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Abstract

Time series models relating short-term changes in air pollution levels to daily mortality

counts typically assume that the effects of air pollution on the log relative rate of mortality do

not vary with time. However, these short-term effects might plausibly vary by season. Changes

in the sources of air pollution and meteorology can result in changes in characteristics of the air

pollution mixture across seasons. The authors develop Bayesian semi-parametric hierarchical

models for estimating time-varying effects of pollution on mortality in multi-site time series stud-

ies. The methods are applied to the updated National Morbidity and Mortality Air Pollution

Study database for the period 1987–2000, which includes data for 100 U.S. cities. At the national

level, a 10 µg/m3 increase in PM10 at lag 1 is associated with a 0.15 (95% posterior interval:

−0.08, 0.39), 0.14 (−0.14, 0.42), 0.36 (0.11, 0.61), and 0.14 (−0.06, 0.34) percent increase in

mortality for winter, spring, summer, and fall, respectively. An analysis by geographical regions

finds a strong seasonal pattern in the northeast (with a peak in summer) and little seasonal

variation in the southern regions of the country. These results provide useful information for

understanding particle toxicity and guiding future analyses of particle constituent data.

Word count: 200

MeSH headings: air pollution, epidemiology, models/statistical, mortality
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Numerous time series studies have indicated a positive association between short-term variation

in ambient levels of particulate matter (PM) and daily mortality counts (see e.g. 1–3). The models

used in these studies have typically assumed that the association between PM and daily mortality is

constant over the study interval. However, the short-term effects of PM on mortality might plausibly

exhibit seasonal variation. Studies in a number of locations have shown that that the characteristics

of the PM mixture change throughout the year and that the relative and absolute contributions

of particular components to PM mass may be different during different times of the year (4, ch. 3

and references therein). Patterns of human activity also change from season to season, so that a

particular air pollution concentration in one season may lead to a different exposure in another

season. Other potential time-varying confounding and modifying factors, such as temperature and

influenza epidemics, can also affect estimates of short-term effects of air pollution on mortality

differently in different seasons. All of the issues described above indicate a need to extend current

models for time series data on air pollution and health to incorporate time-varying pollution effects.

The composition of particulate matter is known to vary in the spatial domain as well, suggesting

that seasonal patterns should be examined by geographical region (5). For example, in the North

West wood burning is a greater source of PM in the colder seasons than in the warmer months.

The PM mixture in the Eastern U.S. contains a large fraction of sulfates (almost 40% of total

mass) originating from power plants in the Midwest, while PM in areas of the Western U.S. such

as Southern California and the Pacific North West contains more nitrates and organic compounds

(approximately 30% of total mass) (4–6).

In this paper we develop statistical methods for estimating seasonal patterns in the short-

term effects of air pollution on mortality in multi-site time series studies. We propose Bayesian

semi-parametric hierarchical models for estimating time-varying health effects within each city

and for comparing temporal patterns across cities and geographical regions. Using updated data

from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) (7), we estimate

seasonal patterns in the short-term effects of PM less than 10 µm in aerodynamic diameter (PM10)

on daily non-accidental mortality in 100 U.S. cities for the period 1987–2000. These patterns
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are estimated for seven geographical regions and on average for the entire U.S. We explore the

sensitivity of estimated seasonal patterns to temperature adjustment, copollutants, exposure lag,

and adjustments for long-term mortality trends.

MATERIALS AND METHODS

The NMMAPS database contains daily time series of mortality, weather, and air pollution as-

sembled from publicly available sources for the largest 100 cities in the United States. A full

description of the construction of the database can be found in (7). The most recent data are

available at http://www.ihapss.jhsph.edu.

