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Abstract 

Background: The analysis and interpretation of change in cognitive function test scores after 

Coronary Artery Bypass Grafting (CABG) present considerable statistical challenges.  Application of 

hierarchical linear statistical models can estimate the effects of a surgical intervention on the time 

course of multiple biomarkers.  

 

Methods: We use an “analyze then summarize” approach whereby we estimate the intervention 

effects separately for each cognitive test and then pool them, taking appropriate account of their 

statistical correlations.  The model accounts for dropouts at follow-up, the chance of which may be 

related to past cognitive score, by implicitly imputing the missing data from individuals’ past scores 

and group patterns. 

We apply this approach to a study of the effects of CABG on the time course of cognitive 

function as measured by 16 separate neuropsychological test scores, clustered into 8 cognitive 

domains. The study includes measurements on 140 CABG patients and 92 nonsurgical controls at 

baseline, and 3, 12, and 36 months.  Including a nonsurgical control group allows comparison of 

changes in cognition over time between the surgery group and patients with similar risk factors, 

controlling for potential effects of aging and vascular disease. 

 

Results:  CABG patients have longitudinal changes from baseline in cognitive function similar to 

those observed for nonsurgical controls. Any small differences tend to favor greater improvement in 

CABG patients than in the nonsurgical controls.  

 

Conclusions: The methods used have application to a wide range of intervention studies in which 

multiple biomarkers are followed over time to quantify health effects. Software to implement the 

methods in commonly used statistical packages is available from the authors at 

http://www.biostat.jhsph.edu/research/software.shtml .
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Introduction 

The establishment of an association between the surgical procedure (CABG), and either short- 

or long-term cognitive change has been hampered by the use of studies involving only the CABG 

population, without comparison with suitable control groups. Short-term studies have compared the 

outcomes of CABG with those of other surgical procedures, such as orthopedic operations (1), but 

these controls do not have the high incidence of underlying risk factors for vascular disease that 

occurs in the CABG population. The lack of appropriate controls is particularly problematic for 

interpretation of studies concerning long-term cognitive performance after CABG, where possible 

decline could be related to the surgical procedure, age-related change, underlying cerebrovascular 

disease (2), or a combination of these factors. 

We are involved in an ongoing study that allows comparison of patients receiving CABG with a 

group of individuals that have established coronary artery disease, but do not have surgery; these 

nonsurgical controls (NSC) have an incidence of risk factors for vascular disease similar to that of 

the CABG group.  In the accompanying paper by Selnes et al. we compare the longitudinal 

performance of these two groups at baseline and 3, 12, and 36 months post surgery or enrollment. 

A first question is whether the pattern of cognitive change in the CABG group differs from that 

observed in the NSC group. A second question is whether any differences are likely caused by the 

surgery. 

Determining whether there are different short-term or long-term declines in cognitive function for 

CABG as compared to a control group is challenging for at least three reasons. First, cognitive 

function is a multidimensional construct, which is assayed by numerous cognitive tests designed to 

assess different aspects of cognition such as memory, language, or executive function.  Second, 

measurements of cognitive function over time will be affected by several factors, including practice 

effects, age-related change, error of measurement, and any intervention effect. Finally, the 

demonstrated medical efficacy of CABG makes a randomized treatment trial comparing surgical 

and nonsurgical treatments difficult.  
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In this paper, we discuss a hierarchical statistical model that can be used to quantify differences 

in change in cognitive function over time between the CABG and control groups. We use the 

statistical model to estimate the average cognitive function over time for the surgery and control 

groups, after adjusting for known differences in potential confounding variables, specifically age, 

gender, education, and the presence of symptoms of depression. 

After a summary of the main ideas for hierarchical linear models, we estimate both short-term 

and long-term effects of CABG on cognitive function, while controlling for differences between the 

two populations at baseline and differences due to age, gender, education, and level of depressive 

symptoms.  Finally, we combine the estimates of the surgery effects across many measures into 

domain-specific estimates of group differences. This method relies upon prior knowledge about the 

domains of cognitive function measured by each test.  

