL = .1 and cU = .8. Note that the curve for Model II only assumes three points and

its largest NPV is only .77. On the other hand, Model III appears to be more flexible and

can reach rather high NPV levels. Moreover, Model III can produce a rule which matches the

PPV and NPV of the scheme proposed by van de Vijver et al. (2002).

To make further inferences about evaluating a working model, we may choose a cutoff

point d such that NPV(d) = γ, an acceptable large value, and then make inferences about

PPV(d). However, since ˆNPV(c) may not estimate NPV(c) well when c is near 0 or 1, the

above cutoff point d may not be stable for the finite sample case. Moreover, even when g(β′0Z)

is continuous, empirically NPV(c) may not be able to reach a pre-specified γ. Therefore, for

the class of classification rules I(g(β̂′Z) > c), we choose the cutoff point ĉ such that ŜE(ĉ) = γ,

an acceptable level of sensitivity, as we did in Section 3. We then compute the corresponding

ˆPPV(ĉ) and ˆNPV(ĉ). For example, for Model II with γ = .69, ĉ = .23 and (4.1) and (4.2) are

.35 and .77, respectively. On the other hand, for Model III with the same γ, ĉ = .29 and (4.1)

and (4.2) are .54 and .85.

To construct confidence intervals for PPV(c†) and NPV(c†), where SE(c†) = γ, one may use

the perturbation-resampling scheme to obtain the perturbed versions of ˆPPV(ĉ) and ˆNPV(ĉ).

Specifically, first, let c∗be the solution of SE∗(c∗) = γ, as we did in Section 3. Then, let

PPV∗(c∗) =

∑n
i=1 wi{G∗(t ∧Xi)}−1I(g(Z ′

iβ
∗) ≥ c∗, Xi < t)Vi∑n

i=1 I(g(Z ′
iβ
∗) ≥ c∗))Vi

, (4.3)

and

NPV∗(c∗) =

∑n
i=1 wi{G∗(t ∧Xi)}−1I(g(Z ′

iβ
∗) < c∗, Xi ≥ t)Vi∑n

i=1 I(g(Z ′
iβ
∗) < c∗))Vi

, (4.4)

respectively.
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It follows from the same argument used for the OMR estimators that for large n,

the joint distribution of n1/2( ˆPPV(ĉ) − PPV(c†)) and n1/2( ˆNPV(ĉ) − NPV(c†)) can be

approximated well by the conditional joint distribution of n1/2(PPV∗(c∗) − ˆPPV(ĉ)) and

n1/2(PPV∗(c∗) − ˆPPV(ĉ)).

For the gene-expression example, for Model II with γ = .69, 95% confidence intervals for

PPV(c†) and NPV(c†) are (.28, .46) and (.62, .80), respectively. For Model III, the corre-

sponding intervals are (.35, .62) and (.78, .89). Furthermore, for the differences of PPV(c†)

and NPV(c†) between these two models, 95% intervals are (.01, .24) and (.06, .19), respectively.

Note that one can obtain the cross validation counterparts of (4.1) and (4.2) and their dis-

tributions can be approximated via (4.3) and (4.4) as we did for the apparent error estimates.

5. REMARKS

Without censoring, an alternative way to evaluate prediction rules may be based on the

absolute value of the difference between the future T 0 and its predicted value via a fitted

model of Z0 (Tian et al. 2005). Unfortunately in the presence of censoring, when the support

of the censoring is significantly shorter than that of the survival time, it seems rather difficult

if not impossible to estimate the mean of the above distance measure well (Sinisi and van der

Laan 2005). Furthermore, such a distance measure summarizes the average accuracy of the

prediction rules across all time points and does not differentiate the accuracy for classifying

short term survivors from that for classifying long term survivors. On the other hand, our

procedure is flexible for evaluating classification rules for predicting survivors at any reasonable

time point t of interest.

