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Abstract

Right censored data from a classical case-cohort design and a stratified case-
cohort design are considered. In the classical case-cohort design, the subcohort
is obtained as a simple random sample of the entire cohort, whereas in the strat-
ified design, the subcohort is selected by independent Bernoulli sampling with
arbitrary selection probabilities. For each design and under a linear regression
model, methods for estimating the regression parameters are proposed and ana-
lyzed. These methods are derived by modifying the linear ranks tests and esti-
mating equations that arise from full-cohort data using methods that are similar
to the “pseudo-likelihood” estimating equation that has been used in relative risk
regression for these models. The estimates so obtained are shown to be consistent
and asymptotically normal. Variance estimation and numerical illustrations are
also provided.
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1 Introduction

Since first introduced by Prentice (1986), Case-cohort designs have been widely used in

large epidemiologic cohort studies and disease prevention trials. In a case-cohort design,

the complete covariate information is processed only for the failures and a random sample

of the entire cohort, the so called subcohort. We call the design a classical case-cohort

design if the subcohort is a simple random sample of the cohort, or a stratified case-cohort

design if the subcohort is a stratified sample of the cohort. Prentice (1986) proposed pseudo-

likelihood estimators for relative risk parameters of a Cox model in a classical case-cohort

design. Large sample properties were then studied in the follow-up paper by Self and Prentice

(1988). Kulich and Lin (2000) proposed an additive hazards model for case-cohort studies

that allows estimation absolute risk parameters.

In contrast to modelling hazard functions, a linear regression model postulates a direct

relationship between the respone and the covariates with a corresponding parameter inter-

pretation. It thus becomes an important alternative for analyzing censored survival data. If

the complete covariate information is collected for the entire cohort, then coefficients in a

linear model with right censored data can be estimated using a linear rank statistic. Large

sample properties of the corresponding estimator have been studied by Tsiatis (1990), Ritov

(1990) and Ying (1993). In this article, we propose estimators for a classical case-cohort

design and a stratified case-cohort design. Large sample properties of these estimators are

studied in a manner similar to the work of Tsiatis (1990) and Self and Prentice (1988).

In Section 2, we introduce the linear regression model for case-cohort studies. Sections 3

and 4 respectively outline asymptotic properties of the classical case-cohort design and the

stratified case-cohort design. In Section 5, we propose an easily computed variance estimator.

We give numerical illustrations in Section 6 and a brief discussion in Section 7. An appendix

contains most of the proofs.

2 The Censored Linear Model

Let T and C be monotonically transformed failure and censoring times obtained from a

known transformation. The log transformation is often used in practice to give the acceler-

ated failure time model (e.g. Kalbfleisch and Prentice, 2002). For subject i in the cohort, we

observe Xi ≡ Ti∧Ci and the failure indicator ∆i ≡ I{Ti ≤ Ci}. Let Zi be the d-dimensional
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covariate. For notational simplicity we assume d = 1, although results in this article should

hold for d > 1 as discussed in Tsiatis (1990). The model is

Ti = β0Zi + ei, i = 1, . . . , n,

where n is the total number of individuals in the cohort, and given (Zi, Ci) the ei’s are

independent and identically distributed with an unknown distribution.

When (Zi, Xi, ∆i) are observed for the entire cohort, Tsiatis (1990) introduced the esti-

mating function for β0,

Sn(ωn, β0) =
n∑

i=1

∫
ωn(u, β0){Zi − Z̄(u, β0)} dNi(u + β0Zi) (1)

where Z̄(u, β0) ≡ D(1)(u, β0)
/

D(0)(u, β0),

D(1)(u, β0) = n−1

n∑
j=1

ZjYj(u + β0Zj) and D(0)(u, β0) = n−1

n∑
j=1

Yj(u + β0Zj),

ωn(u, β0) is a weight process, and Ni(u + β0Zi) is the failure counting process for subject i.

Very often ωn(u, β0) is chosen to be 1, which corresponds to the log-rank test. The right hand

side of (1) is very similar to the estimating function for a Cox regression, and as for the Cox

model, martingale theory can be used to investigate large sample properties of Sn(ωn, β0).

Let λ(·) be the hazard function of ei. It is easily seen that
∑n

i=1 Yi(u + β0Zi){Zi −
Z̄(u, β0)} = 0 and hence

Sn(ωn, β0) =
n∑

i=1

∫
ωn(u, β0){Zi − Z̄(u, β0)} dMi(u + β0Zi) ,

where

Mi(u + β0Zi) = Ni(u + β0Zi)−
∫ u

−∞
Yi(v + β0Zi)λ(v) dv

is a martingale process with respect to the filtration

Fn(u, β0) ≡ σ
[
I{Xi − β0Zi ≤ u}, ∆iI{Xi − β0Zi ≤ u}, Zi; i = 1, · · · , n

]
.

The complication, however, is that Sn(ωn, β) in (1) is a step function of β instead of

a continuous function as in the case of the Cox regression. Tsiatis (1990) showed that

2
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Sn(ωn, β) is asymptotically linear in a n−1/2-neighborhood of the true value β0, the true

value of β. Using this result, the proof of the asymptotic normality of a zero-crossing of

Sn(ωn, β) became straightforward.

In a case-cohort study, we observe complete data (Zi, Xi, ∆i) only when subject i is an

observed failure or a member of the subcohort. Let D denote the set of failures observed

during the study period, and C denote the subcohort. Note that the intersection of these

two sets may not be empty. For a classical case-cohort design, C is a simple random sample

of size ñ from the entire cohort. Similar to the approach of Self and Prentice (1988) for the

Cox model, we propose the estimating function

S̃n(β0) =
n∑

i=1

∫
{Zi − Z̃(u, β0)} dNi(u + β0Zi) , (2)

where Z̃(u, β0) = D̃(1)(u, β0)
/

D̃(0)(u, β0) with

D̃(`)(u, β0) = ñ−1
∑
j∈C

Z`
jYj(u + β0Zj), ` = 0, 1, 2.

Note that D(2) is used later. Note also that we have taken ωn(u, β0) = 1 in (2) for simplicity.

The results should hold for the weight functions discussed in Tsiatis (1990). Note that in

(1), Z̄(u, β0) is calculated using full-cohort data, whereas in (2), Z̃(u, β0) is calculated using

the subcohort data only.

If a correlate of Z, say Z∗, is available for all the subjects in the cohort, available liter-

ature suggests that selecting the subcohort using stratified sampling based Z∗ can improve

efficiency in hazard regression models. We expect a similar result should hold for censored

linear models and our simulations have supported this. There are many sampling schemes

for selecting a stratified subcohort. In this article, we consider an independent Bernoulli

sampling method where P (i ∈ C|Z∗
i ) = π(Z∗

i ), i = 1, . . . , n independently.

