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Review of the Maximum Likelihood Functions
for Right Censored Data. A New Elementary

Derivation.

Stefano Patti, Elia Biganzoli, and Patrizia Boracchi

Abstract

Censoring is a well known feature recurrent in the analysis of lifetime data, occur-
ring in the model when exact lifetimes can be collected for only a representative
portion of the surveyed individuals. If lifetimes are known only to exceed some
given values, it is referred to as right censoring. In this paper we propose a sys-
tematization and a new derivation of the likelihood function for right censored
sampling schemes; calculations are reported and assumptions are carefully stated.
The sampling schemes considered (Type I, II and Random Censoring) give rise
to the same ML function. Only the knowledge of elementary probability the-
ory, namely the definitions of the order statistics and the conditional probability
distribution function, are required in the proofs. Lastly we give an intuitive inter-
pretation of Type I Censoring as a special case of Random Censoring, so that a
global theory holds.
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1 Introduction

Let U1, U2, . . . , Un be a sample of size n of an (absolutely) continuous random
variable U . Assume that the sample is independent and identically distributed
(i.i.d.), defined on the probability space (Ω,F, P ) into (R+,BR+). For each
i = 1, . . . , n, the observation ui of the random variable Ui represents the
lifetime of the individual i.
The present note refers to the occurrence of a single possible event for each
individual, which ends the observation.
Let f(u) be the probability density function (p.d.f.) of U and let F (u) =
P (U ≤ u) be its cumulative distribution function (d.f.). Equipped with this
notation we can define the survival function S(u) = 1−F (u), usually adopted
for lifetime analysis; therefore S(u) = P (U > u) .
Due to the independence and to the identical distribution of the sample, the
joint p.d.f. of the sample is:

fU (u) = f(u1)f(u2) . . . f(un). (1)

where U = (U1, . . . , Un) and u = (u1, . . . , un).
We work in a parametric environment, i.e. we assume that, up to the specifi-
cation of a parameter θ, the p.d.f. of the sample is completely known. Hence
for any fixed u ∈ Rn

+, the likelihood function is automatically determined by
the map

θ 7→ L(θ, u) = fU (2)

where θ belongs to a parameter space H ⊆ Rd.
If some data is censored, we cannot observe the outcomes for every (Ui)n

i=1,
hence the calculations of the joint probability function (or, equivalently, the
likelihood function), is not as immediate as it is for Eq. (1) (Eq. (2) re-
spectively). In this case it is necessary to define suitable random variables
that better describe the process, see e.g. [4,8,5]. For a detailed analysis of
continuous time sampling processes, see [1].

In Section (2) we classify the right censoring schemes, namely Type I,
Type II and Random Censoring; we focus our attention only on right censor-
ing because of its crucial importance in medical surveys. In Sections (3, 4, 5)
the calculations of the related ML functions are reported and in Section (6)
we give a global interpretation of the results obtained for Type I and Random
Censoring.

2 Right Censoring

An observation is said to be right censored at C if the exact value of the
observation is not known except that it is greater than, or equal to C.
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2.1 Type II Censoring

Let U1, . . . , Un be a sample of size n and let r ≤ n fixed a priori, we collect
data until r failures occur. When the rth sampling unit that fail is observed,
the survey ends. Therefore we only collect observations drawn from the ran-
dom variables Z1, Z2, . . . , Zr where

Zi = {ith smallest of U1, . . . , Un} i = 1, . . . , r (3)

We call this sampling schemes Type II censoring. This scheme is often adopted
for toxicology experiments and life testing applications by engineers as it has
been proven to save time and money.