The statistical approaches we have used for evaluation of prospective, longitudinal data 

comparing patients after CABG with a nonsurgical control group have general applicability to other 

clinical studies in which the goal is the evaluation of the impact of an intervention.  

 

http://biostats.bepress.com/jhubiostat/paper45
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Methods 

 

Study Design  

 

This is an observational study of 140 patients undergoing CABG and 92 nonsurgical cardiac 

controls.  Surgical patients (CABG) and nonsurgical controls were recruited from September 1997 

through March 1999 at the Johns Hopkins Cardiac Unit.  The NSC group was identified by Johns 

Hopkins cardiologists as potential patients who were diagnosed with coronary artery disease by 

cardiac catheterization.  

Study participants were administered a battery of standardized neuropsychological tests at 

baseline, and 3, 12 and 36 months. Appendix 1 presents the 16 cognitive measures that are 

organized into 8 domains of cognitive function based principally on face validity.  Patients were also 

administered The Center for Epidemiological Studies Depression scale (CES-D) at baseline and 

follow-up (3), in order to adjust cognitive test scores for possible effects of depressed mood.  See 

the accompanying paper by Selnes et al. (2004) for a detailed description of the patient population 

and study design. 

 

Hierarchical Linear Statistical Model (4) 

 

This section describes a now standard statistical model designed to capture the key 

components of the change in cognitive function over time for the individuals in our study and for 

their population, and to compare the typical change for persons who do and do not receive an 

intervention such as CABG. As an example we focus on a single cognitive domain, Verbal Memory; 

below we present a method for pooling results across tests to obtain the domain values.   

The model is specified by the following assumptions: 

- Each person has a unique level and time trend of cognitive function. 

Hosted by The Berkeley Electronic Press



 6

- Over periods of time, such as a few years, true cognitive function changes gradually and 

can be approximated by a smooth function of time, such as a low order polynomial (5). 

- The intervention may affect people in the short term by immediately increasing or 

decreasing their function; and over the longer term by changing their pre-intervention trend. The 

short-term and long-term effects of intervention may vary across individuals. 

- The level of cognitive function is influenced, possibly in a nonlinear way, by other factors 

such as age, gender, education, and level of depressive symptoms.    

- Measurements of cognitive function are subject to a practice effect whereby a study 

participant’s scores on quantitative tests could improve with repetition, particularly from the first to 

second testing, absent a change in actual cognitive function level.  

Below is presented a schematic of this model. The goal is to estimate the effects of an 

intervention from a dataset comprising repeated observations on cognitive tests over time for 

persons who have received the intervention and other similar persons who have not. 

 

 

 

 

 

 

 

 

Schematic representation of the statistical model for estimating the effects of an intervention 

(e.g., CABG) on a single measure of cognitive function. Ovals represent unobserved 

variables. See Appendix 2 for details. 
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The model illustrated above is made precise by the equations in Appendix 2. This model is 

implemented for a single cognitive function measure by using random effects software available in 

most standard statistical software packages. 

The proposed model has two degrees of freedom to quantify a possible effect of CABG: the rise 

from 0 to 3 months (short-term, or learning effect); and a difference in the slope from 3 to 36 months 

(long-term effect). We use a Wald test (6) of the null hypothesis of no CABG effect by testing 

whether both are equal to 0.0.   

The model has the ability to reduce bias caused by differential missing data between the groups 

when dropout is related to past cognitive score, resulting in individuals seen at all follow-up points 

having a different distribution of scores to the entire group.  The model uses information from 

previous time-points and group patterns to internally impute missing data at later follow-up points 

and make more precise estimates of the true group means.  

 

Estimating Natural Heterogeneity 

 

In addition to estimating the mean curves for each intervention group, the model is used to 

estimate the variance among the true levels and trends in a cognitive test score among persons 

within groups (5). We allow this degree of variation to differ between the two intervention groups. 

Evidence for this natural variation derives from the correlation among repeated observations on 

each individual. 