Within each city, we specify a semi-parametric regression model for the time-varying log relative

rate using a generalized additive model framework (8). More specifically, let Y c
t be the total number

of non-accidental deaths on day t in city c. The Y c
t are Poisson distributed with expectation µc

t

and with possible overdispersion φc. The general form of the city-specific model is

Y c
t ∼ Poisson(µc

t)

Var(Y c
t ) = φcµc

t

log(µc
t) = βc(t) xc

t−` + confounders (1)

where xc
t−` is the lag ` PM10 level for day t.

The function βc(t) in equation 1 represents the time-varying effect of PM10 on mortality and is

a yearly periodic function for estimating seasonal patterns. Our main effect model, which does not

contain any adjustment for season takes βc(t) to be constant across time, i.e.

βc(t) = βc. (2)

This model assumes a homogeneous log-linear effect of PM10 on mortality, a condition that was

found appropriate in previous NMMAPS analyses (9–12).

To allow for different PM10 log relative rates by season, we use a pollutant-season interaction
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model with indicator functions for each season:

βc(t) = βc
W Iwinter + βc

Sp Ispring + βc
Sm Isummer + βc

F Ifall, (3)

where winter, spring, summer, and fall are defined as beginning on December 21st, March 21st,

June 21st, and September 21st, respectively. As in model 2, the pollutant-season interaction model

assumes a log-linear effect of PM10 on mortality, but it provides separate estimates for each season.

Although these seasonal estimates serve as concise summaries, it is unlikely that the effect of PM10

on mortality is discontinuous across seasons. Furthermore, the estimates depend on the specification

of the season boundaries and convey different meanings when this specification changes.

To estimate smooth seasonal patterns in the city-specific log relative rates, we use a sine/cosine

model for βc(t) of the form

βc(t) = βc
0 + βc

1 sin(2πt/365)/c1 + βc
2 cos(2πt/365)/c2 (4)

where βc
0, βc

1k, βc
2k are estimated and c1 and c2 are known orthogonalizing constants. In this

model, the effect of PM10 is allowed to vary smoothly over the course of a year, but is constrained

to be periodic across years. While it is possible to include higher frequency basis terms for the

representation of βc(t) in equation 4, there is little reason to expect there to be much high frequency

variation in the seasonal effects of PM10. Note that the main effect model is nested within the

interaction and sine/cosine models, so that if βW = βSp = βSm = βF in equation 3 and βc
1 = βc

2 = 0

in equation 4, both models reduce to equation 2.

The potential confounders included in the general model are similar to those used in previous

NMMAPS analyses (e.g. 11) and consist of indicators for the day of the week, age specific intercepts

corresponding to the categories of less than 65 years of age, 65–74 years, and 75 years or older, a

smooth function of calendar time, and smooth functions of temperature and dewpoint temperature.

In addition to the overall smooth function of time, two separate smooth functions of time are

included for the older two age groups. All of the smooth functions are represented by natural cubic

splines.
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The complexity of each of the smooth functions of time and temperature is controlled by the

numbers of degrees of freedom assigned to each function. We use 7 degrees of freedom per year

for the overall smooth function of time, which removes any fluctuations in mortality at time scales

longer than two months. The separate smooth functions of time for the older two age categories

each receive 1 degree of freedom per year to capture gradual trends specific to these age groups.

For temperature we use 6 degrees of freedom and for dewpoint we use 3 degrees of freedom. A

somewhat larger number of degrees of freedom is necessary for temperature in order to capture

the well known “J-shaped” nonlinear relationship between temperature and mortality. Others have

adjusted for temperature simply by doing separate analyses of the data by season (7, 13–17).

All of the above models were fit using standard quasi-likelihood methods implemented in

the R statistical software package (18). The software and data are all available on the web

at http://www.ihapss.jhsph.edu.

Pooling information across cities

After fitting each of the city-specific models we use a hierarchical normal model for pooling in-

formation and borrowing strength across cities (see e.g. 15). For a particular model, we have a

city-specific maximum likelihood estimate β̂
c

which is a scalar for the main effect model in equa-

tion 2, a vector of length four for the pollutant-season interaction model in equation 3, and a vector

of length three for the sine/cosine model in equation 4. β̂
c

is assumed to be normally distributed

around the true city-specific log relative rates βc with covariance matrix V c, estimated within each

city. In addition, the true rates are assumed to vary independently across cities according to a

normal distribution, i.e.