Let Ri = I(i ∈ C), and Wi(Z
∗
i ) = Ri/π(Z∗

i ) be the weight for subject i. We assume

π(Z∗
i ) > ρ > 0 for all i and some constant ρ to ensure bounded weights. For the stratified

case-cohort study, we propose the estimating function,

S̃B
n (β0) =

n∑
i=1

∫
{Zi − Z̃B(u, β0)} dNi(u + β0Zi) , (3)
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where Z̃B(u, β0) = D̃
(1)
B (u, β0)

/
D̃

(0)
B (u, β0) with

D̃
(`)
B (u, β0) = n−1

n∑
j=1

WjZ
`
jYj(u + β0Zj), ` = 0, 1, 2.

Since the sampling scheme of selecting the subcohort for a classical case-cohort study is

sampling without replacement (see e.g. Self and Prentice, 1988), which is not an independent

sampling, proofs of asymptotic properties are not the same as that for independent Bernoulli

sampling. We thus discuss the asymptotic properties of the estimating equations (2) and (3)

separately.

In the next two sections, we show that the estimators obtained from both estimating

functions (2) and (3) are asymptotically normal under specified regularity conditions. Proofs

follow the approach of Tsiatis (1990) and details are deferred to the Appendix. We first show

asymptotic linearity of these estimating functions, then show asymptotic normality based

on the linear approximation. Consistency is discussed briefly at the end of this section.

Remark: In an effort to improve efficiency, some authors include failures outside the sub-

cohort in constructing Z̃B in function (3). For example, they might take Wi = ∆i + (1 −
∆i)Ri/π(Z∗

i ). We do not adopt this type of weights here for two reasons:

(i) With such weights, martingale theory does not apply since ∆i ≡ Ni(T
∗) is not pre-

dictable and Zi − Z̃B(t, β0) is not adapted to the filtration Fn(t, β0). So a different

method of proof is needed.

(ii) For the Cox model, the estimator obtained from the counterpart of (2) is close to fully

efficient in cases of primary interest where the disease rate is low and the subcohort size

is not too small. See for example Figure 1 and related discussion in Nan, Emond and

Wellner (2004) for details. We expect a similar feature in the censored linear regression

model.

For the cohort data, we make the same assumptions (O) and (A)-(F) below as Tsiatis

(1990). Conditions with respect to case-cohort designs will be given later. Without loss of

generality, we assume that β0 = 0 and denote Z̄(u) = Z̄(u, 0).

Assumption (O): The follow-up is truncated at a fixed T ∗ (with the same transformation

as T and C), which satisfies the condition that for some ξ > 0

P (Xi ≥ T ∗ + ξ) ≥ ψ > 0 for all i.

4
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Assumption (A): The density function f(x) of ei is bounded by K1 for x ≤ T ∗ + ξ.

Assumption (B): The density function gi(x) of Ci is bounded by K2 for all i and x ≤ T ∗+ξ.

Assumption (C): There exists a function θ(u) with
∫ T ∗

−∞ |θ(u)| du < ∞ such that

|λ(u + η)− λ(u)− ηλ′(u)| ≤ η2θ(u)

for u ≤ T ∗ and |η| ≤ ξ;

Assumption (D): The covariate Z has finite support. Without loss of generality, we suppose

that |Zi| ≤ 1 for i = 1, · · · , n.

Assumption (E): There exists a continuous function µ(u, β) and a neighborhood, B0, of

β = 0, such that

sup
β∈B0,u≤T ∗+ξ

{
‖Z̄(u, β)− µ(u, β)‖

}
→ 0

in probability.

Assumption (F): There exists a continuous function A(u, β) such that

sup
β∈B0,u≤T ∗+ξ

∥∥∥∥∥n−1

n∑
i=1

{Zi − Z̄(u, β)}2Yi(u + βZi)− A(u, β)

∥∥∥∥∥ → 0

in probability.

Note: Evidently µ(u, β) = E{ZY (u+βZ)}/E{Y (u+βZ)} is bounded by Assumption (O).

Conditions (E) and (F) need not be assumptions since they are actually a consequence of

Assumptions (O) and (D) as can be shown using empirical processes theory. See Lemma

7.3 in Ritov (1990), where on page 310 we also see that µ(u, β0) = E[Z|X − β0Z ≥ u] =

E[Z|X − β0Z = u, ∆ = 1]. We include them as “assumptions” here for ease of reference.

The notation | · | and ‖ · ‖ is adopted from Andersen and Gill (1982).

Let g(0) =
∫ T ∗

−∞ A(u, 0)λ′(u) du and S∗n(β) = Sn(0) + nβg(0) for cohort data. Tsiatis

(1990) showed that, for any C > 0,

sup
|β|≤Cn−1/2

n−1/2|Sn(β)− S∗n(β)| → 0

in probability. In other words, Sn(β) and S∗n(β) are asymptotically equivalent, and β̂, the

zero-crossing of Sn(β), is asymptotically equivalent to β∗ where S∗n(β∗) = 0; that is, n1/2(β̂−
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β∗) → 0 in probability. Thus β̂ has the same asymptotic distribution as β∗, which is normal

by the martingale central limit theorem.

Define S̃∗n(β) ≡ S̃n(0)+nβg(0) for the classical case-cohort design, and S̃B∗
n (β) ≡ S̃B

n (0)+

nβg(0) for the stratified case-cohort design. Similar to the approach for cohort data described

above, we will show that

sup
|β|≤Cn−1/2

n−1/2|S̃n(β)− S̃∗n(β)| → 0 and sup
|β|≤Cn−1/2

n−1/2|S̃B
n (β)− S̃B∗

n (β)| → 0

in probability for any bounded value C > 0. Then, with some abuse of notation, the

asymptotic distribution of β̂, the zero crossing of S̃n(β) or S̃B
n (β), is the same as that of

β∗ where S̃∗n(β∗) = 0 or S̃B∗
n (β∗) = 0. The asymptotic distribution of β∗ is determined by

asymptotic properties of S̃n(0) or S̃B
n (0). Proofs of the asymptotic normality of n−1/2S̃n(0)

and n−1/2S̃B
n (0) are not as straightforward as for cohort data, but can be developed along

the lines of Self and Prentice (1988).

