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Posterior Simulation in the Generalized Linear
Model with Semiparmetric Random Effects

Subharup Guha

Abstract

Generalized linear mixed models with semiparametric random effects are useful
in a wide variety of Bayesian applications. When the random effects arise from
a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs
sampling procedures based on the Pólya urn scheme are often used to simulate
posterior draws. These algorithms are applicable in the conjugate case when (for
a normal base measure) the likelihood is normal. In the non-conjugate case, the
algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often
applied to generate posterior samples. Some common problems associated with
simulation algorithms for non-conjugate MDP models include convergence and
mixing difficulties.

This paper proposes an algorithm based on the Pólya urn scheme that extends the
Gibbs sampling algorithms to non-conjugate models with normal base measures
and exponential family likelihoods. The algorithm proceeds by making Laplace
approximations to the likelihood function, thereby reducing the procedure to that
of conjugate normal MDP models. To ensure the validity of the stationary dis-
tribution in the non-conjugate case, the proposals are accepted or rejected by a
Metropolis-Hastings step. In the special case where the data are normally dis-
tributed, the algorithm is identical to the Gibbs sampler.
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Abstract

Generalized linear mixed models with semiparametric random effects are useful in a wide variety

of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP)

model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are

often used to simulate posterior draws. These algorithms are applicable in the conjugate case when

(for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms

proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior

samples. Some common problems associated with simulation algorithms for non-conjugate MDP

models include convergence and mixing difficulties.

This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sam-

pling algorithms to non-conjugate models with normal base measures and exponential family like-

lihoods. The algorithm proceeds by making Laplace approximations to the likelihood function,

thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity

of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a

Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm

is identical to the Gibbs sampler.
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The performance of the technique is investigated using a Poisson regression example with semi-

parametric random effects. The algorithm is found to perform efficiently and reliably, even in prob-

lems where large sample results do not guarantee the success of the Laplace approximation. This is

further demonstrated by a simulation study where most of the count data consist of small numbers.

The technique is associated with substantial benefits relative to existing methods, both in terms of

convergence properties and computational cost.

Keywords: Gibbs sampling, MCMC, Dirichlet process models, non-conjugate models, Pólya urn scheme,

semiparametric Bayesian methods.

1 INTRODUCTION

This paper proposes a novel simulation algorithm for generating posterior samples from a generalized

linear mixed model (GLMM) with semiparametric random effects that follow a mixture of Dirichlet

process (MDP) model with normal base measure. The model has found application in such diverse

areas of Bayesian analysis as survival analysis, spatial statistics, economics and modeling of physical

systems in engineering.

1.1 Generalized linear mixed models

To motivate a description of the model, we begin with the normal linear random effects model of Laird

and Ware (1982). For case i = 1, . . . , n, the model assumes the likelihood function:

Yi ∼ N(x′

iβ + z′

iθi, σ
2) (1)

where the random effects are distributed as

θi
i.i.d.∼ Nq(0, D), i = 1, . . . , n (2)

When the data consist of counts, a Poisson likelihood could be used:

Yi | µi
ind∼ Po(µi), where log µi = oi + x′

iβ + z′

iθi (3)
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where oi is a known offset that is possibly equal to zero. Some investigators prefer to include an

additional, independent area-specific random effect in the expression for logµi. However, (3) is also

reasonable because the stochastic mechanism of the Poisson model can be regarded as replacing the

independent errors.

More generally, the data Yi could represent integer outcomes, binary outcomes (presence or absence

of a particular condition) or continuous measurements for which the normal assumption is not valid

even after transformation. Zeger and Karim (1991) recommend the use of a generalized linear mixed

model (GLMM) that replaces the normal likelihood with an exponential family distribution: Yi | ωi, ς
ind∼

h(Yi, ς) · exp {(Yi ωi − b(ωi)) /a(ς)}, where ς is a dispersion parameter and for which the conditional

expectation is given by E[Yi | ωi, ς] = µi = b′(ωi). Refer to McCullagh and Nelder, 1999, for the

details. The conditional variance is V ar[Yi | ωi, ς] = Υ(ωi) a(ς), with the variance function Υ(ωi)

defined as b′′(ωi). For an appropriate link function g(·), the linear predictor ηi is related to the mean

µi as ηi = g(µi), and is defined as

ηi = oi + x′

iβ + z′

iθi (4)

where oi is a known (and possibly zero) offset. The likelihood function can be regarded as a function

of ηi and dispersion parameter ς:

Yi | ηi, ς
ind∼ h(Yi, ς) · exp {(Yi ω(ηi) − b(ηi) /a(ς)} (5)

Linear regression (1) is a special case of this class of models with identity link and ς = σ2. Poisson

regression (3) corresponds to the log link and dispersion parameter ς = 1. Logistic regression corresponds

to a Bernoulli likelihood, logit (or probit) link and dispersion parameter ς = 1 (McCullagh and Nelder,

1999, p. 30).