 

Pooling Intervention Effects Across Cognitive Measures 

 

The hierarchical model in Appendix 2 is estimated separately for each of the 16 measures of 

cognitive function. This produces, for each measure, a short- and long-term intervention effect 

estimate and a 2x2 covariance matrix that quantifies their statistical error. We estimate the mean 
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short- or long-term “effect” for a domain as the mean of the effects for the tests in that domain.  

Since the multiple test scores for an individual are correlated with one another, estimates of the 

CABG effects for the different measures are also correlated. To correctly estimate the standard 

errors of these domain-specific or overall effects, we must take this correlation into account.  We 

use bootstrapping (7), re-sampling individuals, to estimate the joint covariance matrix among the 16 

pairs of intervention effect estimates and to obtain valid standard errors for the domain and overall 

intervention effect estimates. We draw with replacement a random sample of 140 CABG and 92 

NSC subjects, refit all 16 models to get test-specific short- and long-term effect estimates, average 

these to obtain domain and overall effect estimates, and then repeat this process 1000 times. The 

variance among the 1000 bootstrapped replicates of the domain and overall effect estimates gives 

a valid estimate of statistical uncertainty, used to calculate the confidence intervals of the effect 

estimates, as it takes appropriate account of the correlation among multiple cognitive test scores for 

the same individual. 
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Results 

 

The analyses were performed using the R software package (8). 

Figure 1 is a spaghetti plot of the standardized and covariate-adjusted data for the Verbal 

Memory domain stratified by intervention group. The cognitive test scores were standardized such 

that the NSC group had a mean score of zero and standard deviation of one at baseline, and were 

adjusted for age, gender, education level and depressive symptoms. The Verbal Memory domain is 

made up of the total score, delayed recall (trial 8), retention score and corrected recognition from 

the Rey Auditory Verbal Learning Test (9). The group mean scores at each time are also shown.  A 

learning effect is evidenced by the increase in mean score in both groups from baseline to 3 

months. There is little change from 3 to 36 months in the mean response for either group after the 

initial rise. 

Figure 2 illustrates the steps taken in fitting the hierarchical model detailed in Appendix 2 to the 

Verbal Memory data.  Panel A (upper left) shows the mean Verbal Memory response for each 

treatment group and time, adjusted for covariates. Note that at baseline, the CABG group was 

nearly 0.4 of a standard deviation below the NSC group, even after correcting for age, gender, 

education, and depressive symptoms. At 3 months, both groups increase substantially as would be 

expected from a practice effect.  There is some narrowing of the group difference. At 12 and 36 

months, the means change comparatively little from the 3-month level in either group and although 

both decrease slightly, neither go below their baseline scores. 

Panel B is obtained from Panel A by subtracting from all times the baseline values separately 

for each group to obtain change scores by time and group. Note that each group has the value 0.0 

at baseline by definition. This step removes any differences between the two groups that are 

constant over time.  

Panel C is a plot of the difference between the intervention (CABG) and control group (NSC) 

curves in Panel B at each time. These differences are the essential evidence relevant to assessing 
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the intervention (CABG) effect, as they show the disparities between the cognitive scores of the 

group that has had surgery and a group with similar risk factors that has not.  Without this 

comparison, we cannot attribute any change in scores for the CABG group to the surgery. They still 

require some adjustment, however, because they are averages of observed data and do not take 

account of the fact that the number of dropouts may differ between the two groups.  

Panel D presents improved estimates of the difference at each time between the CABG and 

NSC group curves shown in C. The results in D are obtained from the hierarchical model in 

Appendix 2.  The small differences in the curves in Panels C and D reflect changes from taking 

appropriate account of missing data. In the case of this domain, the CABG patients remaining at 36 

months are those with poorer cognitive scores at baseline than the individuals that dropped out, 

with the opposite effect in the NSC group, a phenomenon likely to bias the mean group score at 36 

months towards lower values. The hierarchical model implicitly imputes the missing data by using 

the information for the individuals at previous times and the patterns for their group. The means in 

Panel C ignore the missing data and are biased unless the chance of dropping out is unrelated to 

past cognitive score, which is an unlikely situation. 