The above arguments require that β̂ is n1/2-consistent. We provide a brief argument here

without going into details. For our model settings and assumptions, the three estimating

functions n−1Sn(β) (assuming ωn(u, β) = 1 for simplicity), n−1S̃n(β), and n−1S̃B
n (β) in (1),

(2), and (3) respectively, converge to the same limit in probability. Hence their roots con-

verge to the same point given that the limit is a continuous function of θ, which implies the

estimators from case-cohort studies are consistent if the estimator from the cohort study is

consistent. Furthermore, the difference between n−1Sn(β) and n−1S̃B
n (β) (or n−1S̃n(β)) van-

ishes with n1/2-rate, which can be argued using empirical process theory and, in particular,

the Donsker property. Thus the estimators from case-cohort studies are n1/2-consistent if

the estimator from the cohort study is n1/2-consistent.

3 The Classical Case-Cohort Design

Along with the assumptions in the previous section, the following additional conditions

ensure the desired asymptotic properties for a classical case-cohort design:

Assumption (G): There exists a constant α ∈ (0, 1) such that ñ/n → α in probability.

6
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Assumption (H) Asymptotic stability of subcohort averages:

1

ñ

∑
i∈C

I(Xi ≥ T ∗ + ξ) → P (X1 ≥ T ∗ + ξ) in probability; (4)

sup
β∈B0,u≤T ∗+ξ

|D̃(k)(u, β)− d(k)(u, β)| → 0 in probability, k ∈ {0, 1, 2}; (5)

and the sequence of distributions of n1/2{Z̃(u, 0) − Z̄(u, 0)} is tight on the product space

of left continuous functions with right-hand limits equipped with the product Skorohod

topology.

From (5) we have

sup
β∈B0,u≤T ∗+ξ

{
‖Z̃(u, β)− µ(u, β)‖

}
→ 0 (6)

in probability. The above assumptions are part of Condition G in Self and Prentice (1988).

We only have part of their G(ii), the tightness of n1/2{Z̃(u, 0)− Z̄(u, 0)}, because our model

automatically satisfies the rest of G(ii).

Following Tsiatis (1990), we first show point-wise convergence. That is, for any fixed d,

we show that

n−1/2|S̃n(n−1/2d)− S̃∗n(n−1/2d)| → 0 (7)

in probability. It follows that for a mesh d0, · · · , dm from −C to C,

max
i≤m

n−1/2|S̃n(n−1/2di)− S̃∗n(n−1/2di)| → 0

in probability. To complete the proof of uniform convergence, we show that n−1/2S̃n(β) as

a function of β cannot fluctuate too much within any interval in the mesh. That is, for any

ε > 0, there exists a mesh size δ > 0 such that

lim
n→∞

P

{
sup

dn−1/2≤β≤(d+δ)n−1/2

n−1/2|S̃n(β)− S̃n(dn−1/2)| ≥ ε

}
= 0 (8)

for any |d| ≤ C.

Write

S̃n(β) =
n∑

i=1

∫ T ∗

−∞
{Zi − Z̃(u, β)} dMi(u + βZi) (9)

+
n∑

i=1

∫ T ∗

−∞
Yi(u + βZi){Zi − Z̃(u, β)}λ(u + βZi) du . (10)
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For the point-wise convergence, we show that, for a fixed sequence of constants βn converg-

ing to 0, (9) and (10) are asymptotically equivalent to S̃n(0) and βng(0) respectively. The

following three lemmas are essentially Lemmas 3.1-3.3 in Tsiatis (1990) with Z̄ replaced by

Z̃. The proofs need some extra effort for a case-cohort design and are given in the Appendix.

Lemma 1. Let βn denote a fixed sequence of constants converging to 0. Then

n−1/2

[
n∑

i=1

∫ T ∗

−∞
{Zi − Z̃(u, βn)} dMi(u + βnZi)−

n∑

i=1

∫ T ∗

−∞
{Zi − µ(u, βn)} dMi(u + βnZi)

]
(11)

converges to 0 in probability.

Lemma 2. Let βn denote a fixed sequence of constants converging to 0. Then

n−1/2

[
n∑

i=1

∫ T ∗

−∞
{Zi − Z̃(u, βn)} dMi(u + βnZi)− S̃n(0)

]
(12)

converges to 0 in probability.

Lemma 3. The integral (10) satisfies

n−1

n∑
i=1

∫ T ∗

−∞
Yi(u + βnZi){Zi − Z̃(u, βn)}λ(u + βnZi) du = βn{g(0) + op(1)}

where g(0) =
∫ T ∗

−∞ A(u, 0)λ′(u) du.

We thus have the following theorem:

Theorem 1. (Point-wise convergence.) The convergence in (7) is true.

Proof. With β and βn replaced by n−1/2d, by Lemma 2 we have n−1/2{(9)− S̃n(0)} → 0 in

probability; and by Lemma 3 we have n−1/2{(10)− n−1/2dg(0)} → 0 in probability. ¤

Theorem 2. (Uniform convergence.) The convergence in (8) is true.

The proof of Theorem 2 needs extra consideration for a case-cohort design. We give a

proof in the Appendix.

Let β̂ be the value of β where S̃n(β) changes sign, which is in a n1/2-neighborhood of 0.

Let β∗ be the solution to S̃∗n(β) = 0, which is

n1/2β∗ = −n−1/2S̃n(0)/g(0).

8
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Then by Theorem 2 (using the similar arguments to Tsiatis (1990)) we have n1/2(β̂−β∗) → 0

in probability. Thus, n1/2β̂ converges to the same limiting distribution as n1/2β∗. Finally we

show

Theorem 3. (Asymptotic normality.) The random variable n−1/2S̃n(0) is asymptotically

normal with zero mean and, if |g(0)| > 0, n1/2β̂ is asymptotically normal with zero mean.

The proof of Theorem 3 follows Self and Prentice (1988), pages 72-73. Details are given

in the Appendix.

4 Stratified Case-cohort Design

As outlined in Section 2, the subcohort C is selected by independent Bernoulli sampling

where Ri = I(i ∈ C) and P (Ri = 1) = π(Z∗
i ), i = 1, ..., n. In this, Z∗

i is available for

everyone but not involved in the regression model.

Analogous to the last section, we make the following assumption:

Assumption (G’): π(Z∗
i ) ≥ ρ, i = 1, · · · , n for some constant ρ > 0.

In the stratified case cohort design, the observed cohort data are independent and identi-

cally distributed and the results analogous to Assumption (H) follow from empirical processes

theory. Thus we obtain the following stability conditions:

‖D̃(k)
B (u, β) → d

(k)
B (u, β)‖ → 0 in probability for k ∈ {0, 1, 2} , (13)

and the result that the process n1/2{Z̃(u, 0) − Z̄(u, 0)} converges weakly to a zero mean

Gaussian process with continuous sample path. Thus it is easily seen that Lemmas 1, 2, and

3 for S̃B
n (β) hold and analogous to Theorem 1, we have

Theorem 4. (Point-wise convergence) For any fixed d,

n−1/2|S̃B
n (n−1/2d)− S̃B∗

n (n−1/2d)| → 0

in probability.