A normal prior is typically assumed for the GLMM fixed effects: β ∼ Np(µβ ,Σβ). A prior for the

precision matrix of the random effects is D−1 ∼ Wishart (d0, R0), where the positive definite matrix

R0 is of order q and d0 ≥ q.
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1.2 GLMMs with mixture of Dirichlet process random effects

Theoretical properties of the Dirichlet process are developed, among other sources, in Ferguson (1973),

Blackwell and MacQueen (1973), Antoniak (1974), Sethuraman (1994) and Ishwaran and Zarepour

(2002). General features of the MDP model and Gibbs sampling methods are investigated in Escobar

(1994), MacEachern (1994), Escobar and West (1995), West et al. (1994) and Bush and MacEach-

ern (1996).

Kleinman and Ibrahim (1998a and 1998b) introduce a semiparametric version of the GLMM by

replacing assumption (2) for the random effects by a mixture of Dirichlet processes (MDP) model with

normal base measure:

θi | P i.i.d.∼ P

P ∼ DP (M ·Nq(0, D))

where DP (M ·Nq(0, D)) denotes a Dirichlet process with base measure Nq(0, D) and mass parame-

ter M . An overview of Dirichlet process models and the MCMC techniques is provided below.

To summarize, the GLMM with semiparametric random effects is:

Yi | ηi, ς
ind∼ h(Yi, ς) · exp {(Yi ω(ηi) − b(ηi) /a(ς)}

ηi = oi + x′

iβ + z′

iθi

β ∼ Np(µβ ,Σβ) (6)

θi | P i.i.d.∼ P

P ∼ DP (M ·Nq(0, D))

D−1 ∼ Wishart (d0, R0)

A prior on ς is not needed for Poisson or logistic regression, but may be necessary in other situations.

Except for the special case of the normal likelihood (1), model (6) assumes a non-conjugate likelihood

for the normal base measure.

4

http://biostats.bepress.com/harvardbiostat/paper42



1.3 The Dirichlet process

Let α be a finite measure on Rm such that α = M ·G0, where G0 is a probability measure and M is a

positive real number. Suppose that θi | P i.i.d.∼ P for i = 1, . . . , n. The Dirichlet process DP (M ·G0) is

a prior on the space of all distributions P on (Rm,<m). Given any measurable partition {A1, . . . , Ak}

of Rm, the random vector has the distribution

(P (A1), . . . , P (Ak)) ∼ D (M ·G0(A1), . . . ,M ·G0(Ak))

where D(·) represents the Dirichlet distribution. The distribution G0 is called the base measure and

M is called the mass parameter of the Dirichlet process. An MDP model assumes a prior on the base

measure G0, for example, by assuming that G0 belongs to a parametric family and assigning appropriate

priors to the hyperparameters. Refer to Freedman (1963), Ferguson (1973), Blackwell and MacQueen

(1973) and Antoniak (1974) for further details.

Let δx denote a point mass at x and {Vj}∞j=1 be i.i.d. beta(1,M) random variables. Sethuraman

(1994) gives a constructive definition of the Dirichlet process: P
a.s.
=

∑

∞

j=1 pjδθ∗

j
where the θ∗

j ’s are i.i.d.

draws from the base measure G0, and the probability masses {pj}∞j=1 are defined as p1 = V1 and as

pj = Vj(1 − ∑j−1
i=1 pi) for j ≥ 2. The a.s. representation implies that P is almost surely discrete so that

multiple cases share the same value of θ∗

j . We refer to this set as a cluster. The cluster structure can

be inferred from (θ1, . . . ,θn) because of the a.s. discreteness of P . Additional theoretical properties

of the Dirichlet process are discussed in Ishwaran and Zarepour (2002). The set of all possible cluster

structures increases exponentially with n, making simulation-based computational techniques necessary

for posterior inference.

The Dirichlet process induces a prior on the set of cluster structures. This can be easily seen from
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the Pólya urn scheme representation of DP (M ·G0):

θ1 ∼ G0

θj | θ1, . . . ,θj−1



















∼ G0 with probability M/(M + j − 1)

= θt with probability 1/(M + j − 1), for t = 1, . . . , j − 1

where j = 2, . . . , n. The Pólya urn scheme marginalizes over P and so the θj ’s are not independent

under this representation though they are identically distributed as G0 (Blackwell and MacQueen, 1973;

Ferguson, 1973).

The basic Gibbs sampler for MDP models (Escobar, 1994; MacEachern, 1994; West et al., 1994;

Escobar and West, 1995; Bush and MacEachern, 1996) relies on the Pólya urn scheme to update for

cases i = 1, . . . , n, the random effect θi conditional on the vector θ−i = (θ1, . . . ,θi−1,θi+1, . . . ,θn).

The algorithm proceeds as follows. Let vector Y = (Y1, . . . , Yn) represent the outcomes. Let the vector

θ−i consist of k− clusters that are respectively associated with values θ∗

1, . . . ,θ
∗

k− and number of cases

n−1 , . . . , n
−

k−
, where

∑k−

j=1 n
−

j = n− 1. Under the Pólya urn scheme, the full conditional of θi is

θi | θ−i,Y



















∼ G0 | Yi with probability ∝M · Ei

= θ∗

j with probability ∝ n−j [Yi | θj ], j = 1, . . . , k−

(7)

where Ei =
∫

[Yi | θ] dG0(θ). The first line in (7) corresponds to case i starting its own cluster. The

second line corresponds to case i joining one of the k− clusters obtained after excluding case i from the

data set.