2.2 Type I Censoring

Assume that for each of the n individuals in the sample, the date of the
entrance in the study vi

0 is known (possibly it is the same for the whole sam-
ple). Each individual will be observed until a time vi

fin, namely the censoring
time, has elapsed. vi

fin are fixed a priori and they are possibly the same for
the whole sample. Note that the exact observation window is known for each
patient.
If v0 = v1

0 = · · · = vn
0 , but v1

fin 6= · · · 6= vn
fin, the censoring process is called

Progressive Type I, otherwise Type I. By rescaling the censoring time, we
can match every v0

i with 0 and call v1, . . . , vn the rescaled censoring times.
It should be remembered that due to censoring, the exact lifetime for each
individual (i.e. the outcomes of U1, . . . , Un) is not necessarily known. Instead,
we observe the outcomes of the random variables (T1, . . . , Tn), where:

Tj =
{

Uj if Uj ≤ vj

vj if Uj > vj
(4)

Clinical data is often collected fixing a maximum follow-up time C, chosen for
each individual (administrative censoring). Therefore, given a sampling unit,
its lifetime will only be precisely known, if it is less than the predetermined
maximum follow-up time C.

For example, surveys on animals may be conducted by fixing the same
observation window for the whole sample; hence every individual enters si-
multaneously in the study and it is observed until a given maximum follow-up
time.
For clinical trials, patients usually enter in the study at different, but sched-
uled, times and the maximum follow-up time is equally fixed for the whole
sample. Note that by rescaling the lifetimes, the schemes of the two examples
match.
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2.3 Random Censoring

A more general case of Type I Censoring is Random Censoring. As in the
previous case, the enrolment time is fixed a priori for each individual, but the
censoring time is modelled by a random variable. Likewise Type I Censoring,
we rescale the censoring times in order to match the enrolment times with
0; i.e. we consider the follow-up time instead of the calendar time. Let Vi

be the rescaled censoring times. Collected data are drawn from the following
random variables:

Tj =
{

Uj if Uj ≤ Vj

Vj if Uj > Vj
(5)

For example, consider a data set where every individual enters simultaneously
in the survey but, differently from Type I, censoring time is not fixed, but
depends by other random factors, e.g. patients lost to follow-up.

Generalized Type I Censoring - Random Censoring
Consider the case in which an administrative censoring time is fixed but the

enrolment time is random; e.g. a medical trial for the study of disease relapses
after a surgical operation. Patients enter in the study after the operation, and
therefore the enrolment process is random. Therefore the censoring time, that
is the lapse between an individual’s entry into the study and the termination
of the study, is random. This censoring is called by some authors (Klein
and Moeschberger [4]) Generalized Type I, and by some others (Lawless [5],
Marubini and Valsecchi [8]) Random. We adopt the second notation in order
to stress the randomness of the observation window. Actually, we can apply
to this case the same theory of the Random Censoring scheme presented
in the previous paragraph, by considering the follow-up time instead of the
calendar time.
More generally, in the final Section (6) we point out that Type I Censoring
can be interpreted as a special case of the more general Random Censoring,
and no confusion occurs.

Finally, assume that both the enrolment time and the censoring time are
random, this is the most common case that occurs for medical trials. Again
we model this experiment in the same way as the Random Censoring case;
in fact all randomness of the process can be shifted on the right side of the
observation window, by rescaling and considering a unique random variable
Vi that represents the random censoring time.

3 ML for Type II Censoring

Let U1, . . . , Un be a sample of size n and let u1, . . . , un be the actual sample.
Note that only the r smallest observations of the sample will be collected, and
that r is fixed at the beginning of the survey, therefore it will not interfere
as a variable or a parameter during the data analysis.

Hosted by The Berkeley Electronic Press



4

Define (Zi)r
i=1 as Eq. (3); Zi is called the ith Order Statistics of U1, . . . , Un.

Referring to the actual samples, zi is the ith smallest observations among the
numbers u1, u2, . . . , un.
It is clear that the random variables (Zi)r

i=1 are ordered, i.e. Z1 ≤ · · · ≤ Zr.

Remark 1 The joint p.d.f. of Z1, . . . , Zr is not
∏r

i=1 f(zi).

We may find that, in general, the random variables Z1, . . . , Zr are not in-
dependent. To calculate the joint p.d.f. of the order statistics we need the
following Theorem.