The uniform convergence in the following Theorem 5 can be proved using the same idea

as in previous section, which shows the asymptotic linearity of S̃B
n (β). Details are given in

the Appendix.

9

http://biostats.bepress.com/umichbiostat/paper45



Theorem 5. (Uniform convergence.) For any C > 0,

sup
|β|≤Cn−1/2

n−1/2|S̃B
n (β)− S̃B∗

n (β)| → 0 in probability. (14)

Let β̂ be the value of β where S̃B
n (β) changes sign. As in the preceding section, the

asymptotic distribution of β̂ is the same as that of −n−1/2S̃B
n (0)/g(0), and the following

theorem is proved in the appendix.

Theorem 6. (Asymptotic normality.) The random variable n−1/2S̃B
n (0) is asymptotically

normal with zero mean and, if |g(0)| > 0, n1/2β̂ is asymptotically normal with zero mean.

5 The Variance Estimator

We use the method of Huang (2002) to calculate a variance estimator of β̂. See also

Kalbfleisch and Prentice (2002, page 238). Let Ψn(β) denote either S̃n(β) or S̃B
n (β). Let

Σ(β0) be the variance matrix for n−1/2Ψn(β0). Suppose that Σ(β̂) = CCT where C =

(c1, . . . , cd). Let β̃j satisfy n−1/2Ψn(β̃j) = cj, j = 1, . . . , d. Let D = (β̃1 − β̂, . . . , β̃d − β̂).

Then nDDT is a consistent variance estimator of n1/2(β̂ − β0).

We continue with calculations to find a variance estimator for n−1/2Ψn(β0) = S̃B
n (β0) in

the stratified case and include some brief remarks about the classical case at the end of this

section. We again assume β0 = 0 without loss of generality. Equation (3) can be rewritten

as

S̃B
n (0) = n−1/2

n∑
i=1

∫ T ∗

−∞
{Zi − µ(u)}dNi(u)

− n−1/2

n∑
i=1

∫ T ∗

−∞
{Z̃B(u)− µ(u)}dNi(u) .

From supu≤T ∗ ‖Z̃B(u)− µ(u)‖ = op(1) and martingale theory, the second term on the right

hand side of the above equation is equal to

n−1/2

n∑
i=1

∫ T ∗

−∞
{Z̃B(u)− µ(u)}Yi(u)dΛ(u) (15)

plus a term op(1) for underlying cohort data.

We now show that (15) can be replaced by

n−1/2

n∑
i=1

∫ T ∗

−∞
Wi{Z̃B(u)− µ(u)}Yi(u)dΛ(u), (16)

10
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which is fully determined by observed case-cohort data. Taking the difference of (15) and

(16), we obtain

|Dn| =

∣∣∣∣∣
∫ T ∗

−∞

{
n−1/2

n∑
i=1

(1−Wi)Yi(u)
}
{Z̃B(u)− µ(u)}dΛ(u)

∣∣∣∣∣

≤
∫ T ∗

−∞

∣∣∣n−1/2

n∑
i=1

(1−Wi)Yi(u)
∣∣∣ ·

∣∣∣Z̃B(u)− µ(u)
∣∣∣dΛ(u)

≤ sup
u≤T ∗

∣∣∣n−1/2

n∑
i=1

(1−Wi)Yi(u)
∣∣∣ · sup

u≤T ∗

∣∣∣Z̃B(u)− µ(u)
∣∣∣ · Λ(T ∗) .

Now, h(u) ≡ (1−W )Y (u) with |h(u)| bounded by 1+1/ρ forms a VC-class H = {h(u) : u ≤
T ∗} of index 2. SinceH is a class of zero mean random variables, Theorem 2.6.7 and Theorem

2.14.9 in van der Vaart and Wellner (1996) imply that supu≤T ∗

∣∣∣n−1/2
∑n

i=1(1 − Wi)Yi(u)
∣∣∣

has exponential tail probability, and thus is equal to Op(1). Further, since supu≤T ∗

∣∣∣Z̃B(u)−
µ(u)

∣∣∣ = op(1) and Λ(T ∗) is bounded, we have |Dn| = op(1).

We rewrite (16) as

n−1/2

n∑
i=1

∫ T ∗

−∞
Wi{Zi − µ(u)}Yi(u)dΛ(u) ,

and find

S̃B
n (0) = n−1/2

n∑
i=1

∫ T ∗

−∞
{Zi − µ(u)}dNi(u)

− n−1/2

n∑
i=1

∫ T ∗

−∞
Wi{Zi − µ(u)}Yi(u)dΛ(u) + op(1) . (17)

It can be verified that E
[∫ T ∗

−∞{Z − µ(u)}dN(u)
]

= E
[∫ T ∗

−∞{Z − µ(u)}Y (u)dΛ(u)
]

= 0.

The right hand side of equation (17) is n−1/2 times the sum of independent and identically

distributed zero mean random variables with finite variance. Thus the asymptotic variance

of S̃B
n (0) can be estimated as the sample variance of the difference of the two integrals in (17)

with µ(u) replaced by Z̃B(u, β̂) and Λ(u) by the Neslon-Aalen estimator Λ̂(u, β̂) as in Tsiatis

(1990). This also provides an alternative proof of the asymptotic normality of n−1/2S̃B
n (0).

For a classical case-cohort design, we can follow the approach of Chen and Lo (1999, page

763) to estimate the asymptotic variance of n−1/2S̃n(0) with Σ1 + (n/ñ− 1)Σ2, where Σ1 is

the sample variance of
∫ T ∗

−∞{Z − µ(u)}dN(u) obtained using the cohort data and Σ2 is the

sample variance of
∫ T ∗

−∞{Z − µ(u)}Y (u)dΛ(u) obtained using the subcohort only with µ(u)

replaced by Z̃(u, β̂) and Λ(u) by Λ̂(u, β̂).
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6 Numerical Examples

As is well known, root finding of a non-smooth function can be challenging. In the univariate

case, the bisection algorithm or the false position method can be used (Press, Teukolsky,

Vetterling, and Flannery (2002), Chapter 9). Neither method requires derivatives of the

function. By connecting two points where the function has different signs, the false position

method takes the next approximation to the root as the point where the resulting line crosses

the axis. In most instances, the false position method converges faster than bisection.

The multi-dimensional problem can be reduced to the one-dimensional case by recursively

applying the univariate method (e.g., see Huang, 2002). Thus, we iteratively find root for β1

through βd using the false position method while holding other β’s constant. The algorithm

stops when the change in each component of β is smaller than a pre-specified quantity (e.g.,

10−5). The method seems to work well in our numerical examples.