β̂
c
| βc ∼ N (βc, V c)

βc | α, Σ ∼ N (Zc α, Σ) (5)

where Σ is the covariance matrix describing the between-city variation and α is the overall mean for

the cities. Zc is a matrix of second stage covariates for describing possible differences between cities.
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To characterize regional differences in seasonal patterns we include as a second stage covariate an

indicator for the following seven regions (also used in (7)): Industrial Midwest (19 cities), North

East (17), North West (13), Southern California (7), South East (26), South West (10), and Upper

Midwest (8).

The final national average estimate α represents the combined information from all of the cities.

The diagonal elements of Σ measure the heterogeneity across cities and the off-diagonal elements

represent the correlation of the estimates between cities. The hierarchical model is fit using the

two level normal independent sampling estimation (TLNise) software of (19) with uniform priors

on α and Σ. This software provides a sample from the posterior distribution of Σ from which one

can calculate posterior means and variances of the overall and city-specific pollution effects.

Evidence for seasonality in the log relative rates

To quantify the amount of evidence supporting the presence of a seasonal pattern in the national and

regional averages we examine the posterior distributions of the pooled log relative rate estimates.

In particular, for the sine/cosine model in equation 4, we can check the posterior probability that

the coefficients for the harmonic terms are non-zero. While the values of the pooled coefficients β1

and β2 do not have meaningful interpretations, if either one of these coefficients is non-zero with

high probability, then there is strong evidence of a seasonal trend.

RESULTS

The daily mortality counts for the years 1987–2000 include approximately 10 million deaths. By

city, the daily average ranged from 2 deaths per day in Arlington, VA to 190 per day in New York,

NY. The daily mean of PM10 ranged from 13 µg/m3 in Coventry, RI to 49 µg/m3 in Fresno, CA.

Summary statistics for the dataset are shown in Table 1.

Mortality and PM10 levels are known to vary considerably across seasons. With a few exceptions,

mortality tends to be higher in the winter and fall and lower in the summer and spring. Figure 1
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shows boxplots of the square root daily mortality counts for the largest 10 cities in the United

States. Each city shows a clear decrease in mortality towards summer and a peak in the winter.

Figure 2 shows the mean daily levels of PM10 by season for all cities in each of the seven regions

of the U.S. The Southern California, North West, and South West regions have their highest mean

levels of PM10 in the fall while other regions have their highest levels in the summer.

The national average estimates of the overall and seasonal short-term effects of PM10 on mor-

tality for lags 0, 1, and 2 are summarized in Table 2. These estimates were obtained by pooling the

city-specific maximum likelihood estimates from the main effect and pollutant-season interaction

models according to the hierarchical normal model. Across all seasons, we found that the national

average estimate of the effect of PM10 on mortality is largest at lag 1 and equal to an estimated

0.19 (95% posterior interval of 0.10, 0.28) percent increase in mortality per 10 µg/m3 increase in

PM10. Previous NMMAPS analyses using data from the eight-year period 1987–1994 have reported

similar slightly higher national average estimates for PM10 log relative rates (10, 12). For example,

the national average estimate reported in (12) was 0.22 (0.03, 0.42).

For PM10 at lag 1, the estimates for winter, spring, and fall are similar and equal to 0.15

(−0.08, 0.39), 0.14 (−0.14, 0.42), and 0.14 (−0.06, 0.34), respectively. The estimate for summer is

more than twice as large at 0.36 (0.11, 0.61). PM10 at lag 0 appears to have a larger effect in the

spring and much smaller effects in the other seasons. In addition, estimates for lag 0 have a much

larger between season difference (e.g. spring and winter) than those of lag 1. The estimates for lag

2 are generally smaller than those of lag 0 or 1 and, given the size of the posterior intervals, do not

vary much across seasons.

