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Abstract

This paper describes the use of model-based geostatistics for choosing the optimal

set of sampling locations, collectively called the design, for a geostatistical analysis.

Two types of design situations are considered. These are retrospective design, which

concerns the addition of sampling locations to, or deletion of locations from, an existing

design, and prospective design, which consists of choosing optimal positions for a new

set of sampling locations. We propose a Bayesian desin criterion which focuses on the

goal of efficient spatial prediction whilst allowing for the fact that model parameter

values are unknown. The results show that in this situation a wide range of inter-point

distances should be included in the design, and the widely used regular design is there-

fore not the optimal choice.

KEY WORDS: model-based geostatistics, Bayesian inference, spatial design

1 Introduction

A central concern of geostatistics is the prediction of a spatial surface over a region A, using
data which consist of possibly imperfect measurements, Yi : i = 1, ..., n, of the values on
the surface at a finite collection of sampling locations, xi ∈ A : i = 1, ..., n. A widely used
stochastic model for such data is the linear Gaussian model. This assumes that the spatial
surface of interest is a realisation of an unobserved stationary Gaussian process {S(x) : x ∈
IR2} such that, conditional on S(·) the Yi are mutually independent, Normally distributed
with means E[Yi] = S(xi) and common variance τ 2. The process S(·) has mean-value field
µ(x) = d(x)′β for some spatially indexed set of explanatory variables d(x), variance σ2

and correlation function ρ(u; φ) = Corr(S(x), S(x − u)}, where φ may be vector-valued.
The linear Gaussian model is implicitly assumed in the geostatistical technique known as
universal kriging, whilst the special case in which µ(x) = µ for all x corresponds, according
to the treatment of unknown parameters in the model, to simple or ordinary kriging (Chiles
and Delfiner, 1999).
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Bayesian inference provides a natural framework for the incorporation of the effects of pa-
rameter uncertainty into spatial prediction. Bayesian methods for geostatistical analysis
using the linear Gaussian model were proposed independently by Kitanidis (1986), Le and
Zidek (1992) and Handcock and Stein (1993). Diggle, Moyeed and Tawn (1998) extended the
Bayesian methodology to embrace generalized linear models (McCullagh and Nelder, 1989)
with an unobserved Gaussian process S(·) in the linear predictor.

The set of sampling locations is collectively called the design. An important additional
assumption in most geostatistical analyses is that the design is independent of the unobserved
process S(·).

It is well known that designs which are efficient for parameter estimation are not necessarily
efficient for spatial prediction given the model parameters (Müller, 2001; Martin, 2001).
Our goal in this paper is to develop a Bayesian approach to design which integrates and
balances these competing considerations in a natural way. Briefly, the idea is to find designs
which are efficient for spatial prediction whilst making proper allowance for the effects of
parameter uncertainty. Hence, parameter estimation is treated as a means to the primary
end of spatial prediction, rather than as an end in itself. In our experience, most applications
of geostatistics are of this kind. However, if in a particular application parameter estimation
in itself were the scientific goal, our approach would be inappropriate.

We distinguish between two common situations. The first, which we call retrospective design,
arises when locations are to be deleted from, or added to, an existing design. For example,
the deletion case often arises in environmental monitoring, with the aim of economising
on the long-term costs of maintaining a network of monitoring sites whilst minimising the
consequent loss of information. The second situation, which we call prospective design, arises
when we need to design in advance of data-collection.

In Section 2 of the paper, we review classical approaches to the geostatistical design prob-
lem. In Section 3, we set out our Bayesian approach and discuss its implementation for
retrospective and prospective design problems. In Section 4 we give two examples of retro-
spective design problems: a simulated example in which we compare the results obtained
using classical and Bayesian criteria; and an application to the deletion of locations from
a network of 70 monitoring stations measuring surface salinity in the Kattegat basin. In
Section 5, we discuss two classes of prospective design, the lattice plus close pairs and lattice
plus in-fill designs. Both are motivated by the idea that regular lattice designs are generally
efficient for prediction when model parameters are known, whereas adding groups of closely
spaced sample locations to the design is advantageous for parameter estimation. The design
problem is then to find the optimum balance between lattice and non-lattice locations, for a
fixed total number. The ideas in the paper are essentially independent of the chosen model,
but the associated computations are routine only for the linear Gaussian model.