It is important to note that either with or without censored observations involved, our
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estimator β̂ converges to the same value β0, a root to u(β) = EZ{I(T < t)−g(β′0Z)}, and D̂(c)

converges to the same D(c) = E|I(T < t)− g(β̂′0Z)|. Therefore, at least for the large sample

case, the nuisance censoring distribution of the study does not contaminate the development

and evaluation process of the prediction rules. The proposed procedure, however, does require

the assumption that the censoring variable is either free of the covariates or its conditional

distribution can be estimated consistently using semi-parametric or non-parametric methods

when some of the covariates are continuous. If the covariate vector is discrete, a purely non-

parametric estimator for the covariate specific censoring distribution can be easily constructed

and our procedures can be generalized easily to incorporate the covariate-dependent censoring.

Note that even if we let β̂ be the standard estimator for a commonly used survival model, which

does not involve an estimate Ĝ(·) for the censoring distribution, it is not clear how to construct

a consistent estimator of, for example, D(c), with censored observations. Moreover, when the

fitted model may not be correctly specified, it is a rather challenging, if not impossible, task

to generalize our procedures to handle the covariate-dependent censoring case under a truly

nonparametric setting.

In this article, we show how to obtain interval estimates for various prediction precision

measures to evaluate prediction rules constructed from censored regression models. Based on

the results of our numerical studies, we recommend the interval estimator, which is centered

around the cross validate point estimate, for practical usage.

APPENDIX A: CONSISTENCY OF ĉ AND D̂(ĉ)

To show that ĉ is a consistent estimator of c0, it suffices to show that D̂(c) converges

to D(c), uniformly in c, and D(c) has a unique minimiser c0 (Newey and McFadden 1994,
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Theorem 2.1). To show the uniform consistency of D̂(c), we let

D̂(c, β) = n−1

n∑
i=1

wi

Ĝ(Xi ∧ t)
|I(Xi < t)− I(g(β′Zi) ≥ c)|,

and D(c, β) = E|I(T 0 < t)− I(g(β′Zi) ≥ c)|. Then it follows from the uniform consistency of

Ĝ(·) (Kalbfleish and Prentice 2002) and a uniform law of large numbers (Pollard 1990) that

supc,β∈Ω |D̂(c, β)−D(c, β)| → 0 almost surely, where Ω is the compact parameter space for β

around β0. This, coupled with the fact that β̂ converges to β0, implies that D̂(c) = D̂(c, β̂) is

uniformly consistent for D(c) = D(c, β0). Now, to show that D(c) has a unique minimizer,

we write

D(c) = pr(T ≥ t) + E[{2I(T < t)− 1}I(g(β′0Z) < c)]

= pr(T ≥ t) + E[{2h0(g(β′0Z))− 1}I(g(β′0Z) < c)] = pr(T ≥ t) +

∫ F0(c)

0

{2h0(F
−1
0 (x))− 1}dx,

where F0(y) = P (g(β′0Z) < y) and h0(y) = P (T < t | g(β′0Z) = y). Thus, assuming that

F0(y) is strictly increasing, D(c) has a unique minimizer if and only if

ζ(u) =

∫ u

0

{2h0(F
−1
0 (x))− 1}dx = 2

∫ u

0

h0(F
−1
0 (x))dx− u

has a unique minimizer which is guaranteed if h0(·) is an increasing function. This concludes

that ĉ is a consistent estimator of c0. The consistency of D̂(ĉ) follows directly from the

consistency of ĉ and the uniform convergence of D̂(c) to D(c).