Regional differences in the seasonal patterns of the PM10 relative rates were explored by in-

cluding a region indicator variable in the second stage of the hierarchical model. For PM10 at lag

1, Figure 3 shows the results of estimating separate seasonal trends from the sine/cosine model

for the seven regions of the U.S. The Industrial Midwest and the North East have seasonal trends

characterized as being lower in the winter and higher in the summer. Southern California has a

larger effect (0.5% per 10 µg/m3 increase in PM10) that is constant all year. The effect of PM10 is
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close to zero all year round in the North West, South East, South West, and the Upper Midwest,

but the North West experiences a slight increase during the summer months. With the exception

of Southern California, all regions have a smaller effect in the winter months.

Figure 4 shows samples from the joint posterior distributions of the regionally and nationally

pooled harmonic coefficients β1 and β2 in the sine/cosine model for PM10 at lag 1. The region

with the strongest evidence of a seasonal pattern is the North East with a marginal posterior

Prob(β2 > 0 | data) = 0.94. There is moderate evidence of seasonality in the Industrial Midwest

and the North West with Prob(β2 > 0 | data) = 0.83 and 0.74, respectively. The joint distributions

of the coefficients for the South East, South West, Upper Midwest, and Southern California regions

are centered at zero, indicating a lack of any seasonal variation. At the national level, the marginal

posterior Prob(β2 > 0 | data) = 0.91, while the marginal distribution for β1 is centered almost

exactly around zero. PM10 at lag 0 shows slightly more evidence of seasonality for the national

average. However, the overall short-term effect of PM10 at lag 0 is smaller on average, as indicated

in Table 2. There is little evidence of seasonal variation of the short-term effect of PM10 at lag 2.

Sensitivity analyses

We performed several additional analyses to explore the sensitivity of the estimated seasonal PM10

log relative rates to model specification. Specifically, we examined sensitivity to (1) adjustment for

long-term trends and seasonality in mortality; (2) the inclusion of other pollutants; (3) the exposure

lag; and (4) the specification of the temperature component.

Estimates of pollution coefficients can change considerably depending on the specification of

the number of degrees of freedom in the smooth functions of time to control for long-term trends

and seasonality in mortality (note that here we are not referring to the function in equation 4).

Our original model used a natural cubic spline with 7 degrees of freedom per year of data. For

PM10 at lag 1, Figure 5 shows the sensitivity of the sine/cosine model to using 3, 5, 7, 9, and

11 degrees of freedom per year in the smooth function of time. With only 3 degrees of freedom

per year the curves deviate considerably from those in Figure 3, e.g. the estimate for Southern
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California exhibits much more seasonal variation. However, these deviations more likely reflect a

lack of adjustment in the model rather than a real seasonal change. With more aggressive control

for seasonality and long-term trends the estimates appear to be stable.

Table 3 shows the sensitivity of the lag 1 PM10 log relative rate as other pollutants are included

in the pollutant-season interaction model. The seasonal national average estimates exhibit the same

pattern when either current day SO2, O3, or NO2 are included as copollutants in the model. With

SO2 included, the summer effect for PM10 increases (albeit with increased uncertainty), while the

inclusion of O3 or NO2 appears to attenuate the effect somewhat. Note that the lack of data for

the other pollutants reduced the number of cities available for the copollutant analyses.

Figure 6 shows the region-specific seasonal trends for PM10 at lags 0, 1, and 2 with 95% posterior

regions for lag 1. The lag 0 seasonal trend for each region has a similar pattern to the lag 1 trend

but is lower in general. In the North East and Industrial Midwest, the peak in the seasonal trend

for lag 0 appears to come in late May while the peak for lag 1 comes in mid-July. The North West,

South East, and Upper Midwest exhibit small changes in seasonal patterns across lags but remain

largely flat. Southern California and the South West appear to pick up slightly stronger seasonal

patterns in lags 0 and 2.

