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Abstract

Kawaguchi et al. (2011) provided methodology and applications for a stratified Mann–

Whitney estimator that addresses the same comparison between two randomized groups for

a strictly ordinal response variable as the van Elteren test statistic for randomized clinical

trials with strata. The sanon package provides the implementation of the method within

the R programming environment (R Core Team, 2012). The usage of sanon is illustrated

with five examples. The first example is a randomized clinical trial with eight strata and a

univariate ordinal response variable. The second example is a randomized clinical trial with

four strata, two covariables, and four ordinal response variables. The third example is a

cross over design randomized clinical trial with two strata, one covariable, and two ordinal

response variables. The fourth example is a randomized clinical trial with seven strata

(which are managed as a categorical covariable), three ordinal covariables with missing

values, and three ordinal response variables with missing values. The fifth example is a

randomized clinical trial with six strata, a categorical covariable with three levels, and

three ordinal response variables with missing values.

Keywords: missing completely at random, multivariate outcomes, randomization-based non-

parametric covariance adjustment, randomized clinical trial, repeated measurement, stratifica-

tion, strictly ordinal response variable, R
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1 Introduction

The primary analyses for confirmatory randomized clinical trials (and particularly those with

regulatory objectives) should have protocol specified methods that have minimal assumptions.

A nonparametric approach such as the Wilcoxon (or Mann–Whitney) test statistic for the com-

parison between two treatments through the ranking of a response variable for all patients (in

the pooled treatment groups) has essentially no assumptions (under the strong null hypothesis

of no treatment differences in the sense that each patient has the same response to both treat-

ments) beyond valid randomization as its basis. More generally, Mann-Whitney test statistics

and the corresponding estimators address the global null hypothesis of equality of response

distributions for two treatment groups through its implied null hypothesis for Pr(Group 1 re-

sponse > Group 2 response)= ξ = 0.5; and their sensitivity and power to detect differences

between two distributions depend jointly on the extent to which |ξ−0.5| > 0 and the applicable

sample size. Nevertheless, such methods have the recognized limitation that their power for

comparing different distributions for which ξ = 0.5 equals the specified type 1 error regardless

of the applicable sample sizes (although differences between such distributions are typically of

relatively minimal interest for clinical trials that evaluate whether one treatment group has rel-

atively more patients with better responses that the other treatment group). The coin package

(Hothorn et al., 2013, 2008, 2006) in the R programming environment (R Core Team, 2012) can

handle ordered and multivariate responses as well as stratification and provides both random-

ization/permutation tests and asymptotic tests based on the conditional inference. NParCov3

(Zink and Koch, 2012) is a SAS/IML macro (SAS Institute Inc., 2011) written to conduct the

nonparametric randomization-based covariance analyses of Koch et al. (1998).

For confirmatory randomized clinical trials with stratified designs for comparing two treat-

ments, Kawaguchi et al. (2011) proposed stratified multivariate Mann-Whitney estimators as a

useful structure for the analysis of strictly ordinal response variables. Their scope can address

strata with at least minimal sample sizes (e.g., ≥ 16), and randomization-based covariance ad-

justment is possible. The method is based on the Mann-Whitney estimator for the probability

that a randomly selected patient from one treatment group has better status for a response

variable within a stratum than a randomly selected patient from the other treatment group

(with ties being randomly broken with probability 0.5). Such Mann-Whitney estimators can be

combined across the strata to provide stratified estimator counterparts that address the same

comparisons between the two treatment groups as the van Elteren test statistic. The multi-

variate vector of such stratified Mann-Whitney estimators for multivariate response variables
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can be considered for one or more response variables such as in repeated measurements and

these can have missing completely at random (MCAR) data (or missing data for which direct

imputation methods are applicable). Randomization-based covariable adjustment is possible

for stratified multivariate Mann-Whitney estimators by expanding the vector of such estima-

tors to include stratified differences between means of covariables. The latter estimators for

the covariables then have constraints to 0’s invoked. For this purpose, weighted least squares

methods are applied with weights based on the estimated covariance matrix for the expanded

vector from the methods for ratios of multivariate U-statistics; see Stokes et al. (2012, chap. 14)

and Koch et al. (1998). The resulting estimators are stratified multivariate Mann-Whitney es-

timators with randomization based covariance adjustment, and their interpretation is the same

as the original Mann-Whitney estimator mentioned above. With sufficiently large sample sizes,

such estimators have an approximately multivariate normal distribution with the covariance

matrix being essentially known through its corresponding consistent estimator. Accordingly,

confidence intervals can have construction for linear functions of such fully adjusted Mann-

Whitney estimators (with respect to both stratification and covariables), and the scope of such

linear functions can include the separate response variables, averages across response variables,

and contrasts among response variables.

The software of the method was developed in the R programming environment (R Core

Team, 2012). The sanon package contains functions to implement the method as well as two

example data sets which were used in Kawaguchi et al. (2011) and three sets from other papers.

The main function in the package has a similar structure as functions in R for standard statistical

methods such as lm for linear models. This paper illustrates the usage of the package with five

example data sets. Section 2 describes the methods, Section 3 explains the code, and Section 5

illustrates those methods for five examples introduced in Section 4.

2 Methods

As previously outlined in Section 1, a stratified Mann-Whitney estimator and corresponding

confidence interval can have construction so as to address the same comparison between two

randomized groups as the van Elteren test statistic. The specifications for the formal structure

for this method are in Section 2.1 for a multivariate set of r response variables. Section 2.2

discusses randomization based covariance adjustment for stratified multivariate Mann-Whitney

estimators and it explains the corresponding constraints for no expected differences between

randomized groups for stratified means of covariables.
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2.1 Stratified multivariate Mann-Whitney estimator

Let h = 1, 2, . . . , q index a set of strata within which patients have randomization to two

groups indexed by i = 1, 2. Let k = 1, 2, . . . , r index the response variables with observation

for the nhi patients in the i-th group of the h-th stratum; and some of these response variables

can be baselines at times prior to any treatment for a group; or in crossover studies, they can

be at washout times prior to the treatments which are subsequent to the first treatment. Let

j = 1, 2, . . . , N index the patients for the pooling of all patients in the clinical trial regardless

of their groups or strata. Let Sj denote the stratum for the j-th patient, and let tj correspond

to the group for the j-th patient with tj = 1 if i = 1 for patient j and tj = −1 if i = 2 for

patient j. Let Y j = (Yj1, . . . , Yjr)
> denote the response vector for the j-th patient with Yjk

denoting the k-th strictly ordinal response variable for the j-th patient. Since some of the Yjk

may be missing (by a missing completely at random (MCAR) process), let Zjk = 1 if Yjk is

not missing and let Zjk = 0 if Yjk is missing ; and let Zj = (Zj1, . . . , Zjr)
>. In the subsequent

discussion, any missing Yjk operationally has replacement by 0 since the value used for such

replacement has no role in the subsequently described processes for estimation.

The stratified Mann-Whitney estimator for the k-th response variable is ξ̂k = (θ̂1k/θ̂2k) for

which θ̂1k and θ̂2k are defined in (1) and (2),

θ̂1k =
1

N(N − 1)

N∑
j=1

N∑
j′ 6=j

U1jj′k and θ̂2k =
1

N(N − 1)

N∑
j=1

N∑
j′ 6=j

U2jj′k (1)

U1jj′k = I
{

(Sj − Sj′) = 0
}
× [I

{
(tj − tj′)(Yjk − Yj′k)ZjkZj′k > 0

}
+0.5× I

{
(tj − tj′)2ZjkZj′k > 0

}
× I

{
(Yjk − Yj′k) = 0

}
]/(Njk +Nj′k + 1)

U2jj′k =
[
I
{

(Sj − Sj′) = 0
}
× I

{
(tj − tj′)2ZjkZj′k > 0

}]
/(Njk +Nj′k + 1)

(2)

Also, I(A) has the value 1 if the condition A is satisfied or the value 0 if otherwise, and Njk

denotes the sample size for the k-th response variable for patients with the same stratum and

group as the j-th patient. For (1) and (2), the numerator of the U1jj′k equals 1 for a pair of

patients who are in the same stratum with different groups and for whom the k-th response

variable is larger for the patient in group 1 than for the patient in group 2, and it equals 0

for all other pairs of patients; and the numerator of the U2jj′k equals 1 for a pair of patients

who are in the same stratum with different groups and for whom the k-th response variable

is observed (i.e., not missing), and it equals 0 for all other pairs of patients. Accordingly, the
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numerator of θ̂2k equals
(∑q

h=1whk
)

for which whk = (nh1knh2k)/(nh∗k + 1) with nhik being

the number of patients for whom the k-th response variable is observed among the nhi patients

for the i-th group in the h-th stratum and nh∗k = (nh1k + nh2k); and the numerator of θ̂1k

equals
(∑q

h=1whkξ̂hk

)
for which the ξ̂hk for the respective strata are the within strata Mann-

Whitney estimators for the proportions of pairs of patients with different groups and for whom

the k-th response variable is larger for the group 1 patient than the group 2 patient. Thus,

ξ̂k =
(∑q

h=1whkξ̂hk

/∑q
h=1whk

)
is a weighted average of the within strata, Mann-Whitney

estimators ξ̂hk with the whk as weights.