Following an update of all n cases, Bush and MacEachern (1996) recommend adding an extra step

that generates, conditional on the cluster structure, the distinct θ∗

j ’s associated with the k clusters.

This step considerably improves the mixing of the sampler. The reader is referred to Dey, Müller and

Sinha (1998) for Gibbs sampling strategies developed for conjugate models.
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1.4 Non-conjugate MDP models

The Gibbs sampler is easy to implement in conjugate MDP models because the integral Ei in (7) can

be exactly computed. For non-conjugate models, the integral does not have a computationally closed

form and generation of a new value from the posterior distribution [G0 | Yi] is less straightforward.

The “no gaps” algorithm of MacEachern and Müller (1998) extends the basic Gibbs sampling al-

gorithm to non-conjugate MDP models. A description of the algorithm involves quantities that will

be used throughout the rest of this paper. Given the cluster memberships, the allocation variable ci is

defined as equal to j if case i belongs to cluster j, where i = 1, . . . , n and j = 1, . . . , k. For updating

the random effect θi, we exclude the ith case from the data set and define the variables θ∗

1, . . . ,θ
∗

k− and

n−1 , . . . , n
−

k−
as in (7). Additionally, we define nj as the number of cases including the case i that belong

to cluster j, so that
∑k

j=1 nj = n. This implies that k = k− + 1 if nci
= 1 and k = k− if nci

> 1. Given

an integer k∗ and values θ∗

1, . . . ,θ
∗

k∗+1, let the random variable φk∗ be defined as

φk∗ =



















θ∗

k∗+1 with probability ∝ M
k∗+1 [Yi | θk∗+1]

θ∗

j with probability ∝ n−j [Yi | θl], j = 1, . . . , k∗

(8)

With this notation, the “no gaps” algorithm can be described as follows. At the start of the cycle

of updates for the random effects θ1, . . . ,θn, augment the set of values θ∗

1, . . . ,θ
∗

k by generating n− k

additional values, θ∗

k+1, . . . ,θ
∗

n, from the base measure Nq(0, D). For cases i = 1, . . . , n:

(i) If nci
> 1, set k∗ = k in (8) and generate θi ∼ φk∗ .

(ii) If nci
= 1, leave θi unchanged with probability (k − 1)/k. Otherwise, swap the labels of the cthi

and kth clusters (i.e. ci 
 k) and the associated θ∗

j values (i.e. θ∗

ci

 θ∗

k), set k∗ = k − 1 in (8),

and generate θi ∼ φk∗ .

The “no gaps” algorithm avoids the integral Ei in (7), sometimes at the cost of slower convergence

and mixing properties (MacEachern, 1998). The simulation study presented in Neal (2000) suggests

7
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that the “no gaps” algorithm has difficulty starting new clusters. Walker, Damien, Laud and Smith

(1999), Neal (2000) and Ishwaran and James (2001) discuss alternative approaches that do not rely on

the Pólya urn scheme. Recently, Papaspiliopoulos and Roberts (2006) have investigated retrospective

MCMC methods for MDP models.

The auxiliary Gibbs algorithm of Neal (2000) proceeds as follows. Given an integer m, for cases

i = 1, . . . , n:

(i) Let h = k− +m.

(ii) If nci
> 1, exclude case i from the data to get k− = k clusters. Label these clusters using

{1, . . . , k−} and their associated θ∗

j values as φ1, . . . ,φk− . Independently sample h−k− additional

draws from the base measure Nq(0, D) and label them as φk−+1, . . . ,φh. Go to step (iv).

(iii) If nci
= 1, label the cthi cluster as (k− + 1). Label the clusters that remain after excluding

the ith case using {1, . . . , k−} and their associated θ∗

j values as φ1, . . . ,φk− . If h ≥ (k− + 2),

independently sample (h−k−1) additional draws from the base measure Nq(0, D) and label them

as φk−+2, . . . ,φh.

(iv) Sample a new value for ci as follows

P (ci = j) ∝



















n−

j

n−1+M · [Yi | φj ], j = 1, . . . , k−

M/m
n−1+M · [Yi | φj ], j = (k− + 1), . . . , h

(9)

Drop all φj ’s not associated with a cluster.

In this paper, I propose an algorithm based on the Pólya urn scheme for generating posterior

draws from the non-conjugate MDP model in (6). The key idea is to make Laplace approximations to

likelihood function (5) and to use the resulting normal posterior for the random effects as the proposal

distribution in a Metropolis-Hastings step. The details of this technique are provided in Section 2.

Section 3.1 presents an example where Poisson regression with semiparametric random effects is applied

8
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to analyze heart disease incidence rates in New South Wales, Australia. Section 3.2 uses a transformed

version of the data generated by Neal (2000) to investigate the benefits of the algorithm relative to

some of the existing ones for non-conjugate MDP models. The simulation study demonstrates the

effectiveness of the algorithm in problems where asymptotic results do not guarantee the success of the

Laplace approximation. For the examples in Section 3 where the approximation’s accuracy is somewhat

greater (e.g. moderately large counts in Poisson regression), the efficiency of the algorithm approaches

that of conjugate MDP models, and it substantially outperforms the “no gaps” and auxiliary Gibbs

algorithms.