APPENDIX B: LARGE DISTRIBUTION OF W = n1/2(D̂(ĉ)−D0)

To derive the limiting distribution of W , we let W (c, β) = n1/2{D̂(c, β) − D(c, β)} and

note that

W = W (ĉ, β̂) + n1/2{D(ĉ, β̂)−D(ĉ, β0)}+ n1/2{D(ĉ)−D0}. (B.1)
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We first derive the large sample distribution for W (c, β). To this end, we note that

ŴG(t) =
n1/2{G(t)− Ĝ(t)}

G(t)
' n−1/2

n∑
i=1

ψi(t),

and ŴG(t) converges weakly to a zero-mean Gaussian process indexed by t (Kalbfleish and

Prentice 2002), where ψi(t) =
∫ t

0
dMi(u)/πX(u), πX(t) = pr(Xi ≥ t), Mi(t) = I(Xi ≤ t, δi =

0)−∫ t

0
I(Xi ≥ u)dΛC(u), and ΛC(·) is the cumulative hazard function for the common censor-

ing variable. This, together with a uniform law of large numbers and Lemma A.1 of Billias,

Gu and Ying (1997), implies that

W (c, β) ≈ n−1/2

n∑
i=1

{Di(c, β)−D(c, β)}+

∫ t

0

ŴG(s)dγ̂(s; β) ≈ n−1/2

n∑
i=1

W1i(c, β), (B.2)

where Di(c, β) = wi|I(Ti < t)−I(β′Zi ≥ c)|/G(Ti∧t), γ̂(s; β) = n−1
∑n

i=1 Di(c, β)I(Ti∧t ≤ s),

and W1i(c, β) = Di(c, β)−D(c, β) +
∫ t

0
ψi(s)dE{γ̂(s; β)}. It follows from a functional central

limit theorem (Pollard 1990, chap. 10) that W (c, β) converges weakly to a zero mean Gaussian

process in (c, β) and, thus, W (ĉ, β̂) is asymptotically equivalent to W (c0, β0).

It follows from the consistency of ĉ and a Taylor series expansion that the second term in

(B.1) is asymptotically equivalent to n1/2{D(c0, β̂)−D(c0, β0)} ≈ Ḋ2(c0, β0)
′n1/2(β̂−β0), where

Ḋ2(c, β) = ∂D(c, β)/∂β. Now, by a taylor series expansion of U(β) around β0 and the uniform

consistency of Ĝ(·), we have n1/2(β̂ − β0) ≈ A(β0)n
1/2U(β0), where A(β) = −{∂u(β)/∂β}−1.

This implies that

n1/2(β̂ − β0) ≈ A(β0)

{
n−1/2

n∑
i=1

ei(β0) +

∫ t

0

ŴG(s)dK̂(s; β0)

}
≈ n−1/2

n∑
i=1

W2i(β0),

where ei(β) = wiZi{I(Ti < t) − g(β′Zi)}/G(Ti ∧ t), K̂(s; β) = n−1
∑n

i=1 ei(β)I(Ti ∧ t ≤ s),

and W2i(β) = A(β){ei(β) +
∫ t

0
ψi(s)dE{K̂(s; β)}. Therefore

n1/2{D(ĉ, β̂)−D(ĉ, β0)} ≈ n−1/2

n∑
i=1

Ḋ2(c0, β0)
′W2i(β0), (B.3)
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The weak convergence of the process W (c, β) and the convergence of n1/2(β̂−β0) imply that

the process n1/2{D̂(c)−D(c)} = W (c, β̂) + n1/2{D(c, β̂)−D(c)} is asymptotically equivalent

to n−1/2
∑n

i=1{W1i(c, β0) + Ḋ2(c, β0)
′W2i(β0)} and is tight in c. Now, since 0 ≥ n1/2{D(ĉ) −

D(c0)} = n1/2{D̂(ĉ)− D̂(c0)} − n1/2{D̂(ĉ)−D(ĉ)− D̂(c0) + D(c0)} ≥ −n1/2{D̂(ĉ)−D(ĉ)−

D̂(c0) + D(c0)}, |n1/2{D(ĉ)−D(c0)}| ≤ |n1/2{D̂(ĉ)−D(ĉ)− D̂(c0) + D(c0)}|. This, together

with the tightness of the process n1/2{D̂(c)−D(c)}, implies that n1/2{D(ĉ)−D(c0)} = op(1).