We report on simulations to evaluate the finite sample performance of the proposed

estimators. For these, we took Z ∼ Bernoulli(pZ), ε ∼ N(0, 1), failure time T from the

model T = βZ + ε, and censoring time C where exp(C) ∼ Exponential(λ) where λ is chosen

so that the censoring rate is about 90%. We chose pZ = 0.1 or pZ = 0.3, and β = 0 or

β = 1. In addition, we defined the distribution of Z∗ using η = P (Z∗ = 1|Z = 1) and

ν = P (Z∗ = 0|Z = 0). We chose (η, ν) : (η, ν) ∈ {(0.5, 0.5), (0.7, 0.7), (0.9, 0.9)}. Thus

Z∗ ∼ Bernoulli((1− ν)(1− pZ) + ηpZ). The subcohort is either a simple random sample of

the cohort or a stratified sample selected by independent Bernoulli sampling with selection

probability π(Z∗) chosen so that approximately equal numbers of subjects are selected from

the two strata, {Z∗ = 1} and {Z∗ = 0}. In all cases, the size of the subcohort is 10% of the

entire cohort. Simulation results that compare the classical, stratified and full cohort are

given in Table 1.

In the cases considered, the biases of all the methods are minimal. The classical case-

cohort design does slightly better than that with subcohort selected by independent Bernoulli

sampling when Z and Z∗ are uncorrelated (η = ν = 0.5). As the correlation of Z and Z∗

increases, the efficiency of the stratified case-cohort design increases.

We also analyze a data set collected in two randomized clinical trials in Wilms tumor

patients to illustrate the application of the censored linear regression model for case-cohort

studies. These two trials were the third and the fourth trials conducted by the National
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Wilms Tumor Study Group (NWTSG) (see e.g. D’Angio, Breslow, Beckwith et al. (1989);

Green, Breslow, Beckwith et al. (1998)). We considered linear models for the logarithm of the

time to tumor relapse with covariates tumor histologic type (favorable versus unfavorable),

tumor stage (I-IV), trial (NWTSG-3 versus NWTSG-4), the logarithm of tumor diameter,

and age at cancer diagnosis. Tumor histology was assessed in two ways: a ‘local histology’

determined at each individual site and ‘central histology’ evaluated at a central facility.

The central histology is regarded as the gold standard, but the reevaluation process was

expensive and time consuming. The proportion of unfavorable central histology was 11%.

The sensitivity and specificity of unfavorable local histology was 78% and 93%, respectively.

Although this example is done solely for illustration, one advantage of the subcohort analyses

is that the central histology would only need to be done for cases who fail or are in the

subcohort.

There were 4222 patients in the data set of whom 4117 had sufficient data to include

in the analysis. Local histology on three levels (favorable, unfavorable and unknown) was

used to define the stratified subcohort design; there were 216 patients with unknown local

histologic type. Our analyses estimated the effect of the central histologic type (adjusted for

other covariates) using data from the original cohort, a classical case-cohort design, and a

stratified case-cohort design. In the whole cohort, 727 patients are observed to relapse. The

subcohort size is targeted at 800 patients; in the stratified analysis, we selected respectively

about 360, 360 and 80 from the favorable, unfavorable and unknown local histology groups.

For the case cohort analyses, we re-sampled the subcohort 20 times and reported mean

estimated parameters and mean standard error estimators in Table 2.

The first row is the result from the full-cohort data analysis and all factors are highly

significant except the log tumor diameter. All the mean estimated parameters from the

case-cohort studies are close to the full-cohort estimates. The stratified analysis has slightly

smaller standard errors for central unfavorable histology than the classical case-cohort analy-

sis, but it has little effect on the standard errors of other estimates. This finding is very

similar to that in Kulich and Lin (2000), where an additive hazard model is used.
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7 Discussion

Due to the fact that estimating functions for β in censored linear regressions are step func-

tions, developing efficient and reliable computational methods for β̂ has been a challenging

problem. Lin, Wei, and Ying (1998) noted that for cohort data, the estimating function

Sn(ωn, β) in (1) with Gehan weights is the gradient of a objective function that can be

minimized by linear programming. Jin, Lin, Wei, and Ying (2003) extended their method

to estimating functions with arbitrary weights using Gehan estimator as the initial value.

It would be interesting to know whether linear programming is applicable to case-cohort

studies.

As mentioned in the remark under equation (3), it is tempting to include failures outside

the subcohort into the estimating function for a case-cohort study to improve efficiency.

Apparently martingale theory fails in this case and it would be worthwhile to develop rigorous

proofs for corresponding asymptotic properties.
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Appendix

Proof of Lemma 1. Note that (11) is equal to R(T ∗) where

R(u) = n−1/2

n∑
i=1

∫ u

−∞
{Z̃(u, βn)− µ(u, βn)} dMi(u + βnZi)

is an Fn(u, βn) ∨ σ(C) martingale and σ(C) denotes the σ-algebra of possible subcohort

selections (see Self and Prentice, 1988). The proof then follows the proof of Lemma 3.1 in

Tsiatis (1990) with Z̄ replaced by Z̃ and applying condition (6).
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Proof of Lemma 2. Write (12) as

n−1/2

[
n∑

i=1

∫ T ∗

−∞
{Zi − Z̃(u, βn)} dMi(u + βnZi)

−
n∑

i=1

∫ T ∗

−∞
{Zi − µ(u, βn)} dMi(u + βnZi)

]

+ n−1/2

[
n∑

i=1

∫ T ∗

−∞
{Zi − µ(u, βn)} dMi(u + βnZi)

−
n∑

i=1

∫ T ∗

−∞
{Zi − µ(u, 0)} dMi(u)

]
(18)

+ n−1/2

[
n∑

i=1

∫ T ∗

−∞
{Zi − µ(u, 0)} dMi(u)− S̃n(0)

]
.

By Lemma 1, we have the first and third terms converge in probability to 0.

The term (18) is exactly the same as (3.9) in Lemma 3.2 of Tsiatis (1990). Readers can

refer there for the rest of the proof. ¤.

Proof of Lemma 3. We first show that

n−1

n∑
i=1

∫ T ∗

−∞
Yi(u + βnZi){Zi − Z̃(u, βn)}λ(u + βnZi) du

= n−1

n∑
i=1

∫ T ∗

−∞
Yi(u + βnZi){Zi − Z̄(u, βn)}λ(u + βnZi) du + op(1). (19)

Lemma 3.3 in Tsiatis (1990) completes the proof.

To show (19), we show

n−1

n∑
i=1

∫ T ∗

−∞
Yi(u + βnZi){Z̃(u, βn)− Z̄(u, βn)}λ(u + βnZi) du = op(1).