2 A NEW ALGORITHM

2.1 The Laplace approximation

For models belonging to the exponential family, the Laplace approximation applies a linearized

version of the link function g(·) to the data, Y = (Y1, . . . , Yn). Conditional on the model parameters,

the working value for each case is defined as

yi = ηi +
∂ηi

∂µi
· (Yi − µi), i = 1, . . . , n (10)

The working weight is defined as wi = {Υ(µi)}−1 (∂µi/∂ηi)
2 where the variance function Υ(·) is defined

in Section 1. We obtain (Harville, 1977):

yi
indep∼ N

(

ηi, w
−1
i

)

(11)

where (y1, . . . , yn) represents the vector of working values, and not the data Y = (Y1, . . . , Yn). Refer to

McCullagh and Nelder (1999, p. 40) for an explanation. For the special case of normal likelihoods (1),

the Laplace approximation is exact with Yi = yi, and the MCMC strategy proposed in this section is

identical to the Gibbs sampler (7) for conjugate normal MDP models.

The Laplace approximation forms the basis of many well-known numerical and simulation-based

methods. The approximation is not restricted to problems where approximate normality is achieved

9
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due to large sample sizes. For the exponential family, one of the reasons for the remarkable success of

the technique is that the likelihood function (regarding as usual the data as fixed and the parameters

as random) is guaranteed to be log-concave for canonical link functions. Since the MLE belongs to the

interior of the parameter space under fairly mild conditions (e.g. if Y > 0 when Y is Poisson with log

link, or if 0 < Y < m when Y is binomial with logit link and m, the number of trials, exceeds one),

the log-likelihood is often approximated reasonably well by a quadratic function even when asymptotic

results are not applicable. For example, Figure 1 plots the Poisson log-likelihood of Y = 1 versus the

logarithm of the mean.

−0.10 −0.05 0.00 0.05 0.10

−
1.

00
5

−
1.

00
4

−
1.

00
3

−
1.

00
2

−
1.

00
1

−
1.

00
0

Log likelihood for Y=1

log(lambda)

lo
g 

lik
el

ih
oo

d

Figure 1: Log-likelihood function for Y ∼ Po(λ) versus θ = log λ when Y = 1.

2.2 Description of the algorithm

I have assumed below that the mass parameter M is fixed. However, a prior on M can be easily

accommodated by making minor changes to the algorithm. See MacEachern (1998) for an approach

that marginalizes over M , and Escobar and West (1995) for an approach that assumes a gamma prior

for the mass parameter.
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Step (A): Generating the allocation variables and random effects

Let ϕ denote the set of parameters (β, D, ς). Applying the Pólya urn scheme representation (7)

to the model (6), we obtain an exact expression for the full conditional of θi:

θi | θ−i,ϕ,Y



















∼ [θ | Yi,ϕ] with probability ∝M · Ei

= θ∗

j with probability ∝ n−j · [Yi | β,θ∗

j , ς] for j = 1, . . . , k−

(12)

where Ei = [Yi | ϕ] =
∫

[Yi | θ,ϕ] · N(θ | 0, D) · dθ. The second line in (12) can be easily

computed for the non-conjugate case. However, for a normal base measure, the integral Ei and

distribution [θ | Yi,ϕ] that appear on the first line (corresponding to case i starting its own cluster)

are generally not analytically available for the likelihood (5). We apply theoretical properties of

the exponential family to approximate the integral Ei via the normal approximation (11). This

simplifies the procedure for proposals to that of the basic Gibbs sampler, for which Ei is known

and for which θ∗

k−+1 corresponding to a new cluster can be easily generated using the normal

approximation to [θ | Yi,ϕ]. A Metropolis-Hastings acceptance-rejection step is then applied to

compensate for the approximation.

Before describing the Step (A) procedure in detail, it will be helpful to define the quantities that

are iteratively evaluated. As before, yi denotes working value (10) and Yi denotes the outcome.

Define the residual ξi = yi − oi − x′

iβ. Applying normal approximation (11) to the working value

likelihood, it can be shown that Ei is approximated by

Êi =

(

∂ηi

∂µi

)

·N
(

ξi | 0, w−1
i + z′

iDzi

)

(13)

where ∂ηi/∂µi is the Jacobian of the transformation that maps the data Yi to the working value

yi. Nr(ξ | a, B) denotes the density of the r-variate normal distribution with mean a and variance

matrix B evaluated at the point ξ.