Note that, when Z is discrete, it is straightforward to show that |n1/2{D̂(ĉ)−D(ĉ)− D̂(c0) +

D(c0)}| = op(1) since pr(ĉ = c0) → 1. It then follows from (B.2) and (B.3) that

W ≈ n−1/2

n∑
i=1

{W1i(c0, β0) + Ḋ2(c0, β0)
′W2i(β0)}.

By the central limit theorem, W converges in distribution to a normal with mean 0 and

variance E[(W1i(c0, β0) + W2i(β0))
2]

APPENDIX C: LARGE SAMPLE DISTRIBUTION OF n1/2{D̂(ĉv)−D0} AND

n1/2{D̂(ĉrv)−D0}

Let {ξi; i = 1, · · · , n} be n exchangeable discrete random variables uniformly distributed

over {1, 2, · · · , K}, independent of the data, and satisfy that
∑n

i=1 I(ξi = k) = n/K, k =

1, · · · , K. Let D̂(k)(c, β) denote D̂(c, β) evaluated based observations in Ik, then D̂(k)(c) =

D̂(k)(c, β(−k)). Then for the kth partition, we have

D̂(k)(ĉv)−D0 = D̂(k)(ĉv, β̂(−k))−D(ĉv, β̂(−k)) + D(ĉv, β̂(−k))−D(ĉv, β0) + D(ĉv, β0)−D0.

24

http://biostats.bepress.com/harvardbiostat/paper38



It follows from the same argument as given in Appendix B that

β̂(−k) − β0 =
K

n(K − 1)

n∑
i=1

I(ξi 6= k)W2i(β0) + op(n
−1/2) (C.1)

D̂(k)(ĉv, β̂(−k))−D(ĉv, β̂(−k)) = n−1

n∑
i=1

I(ξi = k)W1i(c0, β0) + op(n
−1/2), (C.2)

D(ĉv, β̂(−k))−D(ĉv, β0) =
1

n(K − 1)
Ḋ2(c0, β0)

′
n∑

i=1

I(ξi 6= k)W2i(β0) + op(n
−1/2), (C.3)

and D(ĉv, β0) −D0 = op(n
−1/2), where the p is the product probability measure generate by

that of {ξ1, · · · , ξn} and the data. Therefore

D̂(k)(ĉv)−D0 = n−1

n∑
i=1

{
I(ξi = k)W1i(c0, β0) + I(ξi 6= k)

1

K − 1
Ḋ2(c0, β0)

′W2i(β0)

}
.

It follows that

D̂(ĉv)−D0 = n−1

n∑
i=1

K∑

k=1

{
I(ξi = k)W1i(c0, β0) + I(ξi 6= k)

1

K − 1
Ḋ2(c0, β0)

′W2i(β0)

}
.

Now, since
∑K

k=1 I(ξi = k) = 1 and
∑K

k=1 I(ξi 6= k) = K − 1, it is straightforward to show

that

Ŵ = n1/2
{
D̂(ĉv)−D0

}
= n−1/2

n∑
i=1

{
W1i(c0, β0) + Ḋ2(c0, β0)

′W2i(β0)
}

+ op(1).

Thus Ŵ is asymptotically equivalent to W.

For the general cross validation procedure, without loss of generality, we assume n/nv = K,

then n1/2(D̂(ĉrv) − D0) = Eξ[n
1/2{D̂(ĉv) − D0}], where the expectation is with respect to

random variables {ξ1, · · · , ξn}. It follows from Theorem 3.1 of Chatterjee and Bose (2005), the

approximations given in (C.1), (C.2) and (C.3) that n1/2{D̂(ĉv)−D0} = W +op∗(1), where p∗ is

the product probability measure generated by that of {ξ1, · · · , ξn} and the data. Consequently,

by a Markov inequality, pr(|Eξ[n
1/2{D̂(ĉv)−D0}]−W | > ε) ≤ pr(Eξ|n1/2{D̂(ĉv)−D0}−W | >
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ε) ≤ ε−1E∗|n1/2{D̂(ĉv)−D0} −W | → 0, for any ε > 0, where the last expectation E∗ is with

respect to both {ξ1, · · · , ξn} and the data. It follows that n1/2(D̂(ĉrv)−D0) is asymptotically

equivalent to W.
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Table 1. Comparing Various Model-based Prediction Rules for 10-Year Survivors with Mayo