Panel D shows evidence of a difference in population mean Verbal Memory value between the 

intervention and control groups, with the CABG group having a greater improvement from baseline 

than the NSC group, both in the short-term at 3 months and in the long-term at 36 months.  The test 

of the null hypothesis that both the short- and long-term effects are zero has a p-value of 0.01, 

indicating that this hypothesis can be rejected in favor of the CABG group.  

Figure 3 shows the estimated difference in the cognitive function time course between the 

intervention (CABG) and NSC groups (Panel D in Figure 2 for Verbal Memory) for all 8 of the 

cognitive domain measures. The accompanying paper by Selnes et al. (2004) presents the 

corresponding figure for the 16 cognitive subtests.  The p-values on the plots in Figure 3 again 

result from tests of zero difference in the trends over time between the groups and make it clear 
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that in this dataset, there is little or no evidence consistent with a detrimental effect of CABG on 

cognitive function as measured by these 8 scores. 
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Discussion 

 

We have used a hierarchical linear statistical model to quantify the evidence relevant to 

assessing whether CABG causes short- or long-term decline in cognitive functioning. Our approach 

was to estimate this model separately for each of the cognitive measures and to pool the results 

across measures into cognitive domain effects. We take appropriate account of the correlation 

among repeated measures for an individual when setting confidence intervals for the average 

domain effects. 

The findings in this study emphasize the importance of having a control group for at least two 

reasons. First, there is strong evidence in both groups of an improvement in the mean score from 

baseline to 3 months indicative of a learning effect. In 15 out of the 16 cognitive test measures, the 

mean score increased over this initial period in the CABG group. If only the CABG data were 

available, what appears to be a learning effect might be mistaken as a benefit of the intervention. 

Second, there is a mix of positive and negative trends over the 36 months in the CABG group for 

the different cognitive tests and domains. But these trends were statistically different from the 

trends observed in the NSC group for only two domain measures and in both cases showed a 

positive effect of CABG at 36 months. Hence a trend in the CABG group data should not be 

mistaken for evidence of a treatment effect without comparison with controls. 

The model described here estimates the average difference between the CABG and control 

groups in the change in cognitive function from baseline.  We use the model to adjust for baseline 

differences between the groups in test scores and for differences over time that are attributable to 

demographics and depression symptoms, the latter as measured by the CESD.  

However, no model can adjust for unmeasured differences between the two groups that are 

more likely to arise in observational studies where subjects choose their treatment in consultation 

with their physician rather than having it assigned by a known, random mechanism. Hence, we 

http://biostats.bepress.com/jhubiostat/paper45
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must be cautious in our interpretation of the evidence, asking what other factors might account for 

the differences or lack thereof between the two groups.  

The hierarchical model allows one to take appropriate account of dropouts, a common 

phenomenon in longitudinal studies such as this one. The model includes terms that acknowledge 

the correlation among repeated observations for each individual. Having done so, it can internally 

impute missing values by predictions based upon the earlier responses and other covariates (5). 

Failure to use a model that accounts for within-person correlation can lead to biased estimates of 

treatment effects except when the dropout process is independent of the past responses, which is 

unlikely.  

We have presented an approach to the difficult problem of how to estimate the effect of CABG 

on the performance of 16 cognitive measures by first analyzing each of them separately with an 

hierarchical model and then pooling the effect estimates to obtain domain effects. We refer to this 

as the “analyze then summarize” approach. An alternative is to “summarize then analyze” the data 

by using factor analysis (10) or some other method to create summary scores from the 16 test 

results and then to use hierarchical models with the summary measures. We prefer our approach 

because it produces a separate treatment effect for every measure so that unanticipated patterns 

can be discovered. It avoids the difficult problem of how to choose the best summary scores. 

Typically, summarization is based upon the correlation among test results at one time and does not 

take appropriate account of the longitudinal information.  