Let U1jk =
∑N

j′ 6=j U1jj′k/(N − 1) and U2jk =
∑N

j′ 6=j U2jj′k/(N − 1). Let F j = (U ′1j ,U
′
2j)
>

denote a compound vector for the j-th patient where U1j = (U1j1, . . . , U1jr)
> and U2j =

(U2j1, . . . , U2jr)
>. Let F =

∑N
j=1 F j/N denote the sample mean vector for the F j . As noted

in Davis and Quade (1968), Puri and Sen (1971), Quade (1974), Carr et al. (1989), Jung and

Koch (1998), and Jung and Koch (1999), a consistent estimator for the covariance matrix for

F is given in (3).

V F =
4

N(N − 1)

N∑
j=1

(F j − F )(F j − F )>. (3)

The stratified Mann-Whitney estimator for ξ = (ξ1, ξ2, . . . , ξr)
> is ξ̂ = D−1

θ̂2
θ̂1 = (ξ̂1, ξ̂2, . . . , ξ̂r)

>

where Da denotes a diagonal matrix with the elements of vector a on the main diagonal. Here

θ̂1 = (θ̂11, θ̂12, . . . , θ̂1r)
> corresponds to the first r elements of F (as they represent numerators

of the ξ̂k for the r response variables); and θ̂2 = (θ̂21, θ̂22, . . . , θ̂2r)
> corresponds to the remain-

ing r elements of F ; i.e., F = (θ̂
>
1 , θ̂

>
2 )>. Based on the Taylor series linearization, a consistent

estimator V ξ̂ for the covariance matrix for ξ̂ is given in (4).

V ξ̂ = [Ir,−D−2
θ̂2

]V F [Ir,−D−2
θ̂2

]>. (4)

As noted in Kawaguchi et al. (2011), with sufficient sample size for ξ̂ to have an approx-

imately multivariate normal distribution (e.g., n+ik ≥ 50 and all nhik ≥ 4), then a two-sided

100(1 − 2α)% confidence interval for the linear statistic c>ξ̂ for the comparison between the

two groups is
(
c>ξ̂ ± zα

√
c>V

ξ̂
c
)

where zα is the 100(1−α) percentile of the standard normal

distribution with mean 0 and variance 1. In this regard, the interpretation of the results from

assessments of such contrasts may need some caution since Mann-Whitney estimators do not

have explicitly transitive relationships with one another, although approximately transitive re-

lationships can sometimes be applicable to their corresponding log odds ψ̂k = loge[ξ̂k/(1− ξ̂k)]

through Bradley-Terry specifications for paired comparisons; see Jung and Koch (1999) and
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Kawaguchi and Koch (2010).

2.2 Randomization Based Covariance Adjustment

Let xj = (xj1, . . . , xjM )> denote the vector of M numeric covariables for the j-th patient

with xjm denoting the numeric value of the m-th covariable for the j-th patient. All of the

M covariables have observation prior to the randomization of the patients to the two groups.

Also, any categorical covariable has expression as a set of indicator variables that correspond

to all except one of its categories with the excluded category serving as a reference category;

and any ordinal covariable is managed in the same way as the response variables via (1)–(3).

All of the covariables are assumed to have no missing data as is often realistic (although it is

possible to manage a covariable with substantial missing data as a categorical covariable and to

manage minimal missing data for other covariables in the same way as for response variables).

The stratification adjusted mean difference estimator for the m-th covariable is

gm = (ϕ̂1m/ϕ̂2) =

{
q∑

h=1

wh(xh1m − xh2m)

/
q∑

h=1

wh

}
(5)

where wh = nh1nh2/(nh1 + nh2), and ϕ̂1m and ϕ̂2 are defined as in (6).

ϕ̂1m =
1

N(N − 1)

N∑
j=1

N∑
j′ 6=j

Ũ1jj′m, ϕ̂2 =
1

N(N − 1)

N∑
j=1

N∑
j′ 6=j

Ũ2jj′ (6)

In (6), the Ũ1jj′m and Ũ2jj′ have the structure shown in (7)

Ũ1jj′m =
[
I
{

(Sj − Sj′) = 0
}
× 0.5(tj − tj′)× (xjm − xj′m)

]
/(Nj +Nj′)

Ũ2jj′ =
[
I
{

(Sj − Sj′) = 0
}
× I

{
(tj − tj′) 6= 0

}]
/(Nj +Nj′)

(7)

where Nj = nhi if patient j is from the h-th stratum and is in the i-th group. Also, the

numerator of Ũ1jj′m (for a pair of patients who are from the same stratum with different

groups) equals the difference between the patient in group 1 and the patient in group 2 for the

m-th covariable, and it equals 0 for all other pairs of patients; and the numerator of Ũ2jj′ has

a comparable definition with respect to the covariables xj as U2jj′k has for the k-th response

variable.

Let f = (ξ̂
>
, g>)> where ξ̂ = D−1

θ̂2
θ̂1 and g = ϕ̂1/ϕ̂2; here ϕ̂1 = (ϕ̂11, . . . , ϕ̂1M )>. The first

r elements of f address comparisons between the two groups for the r response variables with
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stratification adjusted Mann-Whitney estimators, and the last M elements address comparisons

between the two groups for the M covariables with stratification adjusted differences between

their corresponding means. Since g would be expected to be null on the basis of randomization

of patients to the two treatment groups, randomization-based covariance adjustment of ξ̂ is

possible by fitting the model P = [Ir,0rM ]> to f by weighted least squares; see Koch et al.

(1998) and LaVange et al. (2005). The weights are based on a consistent estimator for the

covariance matrix of f which is derived as follows.

Let Ũ1jm =
∑N

j′ 6=j Ũ1jj′m/(N − 1) and Ũ2j =
∑N

j′ 6=j Ũ2jj′/(N − 1). Let Gj = (U>1j , Ũ
>
1j ,

U>2j , Ũ2j)
> where Ũ

>
1j = (Ũ1j1, . . . , Ũ1jM )>. Let G =

∑N
j=1Gj/N denote the sample mean

vector for the Gj . A consistent estimator for the covariance matrix of G is given in (8)

V G =
4

N(N − 1)

N∑
j=1

(Gj −G)(Gj −G)> (8)

A consistent estimator for the covariance matrix of f is V f = HV GH
> where H as shown

in (9) is from Taylor series linearization.

H = Df

 Ir 0rM −Ir 0r1

0Mr IM 0Mr −1M

D−1
G̃

=

 D−1θ̂2 0rM −D−2
θ̂2
Dθ̂1

0r1

0Mr IM ϕ̂
−1
2 0Mr −ϕ̂1ϕ̂

−2
2

 (9)

where G̃ = (θ̂
>
1 , ϕ̂>1 , θ̂

>
2 , ϕ̂2)

>.

The resulting adjusted counterparts b for ξ̂ are shown in (10).

b = (P>V −1f P )−1P>V −1f f = (ξ̂ − V ξ̂gV
−1
g g) (10)

where V ξ̂g corresponds to the covariances of ξ̂ with g and V g corresponds to the covariance

matrix of g. A consistent estimator for the covariance matrix of b is V b in (11)

V b = (P>V −1f P )−1 = (V ξ̂ − V ξ̂gV
−1
g V

>
ξ̂g

) (11)

Additional models that address the variation of the elements of b across the r response

variables can be fit by weighted least squares methods. One such model can invoke random-

ization based covariance adjustment for any strictly ordinal covariables among the response

variables by having a structure like P with rows of 0’s corresponding to the strictly ordinal

covariables and rows of an identity matrix corresponding to the strictly ordinal response vari-
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ables. Through the resulting estimator badj with full adjustment for all covariables and the

strata, confidence intervals can have determination for linear statistics c>badj . Similarly, test

statistics are applicable to assessments of homogeneity across the response variables for the

adjusted estimators badj for the differences between the two groups.

Since the preceding discussion indicates different roles for strata and covariables, some clar-

ifying comments for the distinction between them is useful. In this regard, strata typically

correspond to the cross-classification of categorical factors for stratified randomization. How-

ever, sometimes only one or two such factors that more clearly need balanced allocation of

treatments and better enable reduction of within stratum variance are pre-specified as the

structure for strata in situations where the use of all such factors would produce too many

strata with possibly uninformatively small sample sizes for rankings of responses within them

(e.g., (nh1 + nh2) ≤ 15). In these cases, the other factors for stratification can be pre-specified

as covariables. In contrast, covariables are typically pre-specified baseline variables which po-

tentially have strong associations with response variables (even though they did not serve as

a factor for stratification). For such baseline variables, randomization based covariance ad-

justment via (10) eliminates the spurious influence of random imbalances of their means for

the treatment groups, and it provides variance reduction for treatment comparisons via (11).