To explore sensitivity to temperature and to control for temperature effects spread out over

multiple days, we fit separate models which included an additional interaction between the current

day temperature and the running mean of lags 1 through 3 as well as a running mean of lags 1

through 7. Neither addition to the model made a noticeable impact on the regional or overall

seasonal patterns of the PM10 log relative rate.

DISCUSSION

In this paper we have used a Bayesian semi-parametric hierarchical model for estimating time-

varying effects of air pollution on daily mortality. The model combines information across multiple

cities to increase the precision of seasonal relative rate estimates. We found seasonal patterns for
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the national average effect of PM10 at both lag 0 and lag 1. Seasonal patterns varied by geographical

region with a strong pattern for lag 1 appearing in the North East region. Equally interesting was

the lack of seasonal variation in the southern regions of the country.

Understanding the health effects of PM components is an increasingly important research prob-

lem, as noted in (20). Exploration of the spatial-temporal variation of the short-term effects of

PM on mortality is essential to generating (or ruling out) specific hypotheses about the toxicity of

PM components. Data are becoming available from the Environmental Protection Agency’s PM2.5

National Chemical Speciation Network which contain detailed time series information on the com-

position of PM (4). Knowledge of the spatial-temporal patterns of the short-term effects of PM

will be necessary for guiding future analyses of these PM constituent data.

The modification of short-term effects of pollution by season has been explored previously in

a number of single city studies. Styer, et al. (21) analyzed data from Cook County and Salt Lake

County and found (for Cook County) that the effect of PM10 was higher in the spring and fall.

In a review of research on particulate air pollution and mortality (22), Moolgavkar and Luebeck

stated that analyses in Steubenville, Philadelphia, and Cook County indicated that the effects of

pollutants are strongly modified by season. Kelsall, et al. (23) examined Philadelphia data and

estimated separate pollutant effects by season. They concluded that after adjusting for long-term

variation in mortality and the effects of weather there was little evidence of different effects by

season. More recently, Moolgavkar (24) analyzed data from Cook County and Los Angeles County

and found between season variation of the effects of numerous pollutants on daily mortality in both

counties.

Estimation of short-term effects of air pollution on daily mortality for single cities is hampered

by the inherent high variability of the resulting effect estimates. Estimation of seasonally varying

effects poses an additional challenge because it involves further stratification of the data. Since fewer

data are available for estimating season-specific effects, the variability of such estimates increases,

making it difficult to discern any meaningful seasonal pattern. Rather, a multi-site approach, where

information can be combined across neighboring cities, can provide more precise city-specific log
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relative rates as well as provide a natural framework for characterizing regional and national trends.

Regional differences in the short-term effects of PM10 have been explored in NMMAPS (11, 12)

and in the Air Pollution and Health: A European Approach (APHEA) study (25, 26). Both

studies found regional modification of the effect of PM10 on daily non-accidental mortality. The

results presented here are consistent with previous NMMAPS analyses with respect to overall

regional average PM10 effects. The estimated seasonal patterns for lag 1 appear to have two

distinct shapes. The Industrial Midwest, North East, and North West regions all exhibit a larger

effect during the summer months while the other regions exhibit little seasonal variation. These

patterns are somewhat sensitive to the lag of pollution used. Therefore, an important question

raised by this study is how the total effect of PM10 in a distributed lags model would vary by

season. Unfortunately, the U.S. pollution database has daily PM levels for a small fraction of cities

making if difficult to answer this question.