Theorem 1 Let U1, . . . , Un be i.i.d. random variables with cumulative den-
sity function F and p.d.f. f which is positive and continuous for
0 ≤ a < u < b ≤ ∞ and zero otherwise, and let Z1, . . . , Zr be the order
statistics. Then the p.d.f. gj of Zj is given by:

gj(zj) =





n!
(j−1)!(n−j)!

[
F (zj)

]j−1[1− F (zj)
]n−j

f(zj), a < zj < b

0, otherwise.

Furthermore, the joint p.d.f. gij of any pair (Zi, Zj) with 1 ≤ i < j ≤ r, is
given by:

gij(zi, zj) =





n!
(i−1)!(j−i−1)!(n−j)!

[
F (zi)

]i−1[1− F (zj)
]n−j

×[
F (zj)− F (zi)

]j−i−1
f(zi)f(zj), a < zi < zj < b

0, otherwise.
(6)

Proof: see, e.g. Roussas [9].
From here forth, we will adopt the notation U(j), instead of Zj to denote

the jth order statistics.
From Eq. (6) the computation of the joint p.d.f. of U(1), . . . , U(r) follows
straightaway, see Lawless [5]:

fU(1),...,U(r)(u(1), . . . , u(r)) =
n!

(n− r)!
f(u(1)) . . . f(u(r))[S(u(r))]n−r (7)

Given the joint p.d.f. above, the likelihood function is therefore completely
determined by Eq. (2).

4 ML for Type I Censoring

Consider a sample of size n and fix for each individual a censoring time
v1, . . . , vn, representing the maximum follow-up time. Let ui, . . . , un be the
actual lifetimes.
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We assign to each patient the couple (ui, vi); his/her exact lifetime is observed
only if ui ≤ vi.
If vi = v ∀i = 1, . . . , n, we say that the data is Singly Type I Censored.

Remark 2 The number of exact lifetimes (i.e the number of failures) ob-
served with Type I Censoring is random.

Assume that Ui are i.i.d., with p.d.f f(u) and survival function S(u).

Definition 1 Data coming from this setup can be conveniently represented
by the n pairs of random variables (T,∆)i = (Ti, ∆i), where

Ti = min(Ui, vi) and ∆i =
{

1 if Ui ≤ vi

0 if Ui > vi
(8)

Let (ti, δi) be the actual sample drawn from the random vectors (Ti,∆i),
where the range of any δi is ({0}, {1}). δi is the indicator of failure, that is,
δi = 1 if the lifetime of the ith patient is exactly known and δi = 0 if the time
is censored. Therefore Ti is equal to Ui if the event of failure is observed, and
to vi otherwise.

Remark 3 Because (Ui)n
i=1 are identically distributed and are independent

on censoring (noninformative censoring), then the random vectors (T, ∆)i i =
1, . . . , n are identically distributed.
Hence (T, ∆)1, (T, ∆)2, . . . , (T, ∆)n ∼ (T,∆)

Lemma 1 According to the assumptions stated in this section, the joint p.d.f.
of (T,∆) is:

fT,∆(t, δ) = f(u)δS(v)1−δ. (9)

where f and S are the p.d.f. and the survival function of U , respectively.

Proof. The marginal random variables T and ∆ of the random vector (T,∆)
are of continuous and discrete type respectively. By the definition of condi-
tional probability density function, see e.g. [2], we can state:

fT,∆(t, δ) = fT |∆(t|δ)p∆(δ) (10)

where p∆(δ) is the discrete density of the random variable ∆.

1. Consider the case when δ = 0; then t = min{u, v} = v and it is sufficient
to prove that fT,∆(v, 0) = S(v).
We can see that fT |∆(t|0) is a discrete density by computing

fT |∆(t|0) =
{

1 if t = v
0 if t 6= v

(11)

where v is a generic censored time.
Eq. (11) means that, conditional upon the knowledge that the observation

Hosted by The Berkeley Electronic Press



6

is censored, the probability that the time reported in the test is the
censoring time v is 1.
Hence from Eq. (10) and using Eq. (11), it follows that

fT,∆(t, 0) =
{

p∆(0) if t = v
0 otherwise.