Also, as many as 10 baseline variables (with appropriate pre-specified clinical justification)

can have randomization-based covariance adjustment via (10) for clinical trials with at least a

moderately large, overall sample size (e.g., N ≥ 300). In some situations, a categorical baseline

variable that is not a factor for stratified randomization has pre-specified adjustment through

stratification in order to remove the influence of random imbalances between treatment groups

for its distributions and to have variance reduction for treatment comparisons more directly

than provided by covariance adjustment. In summary, baseline variables can be either factors

for stratification or covariables, and so pre-specification of which applies is very important to

avoid potential bias from their roles having an arbitrary nature. Aspects of the scope of such

analyses and the corresponding models have more specific discussion through the examples in

Section 5.

2.3 Management of Missing Data

In addition to the method described in Section 2.1 to maintain missing values, three other

options are newly introduced in this paper. The first option invokes the last observation

carried forward (LOCF) convention for the kernels of U-statistics in (2). For this method,
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the denominators in (2) are revised to (Nj + Nj′ + 1), and missing values for the numerators

are replaced by the last observed value of that variable; that is, each U1jj′k for the nearest

observed preceding k has its numerator carried forward to the missing k and U2jj′k = (Nj +

Nj′)Ũ2jj′/(Nj+Nj′ +1) with Ũ2jj′ as in (7). If there is a missing value in the first measurement,

then this measurement is managed as tied with the (observed or missing) other measurements

in the corresponding stratum; and so U1jj′1 = 0.5U2jj′1 = 0.5(Nj + Nj′)Ũ2jj′/(Nj + Nj′ +

1). Also, this management is more generally applied to all measurements prior to the first

observed measurement by carrying forward U1jj′1 and U2jj′1. The second option is the LOCF

based on the observed value of Y . As noted in the first LOCF method, the missing first

value or values prior to first observed value is managed as tied with the (observed or missing)

other measurements in the corresponding stratum. The third option for missing data manages

missing values as tied with all other values in the same stratum. For this method, U2jj′k =

(Nj +Nj′)Ũ2jj′/(Nj +Nj′ + 1) with Ũ2jj′ as in (7) and U1jj′k is modified to (12).

U1jj′k = I
{

(Sj − Sj′) = 0
}
× [I

{
(tj − tj′)(Yjk − Yj′k)ZjkZj′k > 0

}
+0.5× I

{
(tj − tj′)2ZjkZj′k > 0

}
× I

{
(Yjk − Yj′k) = 0

}
+0.5× I

{
(tj − tj′)2(1− ZjkZj′k) > 0

}
]/(Nj +Nj′ + 1)

(12)

Additionally, the method described in Section 2.1 and Section 2.2 is applicable with the method

of multiple imputation for all missing data, but methods for multiple imputation are beyond the

scope of this paper, particularly for strictly ordinal response variables. Nevertheless, adjusted

Mann-Whitney estimates (10) and corresponding covariance matrices (11) from the respective

invocations of multiple imputation can be combined to produce average estimators and their

estimated covariance matrix by the methods of Rubin (2004) (as available, for example, in the

MIANALYZE Procedure of the SAS System).

3 Code

The R package sanon can be installed from the Comprehensive R Archive Network (CRAN)

by using the code install.packages("sanon"). Then, you need to type the library(sanon)

command to load the package. The main function sanon can be accessed by your program

by including the following line with the specification for the input and is formula based. The

usage is:

sanon(formula, data, P = NULL, res.na.action = "default")
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This function has four types of inputs (arguments), which are described in Table 1 and the

details are below.

Table 1: Arguments for sanon function

Argument Description

formula a formula object, with the response on the left of a ˜ operator, and
the terms on the right, in which functions strt, grp, covar, and
catecovar are required to specify the role of variables on the right
hand side

data a data.frame in which to interpret the variables named in the formula
P a matrix object for weighted least squares estimation
res.na.action character for setting NA actions. "default", "LOCF1", "LOCF2", "re-

place", and "remove" are available. The default is "default". See
Section 2.3 for the details.

The formula consists of variable names in your data set specified in the argument data,

which has a similar structure as functions in R for standard statistical methods such as lm for

linear models, but is more complicated. Let y, g, s, cc, and c be respectively the response,

group, strata, categorical covariable, and continuous covariable names in the data.frame, and

"r" is the reference group to be provided, the formula can be specified as follows:

formula = y ~ grp(g, ref = "r") + strt(s) + catecovar(cc, ref = "r")

+ covar(c)

These terms can be omitted except for the response and group if you don’t need them. In

this formula, the strata and group variables, and the continuous and categorical covariables

are recognized by functions strt, grp, covar and catecovar, respectively. In other words,

all terms on the right hand side should be specified for the role by using these functions. For

example, if one used the input sanon(y grp(g) + cc) with cc having no role specified, then

cc would be ignored in the analysis. Covariables are distinguished on the basis of continuous

or categorical type. The categorical covariable is internally converted into a set of dummy

variables. The reference group for group variable and categorical covariable can be specified in

the argument ref within each functions grp and catecovar. More than two strata variables

can be in the formula object, and they are internally transformed into the cross-classification.

The matrix P in (10) or (11) for the weighted least squares estimation is specified in the

argument P by the R matrix object name.

The response variable can contain missing values, which should be coded by NA, and it

can be multivariate (repeatedly measured). The function sanon has five options for deal-
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ing with missing values for the response variable, with the default maintaining missing val-

ues and using the methods described in Section 2.1. It can be specified by no argument or

res.na.action="default", and it has the missing completely at random assumption (MCAR)

for missing data. The second option is specified in the function sanon by res.na.action="LOCF1";

and it uses the LOCF convention for the kernels of U-statistics in (2), as described in Sec-

tion 2.3. The function sanon recognizes the order in the left side of ˜ as a measurement

order, and an available baseline can be the first value in the order. The third option is

specified in the function sanon by res.na.action="LOCF2"; and it applies the LOCF con-

vention for Y as described in Section 2.3. The fourth is specified in the function sanon by

res.na.action="replace". The fifth option for managing missing data is the complete cases

analysis, in which patients with missing values are removed, and it is specified in the function

sanon by res.na.action="remove".

The support functions for sanon are also available. First of all is the print function for the

display for the output of the function sanon.

print(object)

The object is an object of class sanon, usually, a result of a call to sanon, which is usually

obtained by the sentence object = sanon(...). The print function is equivalent to typing

object in the R console. The output consists of the input, the sample size, the strata, the

response levels, the design matrix, and the stratificated adjusted Mann-Whitney estimates.

The reference group and adjusting factor names are also represented to help the interpretation.

A generic function coef is available. It extracts the resulting adjusted estimates b defined

in (10) from the object which is the output of sanon.

coef(object)

This is a part of the output of the function print, but one can obtain it as the vector object

to be available for additional algebra calculation in R.

The corresponding estimated covariance matrix V b can be extracted by using

vcov(object)

Because V b is not represented as the output of the function print, this vcov function can be

helpful to check it. This can be obtained as the matrix object to be available for additional

algebra calculation in R.

The results of inference after weighted least squares estimation can be obtained through

the function summary.
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summary(object)

The output is a p × 4 matrix with columns for the estimated coefficient, its standard error,

chi-squared statistic and corresponding (two-sided) p-value. The estimate in this function is

ξ̂ − 0.5 and the corresponding p-value is for the hypothesis H0: ξ = 0.5.

The confint function for computing the confidence interval for b is also available.

confint(object, parm = NULL, level = 0.95)

A specification of which parameters are to be given confidence intervals, either a vector of

numbers or a vector of names is needed. If missing, all parameters are considered. The

confidence level can be specified.

The linear statistics c>b for assessments of homogeneity or average across the response vari-

ables and the corresponding confidence intervals for the average are computed by the function

contrast where c is the contrast matrix and b is a weighted least squares estimator in (10) It

is used for this purpose after subtraction of 0.5 from cb.

contrast(object, C = diag(length(object$b)), confint = FALSE,

level = 0.95)

This function provides the inference based on contrast after applying the function sanon. The

contrast matrix C should be defined by the user. If C has only one row, and the input is specified

as confint = TRUE (default FALSE), the confidence interval for the estimator is produced.

More details for the usage of this function sanon will be explained through examples in

Section 5. As another usage, one can specify R objects to outcome, group, and strata variables

and covariables; see help(sanon) for details.

4 Illustrative data sets

There are five data sets in the sanon package. The first two example data sets were used in

Kawaguchi et al. (2011), and the other three example data sets were used in other papers. As

mentioned in the previous section, the following program codes are available after installing

the package by using the code install.packages("sanon").