The methods used here have wide application to a variety of longitudinal studies comparing 

intervention groups or groups defined in other ways when the outcome is multivariate. To facilitate 

the application of these methods, software to implement the analyses presented here has been 

posted to our webpage (http://www.biostat.jhsph.edu/research/software.shtml).  
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 Fig 1. Spaghetti plots of the standardized and adjusted (for age, gender, education and depressive 

symptoms) Verbal Memory scores across time, stratified by treatment group. 

 

Fig 2. Illustration of the steps taken to fit the hierarchical model to the Verbal Memory data; Upper 

left Panel A – average curves for each intervention group; Upper right Panel B – average change 

from baseline for each intervention group; Lower left Panel C – difference in mean change from 

baseline between the CABG and NSC groups; Lower right Panel D – model estimates of group 

difference in change from baseline that take appropriate account of missing data. 

 

Fig 3.  Model estimates of the difference in cognitive function change between the CABG and NSC 

groups over time for all 8 domains, where a positive difference in the solid line indicates a greater 

improvement from baseline in the CABG group than in the NSC group.  Note that where there is 

only one test in a domain, the estimate for that particular test is used instead of bootstrapping. 
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Appendix 1: Details on cognitive function tests. 

Test names, abbreviations and descriptions, along with the domains that are made up of 
them 

Test Name Abbreviation Description Domain 
Rey Auditory Verbal 
Learning Test 

 

 Total score RVLTTOT 
 Delayed recall 

(Trial 8) 
TR8 

 Retention score RETEN 

A word-list learning task assessing verbal 
learning, retention and recognition 
memory 
 
 
 

 Recognition 
(corrected) 

RECCORR  

 
 

Verbal 
Memory 

Rey Complex Figure 

 
 

 Retention  
score (%) 

RCFRET 

 Delayed recall RCFDR 

A measure of ability to recall a complex 
visual design previously copied 

 
Visual 

Memory 

Rey Complex Figure  
 Copy RCFC 
 Block Design BLOCKS 

A measure of visuospatial abilities 
requiring subject to copy a complex visual 
design 

Visuo-
construction 

Boston Naming Test 
 (short form) 

BNT A measure of visual confrontation naming 
requiring subject to name a series of 30 
line drawings 

 
Language 

Grooved Pegboard  
 Dominant hand GPDOM 
 Non-dominant 

hand 
GPNDOM 

Test of motor speed measuring how 
quickly subject is able to place 25 keyed 
pegs in an array of 5 x 5 holes with 
randomly positioned slots 

 
Motor Speed 

Trail Making Test – Part A TRAILA Timed task that requires subject to 
connect numbered circles in sequence as 
quickly as possible 

Written alphabet WA Timed measure of psychomotor speed in 
which subject is asked to write letters of 
alphabet as quickly as possible 

 
 

Psychomotor 
Speed 

Rey Auditory Verbal 
Learning Test 

 

 Trial 1 TR1 

A word-list learning task assessing verbal 
learning, retention and recognition 
memory 

Mini-Mental Status 
Examination 

 

 Attention score MMATT 

 
Attention score from Mini-Mental State 
Exam 

 
 

Attention 
 
 

Trail Making Test – Part B TRAILB Timed test of psychomotor speed that 
requires participant to connect numbered 
and lettered circles alternately in 
sequential (numerical and alphabetical) 
order 

 
Executive 
Function 
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Appendix 2: Hierarchical statistical model for a single biomarker 

 

This appendix specifies the hierarchical linear statistical model to quantify the difference in 

average time-curve for intervention and control groups and to estimate an individual’s time curve 

acknowledging the natural heterogeneity among persons in the level and trend of the cognitive 

functioning. To be precise, we make the following definitions: 

 

 ηit – true cognitive function level for person i at time t 

 µit – true level of cognitive function absent the intervention 

Xi = 1 if intervention received and 0 if not 

 δit – intervention effect for person i at time t 

 Yit – measurement of cognitive function  

 Zit – covariate information for including: age, gender, education level, CESD depression 

        index 

 Postt = 1 for post-intervention visits and 0 at baseline 

 βp – change in score from the first to second measurement due to a learning effect 

 

We assume that the true cognitive function level for person i at time t is the sum of their value µit 

that would be expected absent the intervention plus an intervention effect δit: 

ηit  = µit + Xi δit  .   (1) 

We then assume that the baseline curve can be approximated by a linear function with intercept 

and trend that are specific to each person (i): 

µit = β0i + β1i t .    (2) 

We let the level at baseline β 0i be influenced in possibly non-linear ways by covariates such as 

age, gender, education level, and depression symptoms (CESD) and to have a person-specific 
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deviation b0i from the population average reflecting other unmeasured influences in cognitive 

function. 