Remove the ith case from the data set and label the remaining clusters using {1, . . . , k−}. Imagine

that case i now begins a new, (k−+1)th cluster. Then the posterior precision Ω−1
k−+1

of the normal

11
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approximation to the full conditional of θi is

Ω−1
k−+1

= D−1 + z′

iwizi (14)

and its mean µ∗

k−+1 equals

µ∗

k−+1 = Ωk−+1 · z′

iwi

(

yi − oi − x′

iβ
)

. (15)

An approximation to the Pólya urn scheme update (12) is then:

θi | θ−i,ϕ,Y



















approx∼ Nq

(

µ∗

k−+1, Ωk−+1

)

with probability ∝M · Êi

= θ∗

j with probability ∝ n−j · [Yi | β,θ∗

j , ς] for j = 1, . . . , k−

(16)

where Êi is defined in (13).

Procedure For case i = 1, . . . , n:

(i) Remove the ith case from the data set and label the clusters using {1, . . . , k−}. Let ci,0 be

the current allocation of the case i under this labeling scheme, so that ci,0 ≤ k− if nci,0
> 1,

and ci,0 = k−+1 if nci,0
= 1. If ci,0 = k−+1, evaluate the current conditional mean θ∗

(k−+1),0

and conditional precision Ω(k−+1),0 using (14) and (15).

(ii) A new value of θi, denoted by θ∗

(k−+1),1, is proposed using approximation (16). Let the

corresponding allocation variable be ci,1 so that ci,1 = k− + 1 if case i begins a new cluster.

If ci,1 = k− + 1, use θ∗

(k−+1),1 to compute the conditional mean θ∗

(k−+1),1 and conditional

precision Ω(k−+1),1 and evaluate

ρ1 =
[Yi | β,θ∗

(k−+1),1, ς] ·Nq(θ
∗

(k−+1),1 | 0, D)

Êi,1 ·Nq

(

θ∗

(k−+1),1 | µ∗

(k−+1),0
, Ω(k−+1),0

)

If the old allocation variable ci,0 = k− + 1, also evaluate

ρ0 =
[Yi | β,θ∗

(k−+1),0, ς] ·Nq(θ
∗

(k−+1),0 | 0, D)

Êi,0 ·Nq

(

θ∗

(k−+1),0 | µ∗

(k−+1),1
, Ω(k−+1),1

)

12
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(iii) Accept the proposal θi = θ∗

(k−+1),1 with a probability of min{1, $i}, where

$i =























































1 if ci,0 ≤ k− and ci,1 ≤ k−

ρ1 if ci,0 ≤ k− and ci,1 = k− + 1

1/ρ0 if ci,0 = k− + 1 and ci,1 ≤ k−

ρ1/ρ0 if ci,0 = k− + 1 and ci,1 = k− + 1

(17)

See the Appendix for a proof that this strategy has the right stationary distribution.

Step (B): Generating {θ∗

j}k
j=1 conditional on the allocation variables

This step generates the {θ∗

j}k
j=1 associated with the clusters without changing the cluster member-

ships. The move was originally proposed for the conjugate MDP model by Bush and MacEachern

(1996). Approximation (11) allows us to apply it in a straightforward manner to the non-conjugate

model (6) to further improve the mixing of the chain.

For cluster j = 1, . . . , k, let Zj be the nj by q matrix formed by subsetting the rows of matrix Z

that correspond to cluster j (i.e. rows i for which ci = j). Let Wj be the nj by nj diagonal matrix

of the working weights of these subsetted cases. After applying the Laplace approximation, the

precision matrix of the full conditional of θ∗

j is

Ω−1
j = D−1 + Z ′

jWjZj

Let θ∗

j,0 be the current value of θ∗

j and Ωj,0 be the current value of Ωj . We apply an overdispersed

random walk proposal (Gelman, Roberts and Gilks, 1995):

θ∗

j,1 ∼ Nq(θ
∗

j,0, a
2
q Ωj,0), where aq ≈ 2.4/

√
q

The generated θ∗

j,1 is used to compute the updated conditional variance Ωj,1. The procedure is

repeated for the clusters j = 1, . . . , k to obtain the set of proposals {θ∗

j,1}k
j=1. The set of proposals
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is jointly accepted with the Metropolis-Hastings probability

A
(

{θ∗

j,0}k
j=1, {θ∗

j,1}k
j=1

)

=

min

{

1,

∏n
i=1[Yi | β,θ∗

ci,1, ς] ·
∏k

j=1Nq(θ
∗

j,1 | 0, D) · ∏k
j=1Nq(θ

∗

j,0 | θ∗

j,1, a
2
qΩj,1)

∏n
i=1[Yi | β,θ∗

ci,0, ς] ·
∏k

j=1Nq(θ
∗

j,0 | 0, D) · ∏k
j=1Nq(θ

∗

j,1 | θ∗

j,0, a
2
qΩj,0)

}

(18)

Step (C): Generating β

A new value of β is proposed using a normal random-walk proposal. Define the matrix Q with

typical element qij equal to z′

iDzj if c(i) = c(j), and equal to zero otherwise. Set the n by

n matrix T = W−1 + Q, where W is the diagonal matrix of working weights. After applying

approximation (11), the covariance matrix Ωβ of the full conditional of β satisfies

Ω−1
β = Σ−1

β +X ′T−1X (19)

Let β0 be the current value of β and let Ωβ0
be the corresponding value of the covariance matrix.