4.1 Chronic pain data

The first example data is cpain in the sanon package, which can be considered as follows.
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R> library("sanon")

R> data("cpain")

R> summary(cpain)

treat response center diagnosis

active :97 poor :49 I :114 A:55

placebo:96 fair :34 II: 79 B:58

moderate :25 C:29

good :58 D:51

excellent:27

R> head(cpain)

treat response center diagnosis

1 active poor II D

2 active poor II D

3 active poor II D

4 active fair II D

5 active fair II D

6 active moderate II D

These data are from a multi-center randomized clinical trial to compare test and control

treatments for the management of chronic pain, and they have had previous consideration

in Stokes et al. (2012, chap. 14). This clinical trial has 8 strata (in correspondence to 2

centers × 4 diagnoses) for which the range of sample sizes is 10 to 34 and a univariate ordinal

response variable with 5 categories (as excellent, good, moderate, fair, poor) for pain status

after treatment for 4 weeks.

4.2 Respiratory disorder data

The second example data is resp in the sanon package, which can be considered as follows.

R> data("resp")

R> summary(resp)

center treatment sex age baseline

1:56 A:54 F:23 Min. :11.00 Min. :0.000
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2:55 P:57 M:88 1st Qu.:23.00 1st Qu.:2.000

Median :31.00 Median :2.000

Mean :33.28 Mean :2.378

3rd Qu.:43.00 3rd Qu.:3.000

Max. :68.00 Max. :4.000

visit1 visit2 visit3 visit4

Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.00

1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.00

Median :3.000 Median :3.000 Median :3.000 Median :3.00

Mean :2.721 Mean :2.622 Mean :2.631 Mean :2.55

3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.00

Max. :4.000 Max. :4.000 Max. :4.000 Max. :4.00

R> head(resp)

center treatment sex age baseline visit1 visit2 visit3 visit4

1 1 A F 32 1 2 2 4 2

2 2 A F 37 1 3 4 4 4

3 1 A F 47 2 2 3 4 4

4 2 A F 39 2 3 4 4 4

5 1 A M 11 4 4 4 4 2

6 2 A F 60 4 4 3 3 4

This example is from a randomized clinical trial to compare a test treatment to placebo

for a respiratory disorder, and listings of the data appear in Stokes et al. (2012, chap. 15, pp.

515–516) and Koch et al. (1990). This clinical trial has 111 patients from two centers, and it

has four post-baseline visits with corresponding ordinal response variables for patient global

ratings of symptom control according to 5 categories (as 4 = excellent, 3 = good, 2 = fair, 1

= poor, 0 = terrible).

4.3 Relief of heartburn data

The third example data is heartburn in the sanon package, which can be considered as follows.

R> data("heartburn")

R> summary(heartburn)
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OBS center sequence ID age

Min. : 1.00 1:30 AP:30 Min. : 1.00 Min. :22.00

1st Qu.:15.75 2:30 PA:30 1st Qu.: 8.00 1st Qu.:29.00

Median :30.50 Median :15.50 Median :32.00

Mean :30.50 Mean :15.40 Mean :35.88

3rd Qu.:45.25 3rd Qu.:22.25 3rd Qu.:39.00

Max. :60.00 Max. :30.00 Max. :65.00

NA's :1

sex freq MD1 MD2 res1

female:46 Min. : 2.000 Min. : 2.00 Min. : 4.00 NR:32

male :14 1st Qu.: 2.500 1st Qu.: 9.00 1st Qu.:13.00 R :28

Median : 3.000 Median :25.00 Median :35.00

Mean : 4.808 Mean :30.28 Mean :34.77

3rd Qu.: 4.000 3rd Qu.:60.00 3rd Qu.:60.00

Max. :45.000 Max. :60.00 Max. :60.00

res2

NR:36

R :24

R> head(heartburn)

OBS center sequence ID age sex freq MD1 MD2 res1 res2

1 1 1 AP 2 55 female 6.5 7 35 R NR

2 2 1 AP 3 35 female 3.0 5 60 R NR

3 3 1 AP 6 36 female 4.0 10 28 R NR

4 4 1 AP 7 44 female 3.5 14 36 R NR

5 5 1 AP 9 38 female 7.0 60 35 NR NR

6 6 1 AP 11 46 female 3.5 5 15 R R

The data are from a two period cross-over design clinical trial for relief of heartburn, and

listings of the data appear in Koch et al. (1983). This clinical trial has 30 patients at each of

two centers, 15 randomly assigned to the A:P sequence group (active treatment for the first

period and placebo for the second period) and 15 to the P:A sequence group (placebo for

the first period and active for the second period). The ordinal response (MD1 and MD2) is a
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composite measure for time to relief. This composite measure has values between 1 and 20

if relief occurred within 20 minutes from first dose of treatment; between 21 and 40 if relief

occurred within 20 minutes of the second dose (and there was no relief from the first dose

within 15 minutes and use of the second dose shortly thereafter); and the value 60 if there was

no relief from either the first or second dose within the respective 20 minute limits. Koch et al.

(1983) used the binary response which is whether or not the patient experienced relief within

15 minutes of the first dose of treatment (res1 and res2).

4.4 Seborrheic dermatitis data

The fourth example data is sebor in the sanon package, which can be considered as follows.

R> data("sebor")

R> summary(sebor)

center treat score1 score2

4 :34 placebo:84 Min. :0.000 Min. :0.000

3 :30 test :83 1st Qu.:1.000 1st Qu.:0.000

2 :27 Median :1.000 Median :2.000

5 :27 Mean :1.795 Mean :1.964

1 :19 3rd Qu.:3.000 3rd Qu.:3.000

8 :16 Max. :5.000 Max. :5.000

(Other):14 NA's :1 NA's :84

score3 severity1 severity2 severity3

Min. :0.0 Min. :1.000 Min. :1.000 Min. :1.000

1st Qu.:0.0 1st Qu.:2.000 1st Qu.:1.500 1st Qu.:1.250

Median :1.5 Median :2.000 Median :2.000 Median :2.000

Mean :2.0 Mean :2.054 Mean :1.816 Mean :1.778

3rd Qu.:3.0 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000

Max. :5.0 Max. :3.000 Max. :3.000 Max. :3.000

NA's :149 NA's :1 NA's :80 NA's :149

R> head(sebor)

center treat score1 score2 score3 severity1 severity2 severity3

1 1 test 1 NA NA 2 NA NA
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2 1 placebo 1 1 NA 2 2 NA

3 1 test 0 1 NA 3 2 NA

4 1 placebo 0 1 NA 2 1 NA

5 1 placebo 1 2 NA 2 2 NA

6 1 test 1 1 NA 3 2 NA

The data are from a randomized clinical trial to compare a test treatment to placebo

for seborrheic dermatitis, and listings of the data appear in Ramaswamy et al. (1997). This

clinical trial has 167 patients from eight centers, and it has three anatomical sites (face, scalp,

and chest) corresponding to ordinal response variables for patient global scores according to 6

categories (as 0 = cleared, 1 = excellent improvement, 2 = moderate improvement, 3 = slight

improvement, 4 = no change, 5 = exacerbation).

4.5 Skin conditions data

The fifth example data is skin in the sanon package, which can be considered as follows.

R> data("skin")

R> summary(skin)

center treat stage res1 res2

1:37 placebo:84 Min. :3.000 Min. :1.00 Min. :1.000

2:33 test :88 1st Qu.:3.000 1st Qu.:2.00 1st Qu.:1.000

3:30 Median :4.000 Median :3.00 Median :2.000

4: 4 Mean :3.622 Mean :2.74 Mean :2.442

5:35 3rd Qu.:4.000 3rd Qu.:4.00 3rd Qu.:3.000

6:33 Max. :5.000 Max. :5.00 Max. :5.000

NA's :3 NA's :16

res3

Min. :1.00

1st Qu.:1.00

Median :2.00

Mean :2.31

3rd Qu.:3.00

Max. :5.00

NA's :30

17



R> head(skin)

center treat stage res1 res2 res3

1 1 test 3 3 NA 3

2 1 test 3 3 2 2

3 1 test 4 3 2 2

4 1 test 3 2 2 1

5 1 test 3 3 2 2

6 1 test 4 2 1 3

The data are from a randomized clinical trial to compare a test treatment to placebo for

skin conditions, and listings of the data appear in Stanish et al. (1978) and Stanish et al.

(1978). This clinical trial has 172 patients from six centers, and it has three post-baseline visits

with corresponding ordinal response variables for patient extent of improvement according to 5

categories (as 1 = rapidly improving, 2 = slowly improving, 3 = stable, 4 = slowly worsening,

5 = rapidly worsening).

5 Examples

5.1 Chronic pain data

The first example is a randomized clinical trial with eight strata and a univariate ordinal

response variable for its primary analysis. The function sanon is applied to this data set as

follows.