By Assumption (E) and condition (6), there exists n(ε, K) such that for any n > n(ε,K),

P
{

sup
u≤T ∗

|Z̃(u, βn)− Z̄(u, βn)| > K
}

≤ P
{

sup
u≤T ∗

|Z̃(u, βn)− µ(u, βn)|+ sup
u≤T ∗

|Z̄(u, βn)− µ(u, βn| > K
}

≤ P
{

sup
u≤T ∗

|Z̃(u, βn)− µ(u, βn)| > K/2
}

+ P
{

sup
u≤T ∗

|Z̄(u, βn)− µ(u, βn| > K/2
}

< ε.
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Since |βnZi| ≤ |βn| → 0, the integral above cannot exceed KΛ(T ∗ + ξ) as long as n is large

enough that |βn| is less than ξ. By Assumption (A), we have Λ(T ∗ + ξ) = − log{S(T ∗ + ξ)}
finite. Hence if we choose K ≤ δ/Λ(T ∗ + ξ), then

P

[
n−1

n∑
i=1

∫ T ∗

−∞
Yi(u + βnZi){Z̃(u, βn)− Z̄(u, βn)}λ(u + βnZi) du > δ

]
< ε

for n > n(ε,K). ¤

Proof of Theorem 2. We put a probabilistic bound on the maximum change of the statistic

S̃n(β) as β varies from dn−1/2 to (d + δ)n−1/2. Since

S̃n(β) =
n∑

i=1

∫ T ∗

−∞
{Zi − Z̃(u, β)} dNi(u + βZi) =

∑
i∈C∪D

∫ T ∗

−∞
{Zi − Z̃(u, β)} dNi(u + βZi)

with Ni(u + βZi) = I{Xi ≤ u + βZi, ∆i = 1} and

Z̃(u, β) =
∑
j∈C

ZjYj(u + βZj)
/ ∑

j∈C
Yj(u + βZj) .

We can write S̃n(β) as

∑
i∈C∪D

∆i

[
Zi −

∑
j∈C ZjI(Xj − βZj ≥ Xi − βZi)∑

j∈C I(Xj − βZj ≥ Xi − βZi)

]
.

Hence the statistic depends only on ranks of residuals Xi − βZi, i ∈ C ∪ D. As β varies

from dn−1/2 to (d + δ)n−1/2, the statistic changes whenever there is a change in the ranks of

residuals Xi − βZi for i ∈ C ∪ D.

The maximum change can be bounded by the product of total number of pairs of ranks

that will be interchanged and the maximum change of the statistic for each such interchange.

First consider the maximum change of the statistic at an interchange. When β increases,

the interchange in ranks occurs only between neighboring order statistics of the residuals

Xi − βZi, i ∈ C ∪ D. Let (i) denote the ith order statistic of residuals Xi − βZi, i ∈ C ∪ D,

and let R̃{(i), β} be the risk set corresponding to (i) in the subcohort C̃. Then S̃n(β) can

be written as

∑
i∈C∪D

∆(i)

[
Z(i) − Z̃(i)(u, β)

]
(20)

where

Z̃(i)(u, β) =

∑
j∈ eR{(i),β} Zj

N eR{(i),β} .
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Here N eR{(i),β} is the number of subjects in the risk set R̃{(i), β}.
Now suppose as β increases to β+, a change of order between (i) and (i + 1) occurs. If

both (i) and (i + 1) are censored, then S̃n(β) does not change. We need only consider the

corresponding change in (20) for the following three cases:

1. Subject (i) is an event and (i + 1) is censored. Then (i + 1) ∈ C. The corresponding Z̃

after interchange is Z̃(i)(u, β+) and

|S̃n(β)− S̃n(β+)| = |Z̃(i)(u, β+)− Z̃(i)(u, β)|

=

∣∣∣∣∣

∑
j∈ eR{(i),β} Zj − Z(i+1)

N eR{(i),β} − 1
−

∑
j∈ eR{(i),β} Zj

N eR{(i),β}
∣∣∣∣∣

=

∣∣∣∣∣

∑
j∈ eR{(i),β} Zj −N eR{(i),β}Z(i+1)

N eR{(i),β}[N eR{(i),β} − 1
]

∣∣∣∣∣

≤ 2

N eR{(i),β} − 1

=
2

N eR{(i),β+}
.

2. Subject (i) is censored and (i + 1) is an event. Then (i) ∈ C, and thus

Z̃(i+1)(u, β+) =

∑
j∈ eR{(i+1),β} Zj + Z(i)

N eR{(i+1),β} + 1
.

Similar calculation yields

|S̃n(β)− S̃n(β+)| = |Z̃(i+1)(u, β+)− Z̃(i+1)(u, β)| ≤ 2

N eR{(i+1),β+}
.

3. Both Subjects (i) and (i + 1) are events. Then

Z̃(i)(u, β+) =





Z̃(i)(u, β) if (i + 1) 6∈ C
∑

j∈ eR{(i),β} Zj − Z(i+1)

N eR{(i),β} − 1
if (i + 1) ∈ C ,

Z̃(i+1)(u, β+) =





Z̃(i+1)(u, β) if (i) 6∈ C
∑

j∈ eR{(i+1),β} Zj + Z(i)

N eR{(i+1),β} + 1
if (i) ∈ C ,
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and

|S̃n(β)− S̃n(β+)| = |Z̃(i)(u, β+) + Z̃(i+1)(u, β+)− Z̃(i)(u, β)− Z̃(i+1)(u, β)| .

Straightforward calculation shows that

3a. if (i) 6∈ C, (i + 1) 6∈ C, then S̃n(β)− S̃n(β+) = 0;

3b. if (i) ∈ C, (i + 1) 6∈ C, then

|S̃n(β)− S̃n(β+)| ≤ 2

N eR{(i+1),β+}
;

3c. if (i) 6∈ C, (i + 1) ∈ C, then

|S̃n(β)− S̃n(β+)| ≤ 2

N eR{(i),β+}
;

3d. if (i) ∈ C, (i + 1) ∈ C, then

|S̃n(β)− S̃n(β+)| ≤ 2

N eR{(i),β+}
+

2

N eR{(i+1),β+}

Then the change in (20) for any single interchange of the ordered residuals is bounded

by 4/N eR{(i+1),β}. Since P (Xi ≥ T ∗ + ξ) ≥ ψ > 0 for the same ξ and all i, there exists n

large enough that ñ−1
∑

i∈ eC I(Xi ≥ T ∗ + βnZi) > ψ/2 with probability close to 1. Then the

number of residuals at risk will exceed ñψ/2 whenever an interchange in ranks takes place.

Hence with arbitrarily large probability, the change is bounded by 8/(ψñ).