We propose a new value β1 using an overdispersed random walk proposal:

β1 ∼ Np(β0, a
2
p Ωβ0

), where ap ≈ 2.4/
√
p

The covariance matrix Ωβ1
is computed using β1 and the proposed move accepted with the

probability:

A (β0,β1) = min

{

1,
[Yi | β1,θi, ς] ·Np(β1 | µβ ,Σβ) ·Np(β0 | β1, a

2
p Ωβ1

)

[Yi | β0,θi, ς] ·Np(β0 | µβ ,Σβ) ·Np(β1 | β0, a
2
p Ωβ0

)

}

Remark: (i) Steps (B) and (C) can be merged to jointly update β and {θ∗

j}k
j=1. (ii) The Appendix

contains a note on the computation of Ω−1
β that avoids the inversion of non-diagonal matrices of

order n.

Step (D): Generating the matrix D

We simulate from the full conditional

D−1 | θ∗

1, . . . ,θ
∗

j ,Y ∼Wishart



d0 + k,







R−1
0 +

k
∑

j=1

θ∗

j · (θ∗

j )
′







−1


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Step (E): Generating the dispersion parameter ς

The details of this step depends on the particular form of the exponential family and the prior

on ς. For Poisson and logistic regression models, this step is not needed as mentioned in Section 1

because ς = 1 .

3 APPLICATIONS

3.1 Ischemic heart disease in New South Wales, Australia

The Spatial Environmental Epidemiology in New South Wales (SEE NSW) project yielded outcome

data on ischemic heart disease (IHD) abstracted from daily separation records from all public and

private hospitals in New South Wales, Australia, during the period July 1, 1996 to June 30, 2001.

Patient reported residential postcode was used to assign the geographical location of hospitalization

for IHD. Population data were obtained from census information collected by the Australian Bureau of

Statistics (ABS) and inter-censal estimates, called Estimated Residential Populations (ERPs), provided

for July 1st of each non-census year.

The goal of this study is to explore the association of IHD with an index of socioeconomic disad-

vantage, SEIFA (Socio-Economic Indexes for Areas), provided by the Australian Bureau of Statistics

for each postal area. This score reflects relatively low educational attainment and income, high un-

employment, and jobs in relatively unskilled occupations. The higher an area’s SEIFA value the less

disadvantaged the area is compared with other areas (Breslow and Day, 1987). The SEIFA scores were

re-centered around zero to justify the specification of independent priors on the fixed effects, and also

scaled by a factor of 103. For an analysis accounting for the spatial association of all 591 postcodes

using CAR models (Besag et al., 1991; also see Banerjee et al., 2004), refer Burden et al. (2005), Guha

and Ryan (2006) and Guha et al. (2006).

To alleviate concerns that the proposed algorithm is effective only in problems where the marginal
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distributions of the random effects are approximately normal due to the central limit theorem, I chose

a random subset of 50 postcodes and analyzed only the IHD hospitalizations for the first year of the

study (July 1, 1996 to June 30, 1997). The five-number summary of the data is provided in Table 1 and

Figure 2 displays the histogram of the IHD counts. Although the graph reveals some large values, most

of the values are small to moderately large. Section 3.2 discusses an example where asymptotic theory

plays an even smaller role, with all the outcomes being less than 18 and only four of them exceeding 5.

With subscript i denoting postcode, let Yi denote the number of IHD hospitalizations in the ith

postcode (i = 1, . . . , 50), among the Ni subjects at risk during the first year. Let xi denote the SEIFA

index of postcode i. Because IHD is relatively rare, I assumed the Poisson approximation to the binomial

and fit the model:

Yi ∼ Po(µi), where ηi = log(µi) = log(Ni) + β1 + xiβ2 + θi (20)

and where β1 is the intercept, β2 is the coefficient associated with the SEIFA index and θi is the random

effect associated with postcode i. For the priors, I assumed:

β = (β1, β2)
′ ∼ Np(µβ ,Σβ) (21)

θi | P i.i.d.∼ P

P ∼ DP (M ·Nq(0, D))

D−1 ∼ Wishart (d0, R0)

where D is one-dimensional in this example. For the hyperparameters of the inverse-Wishart prior,

I chose R0 based on a parametric analysis using a different subset of postcodes, and set d0 = 10. A

relatively non-informative prior was assumed for the fixed effect β.

The algorithm described in Section 2 was used to generate posterior samples. As indicated in Sec-

tion 2, Steps (B) and (C) were combined into a single step that jointly generated the fixed effects β

and the k distinct random effects {θ∗

j}k
j=1 conditional on the cluster memberships. An initial set of

16
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Minimum 1st quartile Median 3rd quartile Maximum

IHD cases 0 8 20 78 452

Table 1: Five-number summary of the IHD hospitalizations in the 50 randomly selected postcodes.

5,000 samples was discarded as burn-in and the subsequent 100,000 samples used for posterior infer-

ences. The acceptance rate of the cluster proposals in Step (A), averaged over the 50 postcodes and

conditional on either ci,0 or ci,1 being equal to k− + 1 (otherwise, the proposals are always accepted)

was approximately 36%.