R> out11 = sanon(response ~ grp(treat, ref="placebo") + strt(center)

+ + strt(diagnosis), data=cpain)

R> out11

Call:

sanon.formula(formula = response ~ grp(treat, ref = "placebo") +

strt(center) + strt(diagnosis), data = cpain)

Sample size: 193

Strata ( center*diagnosis ): I*A, I*B, I*C, I*D, II*A, II*B, II*C, II*D
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Response levels:

[response; 5 levels] (lower) poor, fair, moderate, good, excellent (higher)

Design Matrix:

[,1]

response 1

Stratification Adjusted Mann-Whitney Estimate

for comparison [ active / placebo ] :

response

0.5804

The argument data=cpain is for specification of data set. Each variable in the data set is

given a role by the formula which has a similar nature as the standard R function such as lm

for linear models. The outcome response is put in the left side of ˜. In the right side, the

group variable treat and the strata variables center and diagnosis are specified by using

the functions grp and strt, respectively, which are connected with ”+”. The reference group

of treat can be specified in the function grp by ref="placebo". Two strata variables are

taken as the cross-classification of two centers (as I, II) and four diagnoses (as A, B, C, D)

corresponding to 8 strata. The result is stored in the object out11 and shown through the

print function for the sanon function, which indicates the resulting stratified Mann-Whitney

estimate of ξ̂ = 0.5804.

The summary function is also available. This function produces the inference of the stratified

Mann-Whitney estimator based on the null hypothesis of H0 : ξ = 0.5.

R> summary(out11)

Call:

sanon.formula(formula = response ~ grp(treat, ref = "placebo") +

strt(center) + strt(diagnosis), data = cpain)

Estimate Std.Err Chisq Pr(>Chisq)

response 0.0804 0.0417 3.72 0.054 .
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the estimates of responses are for the (MW estimate - 0.5).

The Estimate column of the output is ξ̂ − 0.5 = 0.0804 and its robust standard error from

the methods in Section 2 is s.e.(ξ̂) = 0.0417. The test statistic Q = {(ξ̂ − 0.5)/s.e.(ξ̂)}2 with

p-value from an approximate chi-squared distribution with d.f.=1 is also produced.

The confint function for computing the confidence interval is also available.

R> confint(out11)

M-W Estimate and 95% Confidence Intervals

:

Estimate Lower Upper

response 0.5804 0.4988 0.6621

The resulting two-sided 0.95 confidence interval for ξ̂ is (0.4988, 0.6621).

For illustrative purposes, diagnosis is alternatively managed as a categorical covariable

with center remaining as a factor for stratification. This structure is of exploratory interest

since it has substantially larger sample sizes within its strata.

R> out12 = sanon(response ~ grp(treat, ref="placebo") + strt(center)

+ + catecovar(diagnosis, ref="D"), data=cpain)

R> out12

Call:

sanon.formula(formula = response ~ grp(treat, ref = "placebo") +

strt(center) + catecovar(diagnosis, ref = "D"), data = cpain)

Sample size: 193

Strata ( center ): I, II

Response levels:

[response; 5 levels] (lower) poor, fair, moderate, good, excellent (higher)
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Design Matrix:

[,1]

response 1

diagnosis[C/D] 0

diagnosis[B/D] 0

diagnosis[A/D] 0

Stratification Adjusted Mann-Whitney Estimate

for comparison [ active / placebo ] :

(adjusted by diagnosis[C/D], diagnosis[B/D], diagnosis[A/D] )

response

0.5729

The categorical covariable is specified by the catecovar function of the sanon package.

Since diagnosis has four categories, the function catecovar produces three dummy variables

with the reference of D; that is, the first dummy variable is 1 for diagnosis = C and 0 for others,

the second dummy variable is 1 for diagnosis = B and 0 for others, and the third dummy

variable is 1 for diagnosis = A and 0 for others. Note that, in default setting, P = [Ir,0rM ]>

as in (10).

R> summary(out12)

Call:

sanon.formula(formula = response ~ grp(treat, ref = "placebo") +

strt(center) + catecovar(diagnosis, ref = "D"), data = cpain)

Randomization-Based Covariance Adjusted Analysis

(adjusted by diagnosis[C/D], diagnosis[B/D], diagnosis[A/D] ):

Estimate Std.Err Chisq Pr(>Chisq)

response 0.0729 0.0387 3.55 0.059 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the estimates of responses are for the (MW estimate - 0.5).

R> confint(out12)
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M-W Estimate and 95% Confidence Intervals

(adjusted by diagnosis[C/D], diagnosis[B/D], diagnosis[A/D] ):

Estimate Lower Upper

response 0.5729 0.4971 0.6488

The result is very similar to the previous analysis with the adjusted Mann-Whitney estima-

tor being 0.5729 (95%CI: 0.4971 – 0.6488; p = 0.059). As noted in Section 2.2, the management

of a baseline factor as strata or as a covariable should be pre-specified.

5.2 Respiratory disorder data

The second example is a randomized clinical trial with four strata, two covariables, and four

ordinal response variables. This example has gender (female or male) as an additional factor

for stratification, and so there are 4 strata for center*gender; and it has age and the baseline

rating of symptom control (with the same ordinal categories as the response variables) as two

covariables. The application of function sanon to this data set is as follows.

R> out21 = sanon(cbind(baseline, visit1, visit2, visit3, visit4)

+ ~ grp(treatment, ref="P") + strt(center) + strt(sex) + covar(age)

+ , data=resp, P=diag(6))

R> out21

Call:

sanon.formula(formula = cbind(baseline, visit1, visit2, visit3,

visit4) ~ grp(treatment, ref = "P") + strt(center) + strt(sex) +

covar(age), data = resp, P = diag(6))

Sample size: 111

Strata ( center*sex ): 1*F, 1*M, 2*F, 2*M

Response levels:

[baseline; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)

[visit1; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)

[visit2; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)

[visit3; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)
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[visit4; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)

Design Matrix:

[,1] [,2] [,3] [,4] [,5] [,6]

baseline 1 0 0 0 0 0

visit1 0 1 0 0 0 0

visit2 0 0 1 0 0 0

visit3 0 0 0 1 0 0

visit4 0 0 0 0 1 0

age 0 0 0 0 0 1

Stratification Adjusted Mann-Whitney Estimate

for comparison [ A / P ] :

baseline visit1 visit2 visit3 visit4 age

0.4799 0.6005 0.7139 0.6535 0.6155 1.0501

Multivariate responses in the left side of ˜ are specified by the R function cbind. The

covariable is specified by the covar function of the sanon package. The matrix P in (10) is an

identity matrix I6 specifed by P=diag(6). Others are the same as the previous example.

The resulting vector of stratification adjusted estimators for the comparisons between the

test treatment and placebo is in (13) containing ξ̂0, ξ̂1, ξ̂2, ξ̂3, ξ̂4 for the Mann-Whitney estima-

tors that correspond to the baseline visit and visits 1, 2, 3, 4 and g for the difference between

mean ages.

f = [ξ̂0, ξ̂1, ξ̂2, ξ̂3, ξ̂4, g]> = [0.4799, 0.6005, 0.7139, 0.6535, 0.6155, 1.0501]>, (13)

The corresponding estimated covariance matrix from the methods in Section 2 can be

obtained as follows.

R> round(out21$Vf, 5)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.00319 0.00152 0.00088 0.00088 0.00088 0.01717

[2,] 0.00152 0.00285 0.00141 0.00141 0.00132 -0.00044

[3,] 0.00088 0.00141 0.00234 0.00166 0.00164 -0.01633
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[4,] 0.00088 0.00141 0.00166 0.00283 0.00208 -0.01578

[5,] 0.00088 0.00132 0.00164 0.00208 0.00278 -0.00044

[6,] 0.01717 -0.00044 -0.01633 -0.01578 -0.00044 6.82200

Both (ξ̂0 − 0.5) and g have null expected values on the basis of randomization of patients

to the two treatment groups. The function contrast is used for this purpose after subtraction

of 0.5 from ξ̂0, ξ̂1, ξ̂2, ξ̂3 and ξ̂4.

R> contrast(out21, C=rbind(c(1,0,0,0,0,0), c(0,0,0,0,0,1)))

Contrast Matrix:

baseline visit1 visit2 visit3 visit4 age

[1,] 1 0 0 0 0 0

[2,] 0 0 0 0 0 1

Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 0.325 2 0.85

QC = b>C>(C>V bC)−1Cb = 0.33 with d.f. = 2 and p = 0.85 for the corresponding

assessment of random imbalance was obtained.

Correspondingly adjusted estimation for (ξ̂1−0.5), (ξ̂2−0.5), (ξ̂3−0.5), (ξ̂4−0.5) is possible

by fitting the model P = [04, I4,04]
> to f (after subtraction of 0.5 from each of the ξ̂k) by

weighted least squares; here 04 is the 4×1 vector of 0’s and I4 is the 4×4 identity matrix. The

resulting adjusted estimators b> from the methods in Section 2.2 can be computed as follows.