In his Theorem 3.2, Tsiatis (1990) considered the total number of interchanges M for the

underlying complete data that occur as β increases from dn−1/2 to (d + δ)n−1/2. For any

given ε > 0, he showed that there exists δ > 0 such that

lim
n→∞

P{n−3/2M ≥ ε} = 0 .

Since the total number of order interchanges for case-cohort data is no greater than M , we

have

sup
dn−1/2≤β≤(d+δ)n−1/2

n−1/2|S̃n(β)− S̃n(dn−1/2)| ≤ n−1/2M × {8/(ψñ)}

= n−3/2M × {8/(ψα)}+ o(n−3/2)

and we thus have proved the theorem. ¤
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Proof of Theorem 3. From the definition of S̃n(β), we have

n−1/2S̃n(0) = n−1/2

n∑
i=1

∫ T ∗

−∞
{Zi − Z̃(u, 0)} dNi(u)

= n−1/2

n∑
i=1

∫ T ∗

−∞
{Zi − Z̄(u, 0)} dMi(u)

− n−1/2

n∑
i=1

∫ T ∗

−∞
{Z̃(u, 0)− Z̄(u, 0)} dMi(u)

− n−1/2

∫ T ∗

−∞
{Z̃(u, 0)− Z̄(u, 0)} dΛ̄(u) , (21)

where Λ̄(u) =
∑n

i=1 Λ(u). The second term in (21) converges to zero as in Self and Prentice

(1988, pages 70-71), since it is a martingale with covariation process converging to zero. Then

the proof of asymptotic normality of the sum of the first and third terms follows exactly as

the proof of asymptotic normality of the score statistic (Theorem 3.1 in Self and Prentice,

1988). The following is the verification of condition (2) of their Proposition 1.

It is easily seen that

n1/2
{
Z̃(t, 0)− Z̄(t, 0)

}

= n1/2

{
D̃(1)(t, 0)

D̃(0)(t, 0)
− D(1)(t, 0)

D(0)(t, 0)

}

= n1/2D̃(0)(t, 0)−1
[{

D̃(1)(t, 0)−D(1)(t, 0)
}− {

D̃(0)(t, 0)−D(0)(t, 0)
}
Z̄(t, 0)

]

= n1/2d(0)(t, 0)−1
[{

D̃(1)(t, 0)−D(1)(t, 0)
}− {

D̃(0)(t, 0)−D(0)(t, 0)
}
µ(t, 0)

]
+ op(1) .

Let fjn(Xn) = d(0)(t, 0)−1[ZjYj(t) − µ(t, 0)Yj(t)]. Then the absolute value |fjn(Xn)| is

bounded by d(0)(t, 0)−1[1 + |µ(t, 0)|] ≤ 2d(0)(t, 0)−1 due to the fact that |Zi| ≤ 1, |Yi(t)| ≤ 1.

With this choice of fjn(Xn), n1/2
{
Z̃(t, 0)− Z̄(t, 0)

}
becomes hn(Xn, δn) in Proposition 1 in

Self and Prentice (1998). Here we adopt their notation Xn and δn to denote cohort data

and subcohort membership indicators, respectively. Since d(0)(t, 0) is bounded away from 0,

for any fixed ε, when n1/2ε ≥ 4d(0)(t, 0)−1, we have

n−1

n∑
j=1

[fjn(Xn)− f·n(Xn)]2I{|fjn(Xn)−f·n(Xn)|>n1/2ε} = 0 ,

which verifies the condition (2) in the proposition.

By their Proposition 1 we know that the first and third terms in (21) are asymptotically

independent. Thus n−1/2S̃n(0) converges to a normal distribution with variance coming
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from two parts, the asymptotic variance of n−1/2Sn(0) for underlying complete data and the

variance from sampling. ¤

Proof of Theorem 5. we again consider the maximum change of the statistic at an

interchange and the number of interchanges. Write S̃B
n (β) as

n∑
i=1

∆(i)

[
Z(i) − Z̃B

(i)(u, β)
]

=
∑

i∈C∪D
∆(i)

[
Z(i) − Z̃B

(i)(u, β)
]

, (22)

where

Z̃B
(i)(u, β) =

∑
j∈ eRB{(i),β} WjZj∑

j∈ eRB{(i),β} Wj

.

Here R̃B{(i), β} is the risk set for subjects in C. We have 1 ≤ Wj ≤ 1/ρ for all j ∈ C.

Now suppose as β increases to β+, a change of order between (i) and (i + 1) occurs. We

consider the corresponding change in (22) for all the completely observed subjects for the

following three cases. The calculations are similar to that in the proof of Theorem 2.

1. Subject (i) is an event and (i + 1) is censored. Then (i + 1) ∈ C, and

Z̃B
(i)(u, β+) =

∑
j∈ eRB{(i)} WjZj −W(i+1)Z(i+1)∑

j∈ eRB{(i)} Wj −W(i+1)

.

Hence

|S̃B
n (β)− S̃B

n (β+)| = |Z̃B
(i)(u, β+)− Z̃B

(i)(u, β)| ≤ 2W(i+1)∑
j∈ eRB{(i)} Wj −W(i+1)

.

2. Subject (i) is censored and (i + 1) is an event. So (i) ∈ C. We have

Z̃B
(i+1)(u, β+) =

∑
j∈ eRB{(i+1)} WjZj + W(i)Z(i)∑

j∈ eRB{(i+1)} Wj + W(i)

,

and thus

|S̃B
n (β)− S̃B

n (β+)| = |Z̃B
(i+1)(u, β+)− Z̃B

(i+1)(u, β)| ≤ 2W(i)∑
j∈ eRB{(i+1)} Wj + W(i)

.

3. Both Subjects (i) and (i + 1) are events. Then

Z̃B
(i)(u, β+) =

∑
j∈ eRB{(i)} WjZj −W(i+1)Z(i+1)∑

j∈ eRB{(i)} Wj −W(i+1)

,
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and

Z̃B
(i+1)(u, β+) =

∑
j∈ eRB{(i+1)} WjZj + W(i)Z(i)∑

j∈ eRB{(i+1)} Wj + W(i)

.

Hence

|S̃B
n (β)− S̃B

n (β+)| = |Z̃B
(i)(u, β+) + Z̃B

(i+1)(u, β+)− Z̃B
(i)(u, β)− Z̃B

(i+1)(u, β)|
≤ |Z̃B

(i)(u, β+)− Z̃B
(i)(u, β)|+ |Z̃B

(i+1)(u, β+)− Z̃B
(i+1)(u, β)|

≤ 2W(i+1)∑
j∈ eRB{(i)} Wj −W(i+1)

+
2W(i)∑

j∈ eRB{(i+1)} Wj + W(i)

.