Based on the MCMC samples and the the subsetted data, an estimate of the posterior mean of the

SEIFA coefficient, E[β2|Y ], is −1.625 with an estimated standard error of 0.0018. A 95% posterior

credible interval for β2 is (−2.22,−1.011). The interval excludes zero, suggesting that the risk of heart

disease increases with socioeconomic disadvantage. The conclusion confirms the relationship between

socioeconomic status and risk of IHD observed by previous studies (e.g. Marmot et al., 1997).

Histogram of IHD cases
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Figure 2: Number of IHD hospitalizations in the 50 randomly selected postcodes during the period July

1, 1996 to June 30, 1997.
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3.2 Simulation study

The performance of the proposed algorithm was tested using a framework similar to that of Neal (2000),

where the data consist of nine numbers generated from the standard normal distribution: −1.48, −1.40,

−1.16, −1.08, −1.02, +0.14, +0.51, +0.53, +0.78. Neal’s paper uses the conjugate normal MDP model

to analyze these data. I added the constant β1 = 2 to these numbers and exponentiated the values to

get 1.68, 1.82, 2.32, 2.51, 2.66, 8.5, 12.3, 12.55, 16.12. I then generated Poisson variables with these

numbers as the means to obtain the data (Y1, . . . , Y9) = (1, 1, 2, 5, 1, 12, 17, 13, 12). The model used

to analyze the data was:

Yi | ηi
ind∼ Po(eηi)

ηi = β1 + θi

θi | P i.i.d.∼ P (22)

P ∼ DP (M ·N(0, 1))

M = 1

where β1 = 2 is known. The algorithms “no gaps” and auxiliary Gibbs with m = 1, 2 and 30 were

compared with the algorithm of Section 2. The criteria used to evaluate the algorithms were the com-

putational cost per iteration (in microseconds) and the autocorrelation times for the following variables:

number of clusters, k, and the random effects θ1, . . . , θ9. The autocorrelation time of an MCMC chain

(refer to Ripley, 1987, section 6.3) is defined as one plus twice the sum of the correlations from lag

one upwards. It is interpreted as the factor by which the MCMC sample size is effectively reduced,

relative to an i.i.d. posterior sample, for the computation of empirical average estimates of posterior

expectations.

Using the normal proposals algorithm of Section 2, 1000 initial iterations were run to obtain reason-

able parameter values. With this vector as the initial iterate of all the samplers, 20000 additional draws

were generated using each sampler and its performance was evaluated using the sample of generated
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values and the above criteria for comparisons. The results for β1 = 2 are displayed in Table 3. We

find the normal proposals algorithm outperforms the “no gaps” algorithm for these data. In particular,

the autocorrelation time for the number of clusters, k, is smaller implying that the normal propos-

als algorithm has a significantly better ability to begin new clusters. The auxiliary Gibbs algorithm

with m = 30 involves much higher computational costs. However, the differences between the normal

proposals algorithm and the auxiliary Gibbs algorithms with m = 1 and m = 2 is less clear. This

suggests that there are data sets and models (depending on the assumed priors for the fixed effects and

hyperparameters) for which each one of these three algorithms would outperform the others. However,

the normal proposals algorithm is found to perform reliably in a broad range of problems.

Data sets with larger counts tend to favor the normal proposals algorithm, and its performance

approaches that of conjugate MDP models because of the greater validity of the Laplace approximation.

For further comparisons between the normal proposals and auxiliary Gibbs algorithms, I added the

constant β1 = 4 to the standard normal sample in Neal’s paper, exponentiating the numbers and

generating Poisson variables with these means to obtain (Y1, . . . , Y9) = (10, 18, 22, 20, 26, 68, 96, 89,

110). The data were analyzed using the model (22) with β1 set equal to 4. Table 3 displays the simulation

results. In this example, the normal proposals algorithm is clearly more effective than auxiliary Gibbs

with either m = 1 or m = 2.
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Normal proposals “No gaps” AG, m = 1 AG, m = 2 AG, m = 30

Cost per iteration (10−3 s) 62.5 53.9 62.3 69.3 153.6

k 2.5 9.0 2.3 2.0 1.8

θ1 8.5 12.5 6.6 5.9 5.1

θ2 8.2 12.0 6.7 5.9 5.1

θ3 6.0 8.5 4.8 4.3 3.6

θ4 3.0 3.4 2.4 2.1 1.9

θ5 8.2 12.3 6.6 6.0 5.2

θ6 4.0 6.7 3.6 3.4 3.5

θ7 3.4 9.0 4.9 3.7 3.3

θ8 4.0 7.4 4.5 3.9 3.8

θ9 4.0 6.8 3.6 3.3 3.3

Table 2: A comparison of the normal proposals, “no gaps” and auxiliary Gibbs (AG) algorithms for

β1 = 2. See the text for an explanation.