R> P = rbind(rep(0, 4), diag(4), rep(0, 4))

R> out22 = sanon(cbind(baseline, visit1, visit2, visit3, visit4)

+ ~ grp(treatment, ref="P") + strt(center) + strt(sex) + covar(age)

+ , data=resp, P=P)

R> out22

Call:

sanon.formula(formula = cbind(baseline, visit1, visit2, visit3,

visit4) ~ grp(treatment, ref = "P") + strt(center) + strt(sex) +

covar(age), data = resp, P = P)
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Sample size: 111

Strata ( center*sex ): 1*F, 1*M, 2*F, 2*M

Response levels:

[baseline; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)

[visit1; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)

[visit2; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)

[visit3; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)

[visit4; 5 levels] (lower) 0, 1, 2, 3, 4 (higher)

Design Matrix:

[,1] [,2] [,3] [,4]

baseline 0 0 0 0

visit1 1 0 0 0

visit2 0 1 0 0

visit3 0 0 1 0

visit4 0 0 0 1

age 0 0 0 0

Stratification Adjusted Mann-Whitney Estimate

for comparison [ A / P ] :

(adjusted by baseline, age )

visit1 visit2 visit3 visit4

0.6116 0.7230 0.6625 0.6219

The corresponding estimated covariance matrix V b can be extracted by using the vcov

function.

R> vcov(out22)

visit1 visit2 visit3 visit4

visit1 0.0021137493 0.0009651028 0.0009633427 0.0008931803

visit2 0.0009651028 0.0020297172 0.0013550994 0.0013796796
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visit3 0.0009633427 0.0013550994 0.0025311719 0.0018257579

visit4 0.0008931803 0.0013796796 0.0018257579 0.0025351549

The statistics {bk/s.e.(bk)}2 have approximately chi-squared distributions with d.f. = 1

under the null hypotheses H0k: ξk = 0.5.

R> summary(out22)

Call:

sanon.formula(formula = cbind(baseline, visit1, visit2, visit3,

visit4) ~ grp(treatment, ref = "P") + strt(center) + strt(sex) +

covar(age), data = resp, P = P)

Randomization-Based Covariance Adjusted Analysis

(adjusted by baseline, age ):

Estimate Std.Err Chisq Pr(>Chisq)

visit1 0.1116 0.0460 5.89 0.0152 *

visit2 0.2230 0.0451 24.51 7.4e-07 ***

visit3 0.1625 0.0503 10.43 0.0012 **

visit4 0.1219 0.0504 5.86 0.0155 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the estimates of responses are for the (MW estimate - 0.5).

The respective p-values are 0.0152, < 0.0001, 0.0012, 0.0155 for visits 1, 2, 3, 4. Homogeneity

of the ξk across the four visits can be assessed with QC1 = b>C1
>(C1V bC1

>)−1C1b where

C1 = [I3,−13] and 13 is the (3×1) vector of 1’s.

R> contrast(out22, C=cbind(diag(3), rep(-1, 3)))

Contrast Matrix:

visit1 visit2 visit3 visit4

[1,] 1 0 0 -1

[2,] 0 1 0 -1

[3,] 0 0 1 -1
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Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 8.93 3 0.03 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Since QC1 = 8.93 has p = 0.03 with respect to its approximate chi-squared distribution

with d.f. = 3, there is some suggestion of departures of the ξk from homogeneity; and from

inspection of their estimates, it appears that the difference between test treatment and placebo

tends to be larger at Visit 2 and Visit 3 than at Visit 1 and Visit 4.

A comparison between treatments for the average of the ξ̂k across the 4 visits is possible

with QC2 = b>C2
>(C2V bC2

>)−1C2b with C2 = 1>4 /4;

R> contrast(out22, C=matrix(rep(1, 4)/4, ncol=4), confint = TRUE)

Contrast Matrix:

visit1 visit2 visit3 visit4

[1,] 0.25 0.25 0.25 0.25

Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 16 1 6.4e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Contrast M-W Estimate (95% Confidence Interval)

0.6548 ( 0.5789 - 0.7306 )

Thus, the result for testing the null hypothesis H0 : C2ξ = 0.5 is QC2 = 16 for which

two-sided p<0.0001 with respect to the approximate chi-squared distribution with d.f. = 1.

Note that the contrast computes the Mann-Whitney estimate and its confidence interval (CI)

adjusted for strata and covariables with the specification confint = TRUE in the case where C

has one row (i.e., d.f.=1). The estimate averaged over visits was C2b + 0.5 = 0.6548 (95%CI

0.5789 – 0.7306 ).
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5.3 Relief of heartburn data

The third example is a cross over design randomized clinical trial with two strata, one continuous

covariable, and two ordinal response variables. The two strata are for centers, and age is a

continuous covariable. For illustrative convenience, a missing value in age is imputed with the

mean for the corresponding stratum.

R> heartburn2 = heartburn

R> heartburn2$age[is.na(heartburn$age)] = mean(heartburn$age, na.rm=TRUE)

The application of function sanon to this data set is as follows.

R> out31 = sanon(cbind(MD1, MD2) ~ grp(sequence, ref="AP") + strt(center)

+ + covar(age), data=heartburn2)

R> out31

Call:

sanon.formula(formula = cbind(MD1, MD2) ~ grp(sequence, ref = "AP") +

strt(center) + covar(age), data = heartburn2)

Sample size: 60

Strata ( center ): 1, 2

Response levels:

[MD1; 20 levels] (lower) 2, 3, 4, ..., 30, 32, 60 (higher)

[MD2; 15 levels] (lower) 4, 7, 8, ..., 35, 36, 60 (higher)

Design Matrix:

[,1] [,2]

MD1 1 0

MD2 0 1

age 0 0

Stratification Adjusted Mann-Whitney Estimate

for comparison [ PA / AP ] :
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(adjusted by age )

MD1 MD2

0.5597 0.2199

The statistics {bk/s.e.(bk)}2, where the bk are the adjusted estimators for the (ξk − 0.5)

have approximately chi-squared distributions with d.f. = 1 under the null hypotheses H0k: ξk

= 0.5. Although both b1 for the comparison between P and A for the first period and b2 for

the comparison between P and A for the second period indicate more favorable responses for

active treatment A than for placebo P, only the second period has p < 0.05 for the comparison

between A and P.

R> summary(out31)

Call:

sanon.formula(formula = cbind(MD1, MD2) ~ grp(sequence, ref = "AP") +

strt(center) + covar(age), data = heartburn2)

Randomization-Based Covariance Adjusted Analysis

(adjusted by age ):

Estimate Std.Err Chisq Pr(>Chisq)

MD1 0.0597 0.0752 0.63 0.43

MD2 -0.2801 0.0608 21.24 4.1e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the estimates of responses are for the (MW estimate - 0.5).

Since it is recognized that the comparison between the AP and PA groups for period 1

pertains to A versus P whereas that for period 2 pertains to P versus A, treatment×period

interaction is assessed for (b1 + b2) with QC1 = b>C1
>(C1V bC1

>)−1C1b where C1 = [1 1].

R> contrast(out31, C=cbind(1, 1))

Contrast Matrix:

MD1 MD2

[1,] 1 1
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Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 7.17 1 0.0074 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Since QC1 = 7.17 has p = 0.0074 with respect to its approximate chi-squared distribution

with d.f. = 1, there is some suggestion that the difference between test treatment and placebo

is not homogeneous for the two periods by tending to be larger at period 2 than at period

1. Since the two periods of this crossover study were separated by a sufficiently long washout

period, the treatment × period interaction corresponding to this departure from homogeneity

is unlikely to be due to unequal pharmacologic carryover effects of A and P during the first

period.

The Mann-Whitney estimates and their confidence intervals adjusted for strata and covari-

ables for each period are computed as follows.

R> confint(out31)

M-W Estimate and 95% Confidence Intervals

(adjusted by age ):

Estimate Lower Upper

MD1 0.5597 0.4122 0.7072

MD2 0.2199 0.1007 0.3390

5.4 Seborrheic dermatitis data

The fourth example is a randomized clinical trial with seven strata (after the pooling of centers

6 and 7 in the original data as in Ramaswamy et al. (1997)), three ordinal covariables with

missing values, and three ordinal response variables with missing values. For this example, the

MCAR assumption is realistic because missing sites didn’t receive treatment.

R> sebor2 = sebor

R> sebor2$center = ifelse(sebor2$center == 6, 7, sebor2$center)

This example has 7 centers and disease severities recorded at the baseline measurement.

In the previous three examples, centers were managed as strata to account for the stratified

randomization within centers. However, for this example they are managed as a categorical
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covariable, mainly because the sample size of 18 patients for score 3 is insufficient to support

stratified estimation (relative to the 167 patients in this clinical trial). Additionally, initial

disease severities can be considered as covariables; and they are ordinal with some missing

values. Thus, they are treated in the left side of ˜ in the function sanon as responses.