2 Classical design criteria

Traditionally, geostatistical design has involved the minimisation of a design criterion which is
some suitable function, for example the mean or maximum, of the prediction variance, where
predictions are computed by conventional kriging assuming that all parameters defining the
covariance structure of the data are known. McBratney, Webster and Burgess (1981) and
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McBratney and Webster (1981) addressed the problem of choosing the spacing of a regular
rectangular or triangular lattice design to achieve an acceptable value of the maximum
of the prediction variance over the region of interest. Winkels and Stein (1997) applied
this approach so as to achieve a predefined accuracy in the determination of the spatial
distribution of a number of contaminants in lake sediments. Spruill and Candela (1990)
considered the effect on prediction accuracy, as measured by both the average and the
maximum of the prediction variance, of deleting locations from an existing network for
monitoring the concentration of chloride in groundwater. They concluded that the number
of sampling locations could be reduced from 120 to 99 with only a marginal increase in their
two design criteria. Ben-jemaa, Mariño and Loaiciga (1995) also considered the removal of
locations from an existing network for monitoring mercury concentrations in lake sediments.
They used ordinary cokriging for prediction, so as to exploit the correlation between the
sediment concentration of mercury and a sediment grain size index.

Royle and Nychka (1998) describe a different approach, in which the design criterion is purely
geometric, rather than involving an assumed geostatistical model. In qualitative terms, this
approach favours a regular spatial distribution of sampling locations within the constraints
imposed by the particular application. Hence, for example, in considering the addition or
deletion of locations to or from an existing network, additional locations would tend to be
placed so as to fill empty spaces, whilst prime candidates for removal would include one of a
pair of near neighbours. Based on results in Johnson, Moore and Ylvisaker (1990) they gave
a theoretical justification that the resulting designs are nearly optimal for spatial prediction.

In contrast to the above, Russo (1984), Warrick and Myers (1987) and Zimmerman and
Homer (1991) considered the design problem from the point of view of semivariogram esti-
mation. The semivariogram of a stationary spatial stochastic process Y (x) is the quantity
V (u) = 1

2
E[{Y (x) − Y (x − u)}2], considered as a function of u. In traditional geostatistical

practice, estimation of parameters of V (u) is achieved by matching the semivariogram to its
empirical counterpart, in which observed quantities vij = 1

2
(Yi − Yj)

2 are averaged within
binned ranges of the distances, and angles if the assumed model includes directional effects,
between corresponding pairs of sampling locations.

In this context, Russo (1984) suggested designing to minimise the variance of the distances
included within each bin, whilst Warrick and Myers (1987) sought to achieve large numbers
of contributions to each distance-angle bin together with small variances of the distances
and angles within each. Zimmerman and Homer (1991) proposed an explicit design criterion
for parametric estimation based on the empirical semivariogram. Their design criterion C is
given by

C = det{DT (V T WV )−1D}

where V is a matrix of partial derivatives of the chosen semivariogram model with respect to
its parameters θ, D is a matrix of partial derivatives of specified parametric functions gj with
respect to the parameters θ, and the gj identify the semivariogram attributes which are of
particular interest. The matrix W is diagonal, with non-zero elements equal to the reciprocal
squared values of the assumed semi-variogram. The rationale for this is that under Gaussian
assumptions for Y (x), the sampling distributions of the empirical semivariogram ordinates
vij are proportional to χ2

1
, with variance proportional to V (u)2. Müller and Zimmerman
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(1999) used a modification of the design criterion C in which W is non-diagonal whilst D
was taken to be the identity matrix.

Lark (2002) considers the design problem from the point of view of maximum likelihood
estimation for the Gaussian linear model. He considers the prediction variance for S(x), say
V (x, θ) at a target location x as a function of the model parameters θ. His design criterion is
the variance of V (x, θ̂) induced by the asymptotically multivariate Normal sampling distri-
bution of θ̂. The resulting designs typically combine a fairly regular array supplemented by
groups of closely spaced locations. This is qualitatively similar to some of the results which
we report below, although their theoretical basis is very different.

In many applications of geostatistical methods, spatial prediction is a primary goal whilst
parameter estimation is largely a means towards this end. The goal of the present paper
is therefore to construct designs which are efficient for spatial prediction whilst protecting
against the consequences of grossly inefficient parameter estimation, rather than consider-
ing parameter estimation and spatial prediction as disjoint activities. Our Bayesian design
approach achieves this by taking account of parameter uncertainty in a natural way.