Normal proposals AG, m = 1 AG, m = 2

Cost per iteration (10−3 s) 77.7 70.6 77.8

k 2.8 6.1 4.4

θ1 6.7 10.1 6.5

θ2 3.9 5.0 4.1

θ3 5.3 7.0 5.4

θ4 4.9 6.1 4.9

θ5 4.2 6.3 4.2

θ6 3.4 12.2 5.3

θ7 4.3 7.4 6.9

θ8 3 5.8 4.7

θ9 3.4 9.0 6.8

Table 3: A comparison of the normal proposals and auxiliary Gibbs (AG) algorithms for β1 = 4. See

the text for an explanation.
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4 CONCLUSIONS

The paper proposes a new Metropolis-Hastings algorithm for generalized linear mixed models having

non-conjugate mixture of Dirichlet process random effects with normal base measure. The sampler

exploits special properties of the exponential family to make good proposals for new cluster structures

using the Laplace approximation. The method is remarkably effective in a large number of problems and

significantly reduces autocorrelation times, relative to other methods, for various posterior quantities

of interest. The gains are found to be substantial for even data sets with modest asymptotic effects.

In addition to the examples discussed in this paper, the algorithm was found to be equally effective

with multivariate random effects. Moreover, the technique can be extended to include multivariate

outcomes. These and other extensions will be the focus of my future work.

5 APPENDIX

5.1 Proof of the Step (A) procedure for generating new clusters

The current and proposed values of the allocation variables can be categorized into four cases:

(i) ci,0 ≤ k− and ci,1 ≤ k− (ii) ci,0 ≤ k− and ci,1 = k− + 1

(iii) ci,0 = k− + 1 and ci,1 ≤ k− (iv) ci,0 = k− + 1 and ci,1 = k− + 1

Case (i): The Metropolis-Hastings acceptance probability equals min {1, ψ1}, where

ψ1 =
n−ci,1

· [Yi | β,θ∗

ci,1
, ς]

∑k−

j=1 n
−

j · [Yi | β,θ∗

j , ς] +M · Ei

·
∑k−

j=1 n
−

j · [Yi | β,θ∗

j , ς] +M · Êi

n−ci,1
· [Yi | β,θ∗

ci,1
, ς]

×
∑k−

j=1 n
−

j · [Yi | β,θ∗

j , ς] +M · Ei

n−ci,0
· [Yi | β,θ∗

ci,0
, ς]

·
n−ci,0

· [Yi | β,θ∗

ci,0
, ς]

∑k−

j=1 n
−

j · [Yi | β,θ∗

j , ς] +M · Êi

which is equal to 1.
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Case (ii): The Metropolis-Hastings acceptance probability equals min {1, ψ2}, where

ψ2 =
M · Ei · [θ∗

(k−+1),1 | Yi,ϕ]
∑k−

j=1 n
−

j · [Yi | β,θ∗

j , ς] +M · Ei

·
∑k−

j=1 n
−

j · [Yi | β,θ∗

j , ς] +M · Êi

M · Êi ·Nq

(

θ∗

(k−+1),1 | µ∗

(k−+1),0
, Ω(k−+1),0

)

×
∑k−

j=1 n
−

j · [Yi | β,θ∗

j , ς] +M · Ei

n−ci,0
· [Yi | β,θ∗

ci,0
, ς]

·
n−ci,0

· [Yi | β,θ∗

ci,0
, ς]

∑k−

j=1 n
−

j · [Yi | β,θ∗

j , ς] +M · Êi

=
Ei · [θ∗

(k−+1),1 | Yi,ϕ]

Êi ·Nq

(

θ∗

(k−+1),1 | µ∗

(k−+1),0
, Ω(k−+1),0

) = ρ1
∆
=

[Yi | β,θ∗

(k−+1),1, ς] ·Nq(θ
∗

(k−+1),1 | 0, D)

Êi ·Nq

(

θ∗

(k−+1),1 | µ∗

(k−+1),0
, Ω(k−+1),0

)

as claimed, because of the following identity:

Ei · [θ | Yi,ϕ] ≡ [Yi, | ϕ] · [θ | Yi,ϕ]

= [Yi,θ | ϕ]

= [Yi | θ,ϕ] · [θ | ϕ]

≡ [Yi | β,θ, ς] ·Nq(θ | 0, D).

The acceptance probabilities for cases (iii) and (iv) can be similarly proven.

5.2 Computation of the matrix Ω−1
β in (19) for large n

Definition (19) states that Ω−1
β = Σ−1

β +X ′T−1X, where the n by n non-diagonal matrix T = W−1 +Q.

Matrix Q has typical element qij = z′

iDzj if c(i) = c(j), and qij = 0 if c(i) 6= c(j). When the number

of cases n is large, the main computational burden is the evaluation of T−1.

Let P be the orthogonal 0-1 matrix that permutes the indices of the cases in such a manner that

indices 1, . . . , n1 correspond to cluster 1, indices (n1 +1), . . . , n2 correspond to cluster 2, and so on. For

the rearranged data set, let T ∗ be defined analogously to the matrix T . We have T ∗ = PTP ′. It is

easy to show that T ∗ is block diagonal with blocks of order n1, . . . , nk. Because of this, inversion of T ∗

typically involves a substantially lower cost than that of T . So T−1 can be efficiently computed as

T−1 = P (T ∗)−1P ′
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where we simply permute the rows and columns of (T ∗)−1 rather than actually pre- and post-multiplying

by P .
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