R> out41 =

+ sanon(cbind(score1, score2, score3, severity1, severity2, severity3)

+ ~ grp(treat, ref="placebo") + catecovar(center, ref="8"), data=sebor2)

R> out41

Call:

sanon.formula(formula = cbind(score1, score2, score3, severity1,

severity2, severity3) ~ grp(treat, ref = "placebo") + catecovar(center,

ref = "8"), data = sebor2)

Sample size: 167

Response levels:

[score1; 6 levels] (lower) 0, 1, 2, 3, 4, 5 (higher)

[score2; 6 levels] (lower) 0, 1, 2, 3, 4, 5 (higher)

[score3; 6 levels] (lower) 0, 1, 2, 3, 4, 5 (higher)

[severity1; 3 levels] (lower) 1, 2, 3 (higher)

[severity2; 3 levels] (lower) 1, 2, 3 (higher)

[severity3; 3 levels] (lower) 1, 2, 3 (higher)

Design Matrix:

[,1] [,2] [,3] [,4] [,5] [,6]

score1 1 0 0 0 0 0

score2 0 1 0 0 0 0

score3 0 0 1 0 0 0

severity1 0 0 0 1 0 0

severity2 0 0 0 0 1 0

severity3 0 0 0 0 0 1

center[1/8] 0 0 0 0 0 0

center[2/8] 0 0 0 0 0 0
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center[3/8] 0 0 0 0 0 0

center[4/8] 0 0 0 0 0 0

center[5/8] 0 0 0 0 0 0

center[7/8] 0 0 0 0 0 0

Mann-Whitney Estimate

for comparison [ test / placebo ] :

(adjusted by center[1/8], center[2/8], center[3/8], center[4/8],

center[5/8], center[7/8] )

score1 score2 score3 severity1 severity2 severity3

0.4395 0.3934 0.6477 0.5421 0.4752 0.4614

R> summary(out41)

Call:

sanon.formula(formula = cbind(score1, score2, score3, severity1,

severity2, severity3) ~ grp(treat, ref = "placebo") + catecovar(center,

ref = "8"), data = sebor2)

Randomization-Based Covariance Adjusted Analysis

(adjusted by center[1/8], center[2/8], center[3/8], center[4/8],

center[5/8], center[7/8] ):

Estimate Std.Err Chisq Pr(>Chisq)

score1 -0.0605 0.0403 2.25 0.13

score2 -0.1066 0.0587 3.29 0.07 .

score3 0.1477 0.1306 1.28 0.26

severity1 0.0421 0.0278 2.29 0.13

severity2 -0.0248 0.0499 0.25 0.62

severity3 -0.0386 0.1095 0.12 0.72

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the estimates of responses are for the (MW estimate - 0.5).

Values of MW estimates less than 0.5 represent lower (better) scores for test. For each

variable, there is no significant treatment effect.
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To manage initial disease severities as covariables, the model P = [I3,03,9]
> is fitted to

f (after subtraction of 0.5 from each of the ξ̂k) by weighted least squares; here 03,9 is a 3×9

matrix with all entries being 0.

R> P = rbind(diag(3), matrix(0, 9, 3))

R> out42 =

+ sanon(cbind(score1, score2, score3, severity1, severity2, severity3)

+ ~ grp(treat, ref="placebo") + catecovar(center, ref="8"), data=sebor2

+ , P=P)

R> out42$matP

[,1] [,2] [,3]

score1 1 0 0

score2 0 1 0

score3 0 0 1

severity1 0 0 0

severity2 0 0 0

severity3 0 0 0

center[1/8] 0 0 0

center[2/8] 0 0 0

center[3/8] 0 0 0

center[4/8] 0 0 0

center[5/8] 0 0 0

center[7/8] 0 0 0

R> summary(out42)

Call:

sanon.formula(formula = cbind(score1, score2, score3, severity1,

severity2, severity3) ~ grp(treat, ref = "placebo") + catecovar(center,

ref = "8"), data = sebor2, P = P)

Randomization-Based Covariance Adjusted Analysis

(adjusted by severity1, severity2, severity3, center[1/8], center[2/8],

center[3/8], center[4/8], center[5/8], center[7/8] ):

Estimate Std.Err Chisq Pr(>Chisq)
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score1 -0.0696 0.0396 3.09 0.079 .

score2 -0.1137 0.0580 3.84 0.050 .

score3 0.1462 0.1262 1.34 0.246

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the estimates of responses are for the (MW estimate - 0.5).

Homogeneity of the adjusted ξk across the three sites can be assessed with QC1 = b>C1
>

(C1V bC1
>)−1 C1b where C1 = [I2,−12] and 12 is the (2×1) vector of 1’s.

R> contrast(out42, C=cbind(diag(2), rep(-1, 2)))

Contrast Matrix:

score1 score2 score3

[1,] 1 0 -1

[2,] 0 1 -1

Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 4.43 2 0.11

Since QC1 = 4.43 has p = 0.11 with respect to its approximate chi-squared distribution

with d.f. = 2, there is no suggestion of departures of the ξ̂k from homogeneity.

A comparison between treatments for the average of the ξ̂k across the 3 sites is possible

with the model P = [1 1 1 0 0 0 0 0 0 0 0 0]>, and it is fitted to f (after subtraction of 0.5

from each of the ξ̂k) by weighted least squares;

R> P = matrix(c(rep(1, 3), rep(0, 9)), ncol=1)

R> out43 =

+ sanon(cbind(score1, score2, score3, severity1, severity2, severity3)

+ ~ grp(treat, ref="placebo") + catecovar(center, ref="8"), data=sebor2

+ , P=P)

R> summary(out43)

Call:

sanon.formula(formula = cbind(score1, score2, score3, severity1,
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severity2, severity3) ~ grp(treat, ref = "placebo") + catecovar(center,

ref = "8"), data = sebor2, P = P)

Randomization-Based Covariance Adjusted Analysis

(adjusted by severity1, severity2, severity3, center[1/8], center[2/8],

center[3/8], center[4/8], center[5/8], center[7/8] ):

Estimate Std.Err Chisq Pr(>Chisq)

score1 + score2 + score3 -0.0662 0.0386 2.94 0.086 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the estimates of responses are for the (MW estimate - 0.5).

R> confint(out43)

M-W Estimate and 95% Confidence Intervals

(adjusted by severity1, severity2, severity3, center[1/8], center[2/8],

center[3/8], center[4/8], center[5/8], center[7/8] ):

Estimate Lower Upper

score1 + score2 + score3 0.4338 0.3581 0.5095

Its result for the overall comparison between treatments has two-sided p = 0.086. The

estimate averaged over visits was b+ 0.5 = 0.4338 (95%CI 0.3581 – 0.5095). This comparison

averages sites with more weight for those with larger sample size (and thereby less variance).

5.5 Skin conditions data

The fifth example is a randomized clinical trial with six strata, a categorical covariable with

three levels, and three ordinal response variables with missing values. First of all, the centers 3

and 4 in the original data set are pooled, because there are only four observations in the center

4, and rankings are less informative when overall sample size (nh1 + nh2) = nh within strata

are < 10; see Kawaguchi et al. (2011).

R> skin2 = skin

R> skin2$center = ifelse(skin2$center == 4, 3, skin2$center)

This example has 5 strata for center and it has initial severity of the skin conditions as a

categorical covariable. At three follow-up visits, patients were evaluated according to a five-
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point ordinal response scale defining extent of improvement. There are some missing values in

response variables. The application of function sanon to this data set is as follows.

R> out51 = sanon(cbind(res1, res2, res3) ~ grp(treat, ref="placebo")

+ + strt(center) + catecovar(stage, ref="3"), data=skin2)

R> out51

Call:

sanon.formula(formula = cbind(res1, res2, res3) ~ grp(treat,

ref = "placebo") + strt(center) + catecovar(stage, ref = "3"),

data = skin2)

Sample size: 172

Strata ( center ): 1, 2, 3, 5, 6

Response levels:

[res1; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

[res2; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

[res3; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

Design Matrix:

[,1] [,2] [,3]

res1 1 0 0

res2 0 1 0

res3 0 0 1

stage[4/3] 0 0 0

stage[5/3] 0 0 0

Stratification Adjusted Mann-Whitney Estimate

for comparison [ test / placebo ] :

(adjusted by stage[4/3], stage[5/3] )

res1 res2 res3

0.1931 0.1537 0.1359
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Note that since response variables are ordered so that lower values represent more improve-

ment, values of MW estimates less than 0.5 represent better improvement for test treatment.

R> summary(out51)

Call:

sanon.formula(formula = cbind(res1, res2, res3) ~ grp(treat,

ref = "placebo") + strt(center) + catecovar(stage, ref = "3"),

data = skin2)

Randomization-Based Covariance Adjusted Analysis

(adjusted by stage[4/3], stage[5/3] ):

Estimate Std.Err Chisq Pr(>Chisq)

res1 -0.3069 0.0331 86 <2e-16 ***

res2 -0.3463 0.0306 128 <2e-16 ***

res3 -0.3641 0.0319 130 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the estimates of responses are for the (MW estimate - 0.5).

Note that the estimates are for the (ξk− 0.5). Homogeneity of the ξk across the three visits

can have assessment with QC1 = b>C1
>(C1V bC1

>)−1C1b where C1 = [I2,−12] and 12 is

the (2×1) vector of 1’s.