3 A Bayesian approach

The specification of the classical linear model has the symbolic representation [S, Y ] =
[S][Y |S] where [·] means “the distribution of”, i.e. the model specifies the marginal distribu-
tion of the unobserved random field S = {S(x) : x ∈ IR2} and the conditional distribution of
Y = (Y1, ..., Yn) given S, with model parameters θ regarded as unknown, but fixed in value.
Under the Bayesian paradigm, unknown model parameters are also treated as random vari-
ables and the symbolic representation is extended to

[S, Y, θ] = [S|θ][Y |S, θ][θ]

where [θ] denotes the prior for θ.

The required distribution for predictive inference is [S|Y ], which we evaluate as

[S|Y ] =

∫
[S|Y, θ][θ|Y ]dθ. (1)

Equation (1) shows that the Bayesian predictive distribution is a weighted average of classi-
cal, or plug-in, predictive distributions [S|Y, θ] with different values of θ weighted according
to their posterior probabilities.

3.1 Retrospective design

We shall use as our design criterion the spatially averaged prediction variance,

v̄ =

∫
A

Var(S(x)|Y )dx. (2)

The data from the pre-existing design provide partial knowledge of the unknown model pa-
rameters. Hence, for each candidate design we calculate the variance term in (2) from the
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predictive distribution [S|Y ] given by (1). Typically, [S|Y ] will not be expressible analyti-
cally, and (2) is calculated approximately, using Monte Carlo methods. Diggle, Ribeiro and
Christensen (2003) describe how to generate direct Monte Carlo samples from the posterior
distribution for θ and hence from the predictive distribution [S|Y ] when the data are gener-
ated from the linear Gaussian model described in Section 1. In the examples below, we use
their methods to calculate a Monte Carlo approximation to the retrospective design criterion
(2) by repeated sampling from [S|Y ] where S represents the values of S(x) at locations x on
a regular lattice to cover A. We also approximate the spatial integral in (2) by a scaled sum
over the lattice points x.

3.2 Prospective design

For the prospective design problem, the data Y do not yet exist. We therefore propose to
use as our design criterion the expectation of the spatially averaged prediction variance (2)
with respect to the marginal distribution of Y . The design criterion is now E[v̄] where v̄ is
given by (2) and the expectation it taken with respect to the distribution of Y at the true
parameter values, θ0 say. Hence,

E(v̄) =

∫
A

EY |θ0
[Var(S(x)|Y )]dx. (3)

We evaluate (3) using Monte Carlo methods as follows. We first simulate s independent
data-sets, Yk : k = 1, ..., s from the model with parameter values θ0 = (µ0, σ

2

0
, φ0, τ

2

0
). From

each simulated data-set, we calculate the corresponding value, v̄k, of the design criterion
(2) as described in Section 3.1 above. We then use the sample average of the v̄k as an
approximation to E[v̄]

4 Retrospective design: optimum deletion of design

points

In this Section, we first compare designs obtained by applying classical and Bayesian ap-
proaches to a simulated data-set, where the goal is retrospective reduction of the number
of locations from 50 to 20 with minimal loss of predictive accuracy. We then apply the
Bayesian approach to an existing monitoring network for measurement of salinity in the
Kattegat basin, with the aim of reducing the number of locations from 70 to 20. In both
cases, consideration of all possible designs would be computationally prohibitive. We there-
fore adopt the pragmatic strategy of sequentially removing one location at a time so as to
minimise the spatially averaged prediction variance at each stage.

Our simulation model, and assumed model for the Kattegat salinity data, is the linear
Gaussian model with exponential correlation function, ρ(u; φ) = σ2 exp(−|u|/φ).

5
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4.1 Simulated data

The simulated data were generated at the 50 sampling locations shown in Figure 1, using the
linear Gaussian model with a spatially constant mean, β = 0, scale parameter σ2 = 1 and
exponential correlation function with parameter φ = 0.3. For the noise-to-signal variance
ratio, ν2 = τ 2/σ2, we used each of the values ν2 = 0, 0.3 and 0.6.

Our design criterion was the average prediction variance over a regular 6×6 grid. For the
classical design approach we evaluated the prediction variance using ordinary kriging for
prediction. This is equivalent to a Bayesian approach using an improper uniform prior for
β but assuming that the remaining parameters φ, σ2 and ν2 are known. For the Bayesian
approach our prior for φ was uniform on (0, 2.35), whilst for (β, σ2|φ) we used a diffuse prior
proportional to 1/σ2. For the ratio ν2 we compared results obtained by assuming known ν2

and by assigning to ν2 a prior uniform distribution on (0, 1). Posteriors were computed by
direct simulation as described in Diggle, Ribeiro and Christensen (2003).