We see that the change in (22) for any single interchange of the ordered residuals is

bounded by
2(W(i) + W(i+1))∑

j∈ eRB{(i+1)} Wj

≤ 4

ρN eRB{(i+1)}
.

By similar argument to the classical case-cohort design, we have that the change is bounded

by 8/(ñ∗ψρ) ≤ 8/(ñψρ). The rest of the proof is the same as that for the classical case-cohort

design. ¤

Prior to the proof of Theorem 6, we establish the following Lemma 4 that is a modification

of Proposition 1 in Self and Prentice (1988).

Lemma 4: Denote Xn = (X1n, . . . , Xnn) and Wn = (W1n, . . . ,Wnn). Let pairs (X1n,W1n),

. . . , (Xnn, Wnn) be independent and identically distributed random variables such that:

(1) E[W1n|X1n] = E[W1n] = 1.

(2) For some scalar functions of Xn, fin(Xn), and for any ε > 0,

1

n

n∑
i=1

E
[
fin(Xn)2(Win − 1)2I{|fin(Xn)(Win − 1)| > n1/2ε}

∣∣∣Xn

]
→ 0

in probability and

S2
fn ≡

1

n

n∑
i=1

fin(Xn)2Var(Win|Xin) → σ2
f > 0

in probability.

(3) The scalar functions of Xn, gn(Xn), converge in distribution to a Gaussian random

variable with mean zero and variance σ2
g .

Then for hn(Xn,Wn) = n−1/2
∑n

i=1 fin(Xn)(Win − 1), we have
(

gn(Xn)
hn(Xn,Wn)

)
→ N(0, Σ) in distribution with Σ =

[
σ2

g 0
0 σ2

f

]
.
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Proof. Let (gn, hn) denote (gn(Xn), hn(Xn,Wn)). Let h∗n = hn/Sfn and v∗n = v/Sfn. Then

P (gn ≤ w, hn ≤ v) = P (gn ≤ w, h∗n ≤ v∗)

= E[I(gn ≤ w)P (h∗n ≤ v∗n|Xn)].

By conditions (1) and (2), Linderberg-Feller central limit theorem applies and thus we have

|P (h∗n ≤ v∗n|Xn)− Φ(v∗)| →p 0,

where Φ(·) denotes the cumulative distribution function of a standard normal random vari-

able. Since v∗ →p v/σf and Φ is continuous, we have Φ(v∗) →p Φ(v/σf ). Thus by applying

Dominated Convergence Theorem we have

P (gn ≤ w, hn ≤ v) = E[I(gn ≤ w){Φ(v/σf ) + op(1)}]
= P (gn ≤ w)Φ(v/σf ) + o(1)

→ Φ(w/σg)Φ(v/σf ) .

¤

Proof of Theorem 6. As in equation (21), we have the following decomposition:

n−1/2S̃B
n (0) = n−1/2

n∑
i=1

∫ T ∗

−∞
{Zi − Z̃B(u, 0)} dNi(u)

= n−1/2

n∑
i=1

∫ T ∗

−∞
{Zi − Z̄(u, 0)} dMi(u)

− n−1/2

n∑
i=1

∫ T ∗

−∞
{Z̃B(u, 0)− Z̄(u, 0)} dMi(u)

− n−1/2

∫ T ∗

−∞
{Z̃B(u, 0)− Z̄(u, 0)} dΛ̄(u) ,

Similar to the proof for the classical case-cohort design, the middle term in the above

decomposition converges to zero. We can further show that the first and third terms converge

jointly to independent Gaussian random variables by Lemma 4. Details are very close to the

proof of Theorem 3 for non-trivial cases with P{π(Z∗) < 1} > 0 and thus omitted. ¤
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Table 1: Simulation summary statistics for estimating β in the model logT = βZ + ε based
on 500 replications with cohort size 5000.

Method Mean of (β̂) S.E. of (β̂) Mean of ŝe(β̂) 90% CP 95% CP

(1) β = 0, pz = 0.1

Full 0.003 0.095 0.098 91.2% 95.2%
SRS -0.032 0.184 0.193 90.0% 94.8%
Strat0] -0.011 0.193 0.200 89.4% 94.8%
Strat1† -0.004 0.173 0.182 91.4% 96.6%
Strat2‡ 0.007 0.143 0.151 90.4% 95.0%

(2) β = 1, pz = 0.1

Full 1.007 0.161 0.179 94.2% 98.2%
SRS 0.979 0.228 0.275 94.0% 97.2%
Strat0] 0.990 0.237 0.273 93.8% 97.8%
Strat1† 0.996 0.214 0.254 95.8% 98.6%
Strat2‡ 1.007 0.189 0.222 95.8% 98.2%

(3) β = 0, pz = 0.3

Full 0.002 0.061 0.062 90.2% 94.8%
SRS -0.011 0.130 0.119 87.8% 93.2%
Strat0] -0.006 0.127 0.124 88.0% 92.4%
Strat1† -0.004 0.117 0.118 89.6% 94.6%
Strat2‡ 0.002 0.114 0.113 90.4% 94.8%

(4) β = 1, pz = 0.3

Full 1.001 0.084 0.089 91.8% 96.0%
SRS 0.991 0.134 0.144 91.8% 95.8%
Strat0] 0.987 0.141 0.154 92.6% 97.8%
Strat1† 0.989 0.131 0.147 93.4% 97.4%
Strat2‡ 0.993 0.128 0.140 92.8% 97.2%

] Strat0 is stratified with η = ν = 0.5, which is equivalent to non-stratification;
† Strat1 is stratified with η = ν = 0.7;
‡ Strat2 is stratified with η = ν = 0.9;
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Table 2: Results for the Wilms tumor study based on 20 sampled subcohorts.

Parameter estimates (S.E.) under different sampling
UH Stage II Stage III Stage IV NWTSG-4 log(Diam) Age 2-4 Age ≥ 4

Full -3.943 -1.502 -1.792 -3.097 0.053 -0.280 0.883 -0.326
(0.175) (0.391) (0.377) (0.281) (0.209) (0.314) (0.354) (0.239)

SRS† -3.945 -1.481 -1.702 -3.205 -0.001 -0.483 0.967 -0.227
(0.279) (0.421) (0.444) (0.484) (0.323) (0.427) (0.426) (0.409)

Strat‡ -3.918 -1.564 -1.836 -3.303 0.052 -0.164 1.016 -0.344
(0.261) (0.429) (0.445) (0.499) (0.326) (0.433) (0.416) (0.414)

† SRS with 800 subjects in subcohort;
‡ Strat is stratified with about 360 subjects in the favorable local histology group, about
360 subjects in the unfavorable local histology group, and about 80 from the unknown local
histology group.
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