R> contrast(out51, C=cbind(diag(2), rep(-1, 2)))

Contrast Matrix:

res1 res2 res3

[1,] 1 0 -1

[2,] 0 1 -1

Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 3.58 2 0.17

Since QC1 = 3.58 has p = 0.17 with respect to its approximate chi-squared distribution

with d.f. = 2, there is no suggestion of departures of the ξ̂k from homogeneity.
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A comparison between treatments for the average of the ξ̂k across the 3 visits is possible

with QC2 = b>C2
>(C2V bC2

>)−1C2b with C2 = 1>3 /3;

R> contrast(out51, C=matrix(rep(1, 3)/3, ncol=3), confint = TRUE)

Contrast Matrix:

res1 res2 res3

[1,] 0.3333333 0.3333333 0.3333333

Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 152 1 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Contrast M-W Estimate (95% Confidence Interval)

0.1609 ( 0.1069 - 0.2149 )

its result is QC2 = 152 for which two-sided p<0.0001 with respect to the approximate chi-

squared distribution with d.f. = 1. The estimate averaged over visits was 0.1609 (95%CI 0.1069

– 0.2149 ). In the case of opposite order of response variables, it was 0.8391 (95%CI 0.7851 –

0.8931 ).

The function sanon has four other options for dealing with missing values for the response

variable, although the default maintains missing values and uses the method described in

Section 2 which can be specified by no argument or res.na.action="default". The second is

the last observation carried forward (LOCF) based on the kernels of U-statistics in (2), which

is specified in the function sanon by res.na.action="LOCF1".

R> out52 = sanon(cbind(res1, res2, res3) ~ grp(treat, ref="placebo")

+ + strt(center) + catecovar(stage, ref="3"), data=skin2

+ , res.na.action="LOCF1")

R> out52

Call:

sanon.formula(formula = cbind(res1, res2, res3) ~ grp(treat,

ref = "placebo") + strt(center) + catecovar(stage, ref = "3"),
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data = skin2, res.na.action = "LOCF1")

Sample size: 172

Strata ( center ): 1, 2, 3, 5, 6

Response levels:

[res1; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

[res2; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

[res3; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

Design Matrix:

[,1] [,2] [,3]

res1 1 0 0

res2 0 1 0

res3 0 0 1

stage[4/3] 0 0 0

stage[5/3] 0 0 0

Stratification Adjusted Mann-Whitney Estimate

for comparison [ test / placebo ] :

(adjusted by stage[4/3], stage[5/3] )

res1 res2 res3

0.2034 0.1666 0.1459

A comparison between treatments for the average of the ξ̂k across the 3 visits is

R> contrast(out52, C=matrix(rep(1, 3)/3, ncol=3), confint = TRUE)

Contrast Matrix:

res1 res2 res3

[1,] 0.3333333 0.3333333 0.3333333

Contrast Inference:

Chisq df Pr(>Chisq)
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[1,] 130 1 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Contrast M-W Estimate (95% Confidence Interval)

0.1720 ( 0.1155 - 0.2284 )

In this example, the p-value from LOCF1 was similar to that from default (the method

described in Section 2).

The third option is the LOCF based on the observed value of Y , which is specified in the

function sanon by res.na.action="LOCF2".

R> out53 = sanon(cbind(res1, res2, res3) ~ grp(treat, ref="placebo")

+ + strt(center) + catecovar(stage, ref="3"), data=skin2

+ , res.na.action="LOCF2")

R> out53

Call:

sanon.formula(formula = cbind(res1, res2, res3) ~ grp(treat,

ref = "placebo") + strt(center) + catecovar(stage, ref = "3"),

data = skin2, res.na.action = "LOCF2")

Sample size: 172

Strata ( center ): 1, 2, 3, 5, 6

Response levels:

[res1; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

[res2; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

[res3; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

Design Matrix:

[,1] [,2] [,3]

res1 1 0 0

res2 0 1 0
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res3 0 0 1

stage[4/3] 0 0 0

stage[5/3] 0 0 0

Stratification Adjusted Mann-Whitney Estimate

for comparison [ test / placebo ] :

(adjusted by stage[4/3], stage[5/3] )

res1 res2 res3

0.2034 0.1707 0.1485

A comparison between treatments for the average of the ξ̂k across the 3 visits is

R> contrast(out53, C=matrix(rep(1, 3)/3, ncol=3), confint = TRUE)

Contrast Matrix:

res1 res2 res3

[1,] 0.3333333 0.3333333 0.3333333

Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 130 1 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Contrast M-W Estimate (95% Confidence Interval)

0.1742 ( 0.1181 - 0.2303 )

In this example, the p-value from LOCF2 was similar to those from both LOCF1 and default

(the method described in Section 2).

The fourth method manages missing values as tied with all other values in the same stratum,

which is specified in the function sanon by res.na.action="replace".

R> out54 = sanon(cbind(res1, res2, res3) ~ grp(treat, ref="placebo")

+ + strt(center) + catecovar(stage, ref="3"), data=skin2

+ , res.na.action="replace")

R> out54
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Call:

sanon.formula(formula = cbind(res1, res2, res3) ~ grp(treat,

ref = "placebo") + strt(center) + catecovar(stage, ref = "3"),

data = skin2, res.na.action = "replace")

Sample size: 172

Strata ( center ): 1, 2, 3, 5, 6

Response levels:

[res1; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

[res2; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

[res3; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

Design Matrix:

[,1] [,2] [,3]

res1 1 0 0

res2 0 1 0

res3 0 0 1

stage[4/3] 0 0 0

stage[5/3] 0 0 0

Stratification Adjusted Mann-Whitney Estimate

for comparison [ test / placebo ] :

(adjusted by stage[4/3], stage[5/3] )

res1 res2 res3

0.2034 0.2153 0.2533

A comparison between treatments for the average of the ξ̂k across the 3 visits is

R> contrast(out54, C=matrix(rep(1, 3)/3, ncol=3), confint = TRUE)

Contrast Matrix:

res1 res2 res3

[1,] 0.3333333 0.3333333 0.3333333
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Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 121 1 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Contrast M-W Estimate (95% Confidence Interval)

0.2240 ( 0.1749 - 0.2731 )

The result shows that the p-value after managing missing values as tied with all other values

in the same stratum was similar to those for LOCF1, LOCF2, and default (the method described

in Section 2).

The fifth option for managing missing data is the complete cases analysis, in which patients

with missing values are removed, and it is specified in the function sanon by res.na.action="remove".

R> out55 = sanon(cbind(res1, res2, res3) ~ grp(treat, ref="placebo")

+ + strt(center) + catecovar(stage, ref="3"), data=skin2

+ , res.na.action="remove")

R> out55

Call:

sanon.formula(formula = cbind(res1, res2, res3) ~ grp(treat,

ref = "placebo") + strt(center) + catecovar(stage, ref = "3"),

data = skin2, res.na.action = "remove")

Sample size: 135 ( 37 samples removed)

Strata ( center ): 1, 2, 3, 5, 6

Response levels:

[res1; 4 levels] (lower) 1, 2, 3, 4 (higher)

[res2; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)

[res3; 5 levels] (lower) 1, 2, 3, 4, 5 (higher)
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Design Matrix:

[,1] [,2] [,3]

res1 1 0 0

res2 0 1 0

res3 0 0 1

stage[4/3] 0 0 0

stage[5/3] 0 0 0

Stratification Adjusted Mann-Whitney Estimate

for comparison [ test / placebo ] :

(adjusted by stage[4/3], stage[5/3] )

res1 res2 res3

0.1808 0.1409 0.1216

This output reports that 37 patients have missing values in at least one of the three responses

and have their data removed from the analysis.

A comparison between treatments for the average of the ξ̂k across the 3 visits is

R> contrast(out55, C=matrix(rep(1, 3)/3, ncol=3), confint = TRUE)

Contrast Matrix:

res1 res2 res3

[1,] 0.3333333 0.3333333 0.3333333

Contrast Inference:

Chisq df Pr(>Chisq)

[1,] 149 1 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Contrast M-W Estimate (95% Confidence Interval)

0.1478 ( 0.0913 - 0.2043 )

The result shows that the p-value after removing subjects with missing values was similar

to that for the method described in Section 2.
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Note that the complete case analysis makes the same MCAR assumption as the default

method, but has the limitation of only using complete cases rather than all of the data with

missing maintained as missing.

6 Summary

The R package sanon contains functions to implement the methods for stratified Mann-Whitney

estimators. These methods address the same comparisons between two randomized groups

for a strictly ordinal response variable as the van Elteren test statistic. Since the functions

have similar structures to standard R functions, it would be accessible for R users. The role

of variables in the analysis can be specified by using functions in the sanon. For example,

the stratification variable is specified by the function strt. Among these, functions treat

and catecovar have arguments to set the reference group. The function sanon can deal with

missing values in five ways, according to the user’s intent. This function sanon is also applicable

to data without stratification. The output has an orderly nature for the interpretation of the

results. Thus, the package sanon would be helpful for the analysis of randomized clinical trials

with ordinal response variables. The details of the functions can be seen in the help file through

the command help(package="sanon") in R.
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