The resulting designs when we reduce the number of locations from 50 to 20 are shown
in Figure 2, for three different values of ν2. In all three cases, the designs based on the
classical design criterion consist of well-separated monitoring sites, as a consequence of their
focussing on spatial prediction as if the geostatistical model were known. In contrast, the
designs constructed using the Bayesian approach retain some close pairs of sites, representing
a compromise between designing for prediction and for parameter estimation. Within the
Bayesian approach, the designs show differences in detail according to the value of ν2 and
whether or not we treat ν2 as known or unknown, but in all cases they exhibit less spatial
regularity than their classical counterparts.

Table 1 compares the achieved values of the Bayesian design criterion (2), treating all model
parameters as unknown, for each of the designs shown in Figure 2. On their own terms, the
Bayesian designs are between five and ten times more efficient than the classical designs,
whereas the differences between the Bayesian designs which treat ν2 as known or unknown
are small. When the number of sampling locations in the design is large, we would expect
there to be less need to compromise between prediction and estimation, leading to smaller
differences between the classical and Bayesian designs.

4.2 Monitoring salinity in the Kattegat basin

Our second example deals with optimum deletion of monitoring stations measuring salinity
in the Kattegat basin. The current monitoring network consists of 70 stations located as
shown in Figure 3. We now examine which monitors should be removed in order to reduce the
network to 20 stations. A geostatistical analysis showed a north-south trend in the salinity
data, and for the design evaluations we therefore included in the assumed model a linear
trend surface, µ(x) = β0+β1x1+β2x2 where x = (x1, x2), and write β = (β0, β1, β2). We fixed
the ratio ν2 = τ 2/σ2 at its estimated value, ν2 = 0.42, partly to economise on computation
but also because we have found in simulated examples such as the one reported above that
fixing ν2 generally has a small impact on the chosen design. For φ we used a uniform prior
on the interval from 10 to 100 kilometres, whilst for (β, σ2|φ) we again used a diffuse prior
proportional to 1/σ2. We computed the spatially averaged prediction variance (2) from 95
locations in a regular grid covering the Kattegat area at a spacing of 15 kilometres. The
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resulting network of 20 retained monitoring stations is shown in Figure 3. It consists largely
of well-separated stations, but with some pairs of closely located stations, again reflecting a
compromise between designing for prediction and for estimation.

5 Prospective design: augmented lattice designs

We now consider two classes of prospective geostatistical design which, in different ways,
reflect the need to compromise between regularly spaced sampling locations for predictive
accuracy under a known model, and irregularly spaced locations for better estimation of
unknown model parameters.

The lattice plus close pairs design consists of locations in a regular k × k lattice at spacing
∆ together with a further m points, each of which is located uniformly at random within a
disc of radius δ = α∆ whose centre is at a randomly selected lattice location. We use the
notation (k × k, m, α), noting that from the design point of view, the choice of the distance
scale is arbitrary, hence ∆ is irrelevant. Figure 4A shows a (7 × 7, 15, 0.5) lattice plus close
pairs design on the unit square.

The lattice plus in-fill design consists of locations in a regular k × k lattice at spacing ∆
together with further locations in a more finely spaced lattice within m randomly chosen
cells of the primary lattice. We use the notation (k× k, m, r× r), where each in-filled lattice
cell consists of an r × r lattice and therefore involves r2 − 4 additional locations. Figure 4B
shows a (7 × 7, 3, 3 × 3) lattice plus in-fill design on the unit square.

We now illustrate the efficiency of lattice plus close pairs and lattice plus in-fill designs
relative to a regular lattice design when the total number of locations is fixed at N=64.
Specifically, we compare the regular 8 × 8 lattice with the (7 × 7, 15, 0.5) lattice plus close
pairs design and the (7, 3, 3 × 3) lattice plus in-fill design All designs were constructed on a
unit square region, with the lattice spacing adjusted accordingly.

Although designs of the same type vary because of the random selection of the secondary
locations, we found that this had only a small impact on the spatially averaged prediction
variance. In evaluating the design criterion (3) for either the lattice plus close pairs or the
lattice plus in-fill design, we therefore averaged over 5 independent replicates. For each repli-
cate design, we considered the linear Gaussian model with constant mean β and exponential
correlation function, ρ(u; φ) = σ2 exp(−|u|/φ).