(12)

where
p∆(0) = P (∆ = 0)

= P (T > v)
= S(v).

(13)

2. If δ = 1, then t = min{u, v} = u and we need to prove that fT,∆(u, 1) =
f(u).
From Eq. (10) it follows that

fT,∆(t, 1) = fT |∆(t|1)p∆(1) (14)

Consider separately the two parts on the right hand side of Eq. (14):

p∆(1) = P (∆ = 1)
= P (T ≤ v)
= 1− S(v)

(15)

and

fT |∆(t|1) =





0 if t > v

f(t|t ≤ v) = f(t)
1−S(v) otherwise.

(16)

Considering the above equations, we obtain

fT,∆(t, 1) =
{

0 if t > v
f(t) if t ≤ v

(17)

Finally, note that t ≤ v implies that t = u. Therefore we can write Eq.
(17) as a function of u only, i.e. fT,∆(u, 1) = f(u).

N

Corollary 1 With the same assumptions of Lemma (1), if additionally the
pairs (T,∆)i are independent, i.e. if the sample comes from independent ob-
servations and the censoring is noninformative, it follows that the likelihood
function is

L =
n∏

i=1

f(ui)δiS(vi)1−δi (18)

The above equation is a well known result in biostatistics, nevertheless our
derivation by means of elementary probability, is not self-evident in the clas-
sical survival analysis manuals.
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5 ML for Random censoring

Assume that two random variables are associated to each individual: a life-
time Ui and a censoring time Vi. In order to develop the following theory we
need to assume that the n × n random variables (Ui)n

i=1 and (Vi)n
i=1 are all

independent, i.e. observations are independent and the censoring is noninfor-
mative. Differently from the previous case, the censoring time is no longer
deterministic but it is a random variable. Furthermore, assume that Vi are
i.d. random variables.

Definition 2 Let fi(t), gi(t) be the probability densities and Si(t), Gi(t) be
the survival functions of Ui, Vi respectively. Similarly to Type I Censoring,
define the following random variables

Ti = min(Ui, Vi) and ∆i =
{

1 if Ui ≤ Vi

0 if Ui > Vi
(19)

Remark 4 We assume that Vi are independent and that the censoring is
noninformative; moreover if Ui are identically distributed (e.g. i.i.d sam-
pling), then (T, ∆)i i = 1, . . . , n are identically distributed, i.e.
(T, ∆)1, . . . , (T, ∆)n ∼ (T,∆).
Note that ∆ has a Bernoulli distribution B(p) where 1−p represents the ratio
of censored observations with respect to the sample size.

Lemma 2 With the previous assumptions and notations, the joint p.d.f. of
(T, ∆) is given by:

fT,∆(t, δ) = [f(t)G(t)]δ[g(t)S(t)]1−δ (20)

Proof. This result clearly appears to have the same structure of Lemma (1),
effectively it is its generalization and the steps of the proof are the same.

1. Case δ = 0. Using the definition of conditional probability distribution

fT,∆(t, 0) = fT |∆(t|0)p∆(0) (21)

Note that conditional upon δ = 0, then T = V ; hence for T = t the two
densities on the right hand side of Eq. (21) are equal to

fT |∆(t|0) = g(t) (22)

p∆(0) = P (U > t)
= S(t) (23)

Therefore Eq. (21) becomes

fT,∆(t, 0) = g(t)S(t) (24)
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2. Case δ = 1. By conditioning, we obtain

fT,∆(t, 1) = fT |∆(t|1)p∆(1) (25)

Note that conditional upon δ = 1, then T = U ; hence for T = t the two
densities on the right hand side of Eq. (25) are equal to

fT |∆(t|1) = f(t) (26)

p∆(1) = P (V > t)
= G(t) (27)