These analyses provide strong evidence that the PM10 log relative rate is greater in the spring

and summer in the northern regions, particularly in the North East. This result admits several

competing hypotheses. First, the PM constituents may vary by season in these regions with the

most toxic particles having a spring/summer maximum. A detailed analysis of the regional and

seasonal variation in PM constituents is needed to better understand these patterns. Second, even

if the constituents do not vary substantially, time spent outdoors tends to be greatest in colder

regions during the spring and summer. Hence, the total exposure to particles of outdoor origin

may be greatest in these seasons. Third, the particle effect may be swamped by the more powerful

effect of winter infectious diseases so that it can only be observed when infectious diseases are

less prevalent. This hypothesis does not explain the absence of a PM10 mortality association in

the southern regions where infectious disease incidence is also seasonal. Finally, this result may

reflect seasonally varying bias from an, as yet, unidentified source. Having established the pattern

of regional and seasonal variation in the PM10 log relative rate, a more targeted investigation of

possible sources of such bias is now possible.
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Figures and Tables

Min. 25% Median 75% Max.

Avg. Daily Mortality 2.2 7.6 12.2 20.4 190.2
Avg. Daily PM10 (µg/m3) 13.2 24.7 27.1 32.0 48.7
Avg. Daily Temp. (

�

F) 37.0 51.8 58.1 64.7 77.8

Table 1: Summary statistics for average daily mortality, PM10, and temperature for 100 U.S. cities,
1987–2000
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Figure 1: Boxplots of square root daily mortality by season for 10 U.S. cities, 1987–2000.

Winter Spring Summer Fall All Seasons

Lag 0 −0.04(−0.30, 0.21) 0.32(0.08, 0.56) 0.13(−0.11, 0.37) 0.05(−0.16, 0.25) 0.09(−0.01, 0.19)

Lag 1 0.15(−0.08, 0.39) 0.14(−0.14, 0.42) 0.36(0.11, 0.61) 0.14(−0.06, 0.34) 0.19(0.10, 0.28)

Lag 2 0.10(−0.13, 0.33) 0.05(−0.21, 0.32) −0.03(−0.27, 0.21) 0.13(−0.08, 0.35) 0.08(−0.03, 0.19)

Table 2: National average estimates of the overall and seasonal effects of PM10 at lags 0, 1, and 2
obtained from the main effect and pollutant-season interaction models (with 95% posterior intervals
shown in parentheses). Estimates represent the percent increase in daily mortality for a 10 µg/m3

increase in PM10.
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Figure 2: Boxplots of regionally averaged daily PM10 levels (in µg/m3) by season.

Winter Spring Summer Fall

PM10 only (100 cities) 0.15(−0.08, 0.39) 0.14(−0.14, 0.42) 0.36(0.11, 0.61) 0.14(−0.06, 0.34)

with SO2 (79 cities) 0.24(−0.12, 0.60) 0.05(−0.44, 0.55) 0.47(−0.04, 0.97) 0.15(−0.21, 0.51)

with O3 (72 cities) 0.21(−0.05, 0.47) 0.21(−0.08, 0.51) 0.32(0.04, 0.59) 0.01(−0.28, 0.29)

with NO2 (68 cities) 0.18(−0.15, 0.51) 0.15(−0.22, 0.51) 0.34(−0.04, 0.72) 0.16(−0.18, 0.51)

Table 3: Seasonal PM10 estimates in two-pollutant models.
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Figure 3: National and regional seasonal curves estimated from the sine/cosine model for lag 1
PM10. Gray regions indicate pointwise 95% posterior intervals.
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Figure 4: Samples from the national and regional joint posterior distributions of the pooled coef-
ficients β1 and β2 from sine/cosine seasonal model for PM10 at lag 1. The solid and dashed lines
indicate the 75% and 95% regions for the joint posterior distribution of β1 and β2, given the data.
Noted in each panel are the marginal posterior probabilities of each coefficient being greater than 0.
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Figure 5: Sensitivity of the sine/cosine model for lag 1 PM10 to the degrees of freedom assigned to
the smooth function of time.
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Figure 6: Sensitivity of seasonal patterns to PM10 exposure lag in the sine/cosine model. Gray
regions indicate pointwise 95% posterior intervals for lag 1.
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