We specified the priors for the model parameters as follows. For φ we used a uniform prior on
(0, 1.3). For (β, σ2|φ) we used a diffuse prior proportional to 1/σ2. For the ratio ν2 = τ 2/σ2

we used a uniform prior on (0, 1).

We evaluated the design criterion (3) for each of the three candidate designs with true
parameter values β = 0, σ2 = 1, φ = 0.2, 0.4, 0.6, 0.8, 1.0 and ν2 = 0.0, 0.2, 0.4, 0.6, 0.8. The
results are summarised in Figure 5. We see that the lattice plus close pairs design results in
lower values of the design criterion compared to the lattice plus in-fill design and the regular
8 × 8 lattice, meaning that predictions are computed more accurately from the lattice plus
close pairs design. In contrast, the performance of the lattice plus in-fill design is only slightly
better than that of the regular lattice.
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6 Discussion

Our aim in this paper has been to propose and illustrate an approach to geostatistical design
when the scientific goal is accurate prediction of the underlying spatial phenomenon, while
acknowledging that parameter values in the assumed geostatistical model are unknown. This
necessarily involves a compromise, which the Bayesian paradigm achieves in a natural way
through its usual device of specifying prior distributions for unknown model parameters, and
by including posterior parameter uncertainty in the evaluation of predictive accuracy.

For the retrospective design problem, in which locations are to be deleted from an existing
design with minimally deleterious effects, we have shown that the Bayesian approach leads
to designs which are materially different, in an intuitively sensible way, from designs derived
on the assumption that model parameters are known.

For the prospective design problem, we have defined two classes of design, the lattice plus
close pairs design and the lattice plus in-fill design. Each of these formalises the widely ac-
cepted view that in order to compromise between prediction accuracy and efficient parameter
estimation, good geostatistical designs should include close pairs or groups of sampling loca-
tions within an otherwise spatially regular arrangement (Martin, 2001; Müller, 2001; Lark,
2002). Our simulation experiments suggest that the lattice plus close pairs design brings a
clear benefit, whereas the performance of the lattice plus in-fill design is only slightly better
than that of the regular lattice. In this context, it is noteworthy that the principle example
in Diggle, Moyeed and Tawn (1998) used a lattice plus in-fill design on the recommendation
of the first author who, with the benefit of hindsight, would have favoured a lattice plus
close pairs design.

Our approach is computationally intensive. For this reason, we have illustrated the method
using the simplest non-trivial class of geostatistical models, with four parameters representing
a mean, two variance components and a rate of decay of spatial correlation with distance.
However, the computations would remain feasible in any applications requiring a model with
a larger number of parameters.

The software currently available to us (http://www.r-project.org/; Ribeiro, Christensen and
Diggle, 2003) would encounter serious difficulties in evaluating designs with numbers of
locations larger than a few hundred. However, work by Rue (2001) and Rue and Tjelmeland
(2002) is leading to very substantial gains in the speed of computation for geostatistical
models.
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Figure 1: Simulation example of retrospective design: the initial design consisting of 50
locations in the unit square.
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Figure 2: Simulation example of retrospective design: reducing the initial design in Figure 1 to
20 locations. A, D and G) Classical designs for models with τ 2/σ2 = 0, 0.3, 0.6 respectively.
B, E and H) Bayesian designs for models with τ 2/σ2 = 0, 0.3, 0.6 respectively with the ratio
τ 2/σ2 considered known. C, F and I) Bayesian designs for models with τ 2/σ2 = 0, 0.3, 0.6
respectively with the ratio τ 2/σ2 is considered unknown with a uniform prior.
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Figure 3: Locations of the 70 monitoring stations (• and ×) measuring salinity in the Kat-
tegat basin, and of the 20 stations (×) which constitute the final design.
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A) Lattice plus close pairs design
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B) Lattice plus in−fill design

Figure 4: Examples of a (7× 7, 15, 0.5) lattice plus close pairs design, and a (7× 7, 3, 3× 3)
lattice plus in-fill design.
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Figure 5: Prospective design results comparing the efficiencies of the regular 8 × 8 lattice,
the (7 × 7, 15, 0.5) lattice plus close pairs design, and the (7 × 7, 3, 3 × 3) lattice plus in-fill
design.
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τ 2/σ2-ratio Sites in Bayesian design Sites in Bayesian design Sites in classical design
τ 2/σ2 random τ 2/σ2 fixed

0 0.022 0.025 0.22
0.3 0.094 0.21 0.59
0.6 0.074 0.091 0.93

Table 1: Bayesian design criteria for the 9 designs in Figure 2.
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