Therefore Eq. (25) becomes

fT,∆(t, 1) = f(t)G(t) (28)

By combining Eqs. (24) and (28), Lemma 2 is proved. N

Corollary 2 With the same assumptions of Lemma 2 (i.e. Vi i.i.d., Ui i.d.
and noninformative censoring), assume additionally that Ui are independent.
Therefore the sample random vectors Xi = (T, ∆)i i = 1, . . . , n are i.i.d.
Hence, we can factorize the joint p.d.f. to obtain

fX(x) =
∏n

i=1

[
f(ti)G(ti)

]δi
[
g(ti)S(ti)

]1−δi

=
( ∏n

i=1 G(ti)δig(ti)1−δi

)(∏n
i=1 f(ti)δiS(ti)1−δi

) (29)

where X = (X1, . . . , Xn).

Usually the function
∏n

i=1 G(ti)δig(ti)1−δi does not depend on the parameter
θ, that only occurs in f(t, θ) and S(t, θ).
Therefore

∏n
i=1 G(ti)δig(ti)1−δi is not involved in the calculation of the Max-

imum Likelihood estimator θ̂ (remember that θ̂ = arg max
θ∈H

L(θ, t)), i.e.

max
θ∈H

(
∏n

i=1

[
f(ti, θ)G(ti)

]δi
[
g(ti)S(ti, θ)

]1−δi

)
=

=
( ∏n

i=1 G(ti)δig(ti)1−δi

)
max
θ∈H

( ∏n
i=1 f(ti, θ)δiS(ti, θ)1−δi

) (30)

Hence for the sake of simplicity, we define the Likelihood function as

L =
n∏

i=1

f(ti)δiS(ti)1−δi (31)

which has the same form as the Type I Censoring case, Eq. (18).

Remark 5 If the censoring is informative, the functions computed in Eqs.
(18) and (31) are called Partial Likelihoods; they do not further represent the
Likelihood Function, but they are still useful statistics for the analysis (see
Kalbfleisch & Prentice [6] and Cox & Hinkley [3]).
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6 Final Remark

We showed that Type I and Random Censoring give rise to a similar ML
function. This is not by chance; in actuality, the following statement may be
made. In order to provide a more direct interpretation, an intuitive reasoning
has been preferred instead of a formal terminology.

Remark 6 Type I Censoring can be interpreted as a special case of Ran-
dom Censoring where the whole probability of V (the “probabilistic mass”) is
concentrated in a unique point v.

That is, consider v (the fixed random time of Type I Censoring) as a real-
ization of a discrete random variable V where its distribution function F is
defined by

F (t) =
{

0 if t < v
1 if t ≥ v

(32)

i.e. V = v almost surely.
Note that Eq. (32) is the distribution function of a discrete random variable,
whereas censoring time for Random Censoring is modelled with an (abso-
lutely) continuous random variable. However it is possible to represent the
discrete random variable V as the “degenerate limit” of a sequence of (abso-
lutely) continuous random variables Xi having measure

PXi([a, b]) =
∫ b

a

δi(x)dx (33)

where δi are the density distributions and “approximate” the Dirac delta
function centered in v as i →∞.
The above integrals are equal to zero except on an open ball centered in v
with radius 1/i, and it can be proved that the “limiting” continuous random
variable D endowed with the Dirac measure (that is a singular continuous
measure) is well defined, where

PD([a, b]) =
∫ b

a

δ(x)dx =
{

1 if v ∈ [a, b]
0 otherwise

(34)

Hence tightening the interval to the singleton {v},

PD({t}) '
{

1 if t = v
0 otherwise

(35)

Finally we can take this “limiting random variable” D as the random variable
V , that describes the censoring time for Type I Censoring.

For the precise definitions of the quantities previously introduces and for
a rigorous proof of the convergence of distributions, see e.g. Kolmogorov &
Fomin [7].
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