Biliary Cirrhosis Data

Model(1) Apparent Error 10-fold CV Random CV

D̂(ĉ) (s.e.)(2) D̂(ĉv) D̂(ĉrv) CI for difference(3)

I .30 (.050) .30 .34

II .16 (.042) .18 .22

III .16 (.043) .18 .21

IV .17 (.038) .18 .21

(.03, .21)(4)

(−.03, .05)(5)

(−.07, .06)(6)

(1) Model I: g(intercept+age);
Model II: g(intercept+age+log(bilirubin)+log(albumin)+ edema + log(protime));
Model III: g(intercept+age+log(bilirubin)+log(albumin);
Model IV: g(intercept+age+log(bilirubin)), where
g(y) = 1 − exp{− exp(y)}. (2) s.e.: estimated standard error. (3) 95%
confidence interval for the difference of the OMRs of two competing models.
(4) Model I- Model II; (5) Model II - Model III; (6) Model III - Model IV.
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Table 2. Comparing Various Model-based Prediction Rules for 10-Year Survivors with the

Breast Cancer Data

Model(1) Apparent Error 10-fold CV Random CV

D̂(ĉ) (s.e.)(2) D̂(ĉv) D̂(ĉrv)

I .30 (.031) .29 .30

II .28 (.033) .30 .28

III .25 (.036) .27 .28

van de Vijver(3) .35 (.050) − −

(1) Model I: g(intercept); Model II: g(intercept+Node+ER);
Model III: g(intercept+Node+ER+Gene), where g(y) = 1− exp{− exp(y)}.
(2) s.e.: estimated standard error. (3) Based on the classification rule in van de Vijver et al.(2002).
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Table 3. Empirical bias, root mean square error (RMSE) and coverage probability based on

apparent error (AE), 10-fold cross-validation (CV10), random cross-validation (CV1/3) with

sample size 300 and t = 10 years

Observed censoring No censoring

Model∗ AE CV10 CV1/3 AE CV10 CV1/3

Bias I −.038 −.016 .004 −.015 −.007 .002
II −.036 −.021 −.003 −.014 −.009 −.001
III −.039 −.016 .006 −.015 −.007 .003
IV −.038 −.016 .005 −.015 −.007 .002
V −.039 −.015 .006 −.015 −.007 .003
VI −.053 −.003 .025 −.020 −.002 .010

RMSE I .054 .044 .042 .027 .025 .024
II .053 .045 .041 .027 .025 .024
III .055 .045 .043 .028 .025 .025
IV .054 .044 .042 .027 .025 .024
V .054 .045 .043 .028 .025 .024
VI .065 .044 .050 .030 .024 .026

Coverage I .887 .939 .962 .926 .949 .958
level II .912 .944 .968 .932 .945 .962

III .882 .935 .962 .919 .941 .947
IV .888 .945 .959 .925 .947 .959
V .884 .938 .955 .929 .944 .954
VI .773 .926 .914 .884 .938 .923

∗ Model I (true): D0 = .262; Model II (covariate omission): D0 = .271; Model
III (wrong functional form): D0 = .268; Model IV (wrong link function):
D0 = .262; Model V (wrong link and wrong functional form): D0 = .267.
Model VI (over fitting): D0 = .262;
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Figure 1. The ROC curves of various prediction models for 10-Year Survivors with the Breast

Cancer Data
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Figure 2. The PPV-NPV curves of various prediction models for 10-Year Survivors with the

Breast Cancer Data
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