β0i  = β00 + b0i + S(agei) + … + S(CESDi)   (3a) 

Similarly, the trends are allowed to vary among persons with each person having his or her own 

deviation b1i: 

β1i  = β10 + b1i.      (3b) 

We assume that the treatment effect δ it is also linear with subject-specific intercept δ 0i and 

trend δ 1i: 

δit = δ0i  + δ1it    (4) 

We assume that collectively, the intercepts and trends for the cognitive function of time absent 

intervention (b0i,b1i) and for the intervention effect (δ0i,δ1i) can be thought of as samples from a 

Gaussian distribution with variances Gb and Gd.  

 

Finally, we acknowledge that the measured cognitive test score includes a learning effect 

assumed to be roughly constant after the baseline measure plus statistical noise that is assumed to 

be independent from one time to the next, that is: 

Yit = ηit  +  Posti βp + εit .         (5) 

 

The model represented by equations (1) - (5) can be readily simplified to deal with the case of a 

single group. This reduced model is defined by equations (2), (3) and (5) and includes random 

effects (b0i,b1i)  only.  

Hosted by The Berkeley Electronic Press



0 5 10 15 20 25 30 35

−
3

−
2

−
1

0
1

2
3

Time (months)

S
ta

nd
ar

di
ze

d 
V

er
ba

l M
em

or
y

NSC group

0 5 10 15 20 25 30 35

−
3

−
2

−
1

0
1

2
3

Time (months)

S
ta

nd
ar

di
ze

d 
V

er
ba

l M
em

or
y

CABG group

Figure 1

http://biostats.bepress.com/jhubiostat/paper45



0 5 10 15 20 25 30 35

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Time

z−
sc

or
e

Mean Verbal memory over time

CABG
NSC

(A)

0 5 10 15 20 25 30 35

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Time

z−
sc

or
e

Change from baseline(B)

0 5 10 15 20 25 30 35

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Time

Difference between groups(C)

0 5 10 15 20 25 30 35

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Time

Fitted contrast

p =  0.01

(D)

Figure 2

Hosted by The Berkeley Electronic Press



0 5 15 25 35

−
0.

4
0.

0
0.

2
0.

4

Time

Verbal memory

p =  0.01

0 5 15 25 35
−

0.
4

0.
0

0.
2

0.
4

Time

Visual memory

p =  0.13

0 5 15 25 35

−
0.

4
0.

0
0.

2
0.

4

Time

Visuoconstruction

p =  0.52

0 5 15 25 35

−
0.

4
0.

0
0.

2
0.

4

Time

Language

p =  0.04

0 5 15 25 35

−
0.

4
0.

0
0.

2
0.

4

Time

Motor speed

p =  0.09

0 5 15 25 35

−
0.

4
0.

0
0.

2
0.

4

Time

Psychomotor speed

p =  0.44

0 5 15 25 35

−
0.

4
0.

0
0.

2
0.

4

Time

Attention

p =  0.15

0 5 15 25 35

−
0.

4
0.

0
0.

2
0.

4

Time

Executive function

p =  0.5

Figure 3

http://biostats.bepress.com/jhubiostat/paper45


	6-28-2004
	Quantitative Methods for Tracking Cognitive Change 3 Years After Coronary Artery Bypass Surgery
	Sarah Barry
	Scott L. Zeger
	Ola A. Selnes
	Maura A. Grega
	Louis M. Borowicz, Jr.
	See next page for additional authors
	Suggested Citation
	Authors



