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Abstract

Results obtained in randomized trials may not generalize to specific target pop-
ulations. In a randomized trial, the treatment assignment mechanism is known,
but assuming participants are a random sample from the target population is often
dubious. Lack of generalizability can occur when the distribution of treatment
effect modifiers in trial participants differs from the distribution in the target pop-
ulation. We consider an inverse probability of sampling weighted (IPSW) estima-
tor for generalizing trial results to a user-specified target population that differs in
important clinical or demographic characteristics from the randomized trial. The
IPSW estimator is shown to be consistent and asymptotically normal assuming
a model for the sampling score (i.e., the probability of participating in the trial)
is correctly specified. Expressions for the asymptotic variance and a consistent
sandwich-type estimator of the variance are derived. Simulation results compar-
ing the IPSW estimator and a previously proposed stratified estimator show that
the estimators perform similarly when the sampling score model includes a binary
covariate. However, with a continuous covariate in the sampling score model, the
IPSW estimator is less biased and the corresponding Wald confidence interval has
better coverage. The IPSW estimator is employed to generalize results from two
randomized trials of HIV treatment conducted by the United States (US) National
Institutes of Health AIDS Clinical Trials Group to all people currently living with
HIV in the US.
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2 Buchanan et al.

Summary.

Results obtained in randomized trials may not generalize to specific target populations. In a randomized

trial, the treatment assignment mechanism is known, but assuming participants are a random sample

from the target population is often dubious. Lack of generalizability can occur when the distribution of

treatment effect modifiers in trial participants differs from the distribution in the target population. We

consider an inverse probability of sampling weighted (IPSW) estimator for generalizing trial results to a

user-specified target population that differs in important clinical or demographic characteristics from the

randomized trial. The IPSW estimator is shown to be consistent and asymptotically normal assuming

a model for the sampling score (i.e., the probability of participating in the trial) is correctly specified.

Expressions for the asymptotic variance and a consistent sandwich-type estimator of the variance are

derived. Simulation results comparing the IPSW estimator and a previously proposed stratified estimator

show that the estimators perform similarly when the sampling score model includes a binary covariate.

However, with a continuous covariate in the sampling score model, the IPSW estimator is less biased

and the corresponding Wald confidence interval has better coverage. The IPSW estimator is employed

to generalize results from two randomized trials of HIV treatment conducted by the United States (US)

National Institutes of Health AIDS Clinical Trials Group to all people currently living with HIV in the US.

Keywords: Causal inference; External validity; Generalizability; HIV/AIDS; Inverse probability

weights; Propensity score; Target population

1. Introduction

Generalizability is a concern for many scientific studies, including those in public health and medicine.

Using information in the study sample, it is often of interest to draw inference about a specified target

population. Generalizability is defined as the degree to which an effect estimated in a sample approx-

imates the true measure of effect in the target population. For example, in clinical trials of treatment

for HIV-infected individuals, there is often concern that trial participants are not representative of

the larger population of HIV-positive individuals. One study highlighted the overrepresentation of

African American and Hispanic women among HIV cases in the United States (US) and the limited

clinical trial participation of members of these groups (Greenblatt, 2011). The Women’s Interagency

HIV Study (WIHS) is a prospective, observational, multicenter study of women living with HIV and

women at risk for HIV infection in the U.S. (Bacon et al., 2005). Another study reviewed eligibility

criteria of 20 AIDS Clinical Trial Group (ACTG) studies and found that 28% to 68% of the WIHS

cohort would have been excluded (Gandhi et al., 2005).

There exist several quantitative methods which employ sampling scores to generalize results from

a trial to a target population. Here, the sampling score is defined as the probability of participation

in the trial conditional on covariates. These approaches are akin to methods that use treatment

propensity scores to adjust for (measured) confounding (Rubin, 1980) and include the use of inverse

probability of sampling weights and stratification based on sampling scores. For example, Cole and

http://biostats.bepress.com/uncbiostat/art45



Generalizing Evidence from Trials 3

Stuart (2010) estimated sampling scores using logistic regression and then an inverse-probability-

of-sampling-weighted Cox proportional hazards model was fit to draw inference about the effect of

treatment in the target population. A robust estimate of the variance was employed (Robins, 1998);

however, no closed-form expression for the variance was provided. As an alternative, a sampling

score stratified estimator was proposed to generalize trial results (Tipton, 2013; O’Muircheartaigh

and Hedges, 2013; Tipton et al., 2014). To date there has been no formal studies or derivations

of the large sample statistical properties of these generaliziability estimators (i.e., consistency and

asymptotic normality).

Following Cole and Stuart (2010) and Stuart et al. (2011), we consider an inverse weighting

approach based on sampling scores to generalize trial effect estimates for univariate outcomes to a

target population. The inverse weighted estimator is compared to the stratified estimator. In Section

2, the assumptions and notation are discussed. The inverse probability of sampling weighted (IPSW)

estimator and the stratified estimator are described in Section 3. In Section 4 large sample properties

of the IPSW estimator are derived, including a closed form expression for the asymptotic variance

and a consistent sandwich-type estimator of the variance. The finite sample performance of the IPSW

and stratified estimators are compared in a simulation study presented in Section 5. In Section 7 the

IPSW estimator is applied to generalize results from two ACTG trials to all people currently living

with HIV in the US. Section 7 concludes with a discussion.

2. Assumptions and Notation

Suppose we are interested in drawing inference about the effect of some treatment (e.g., drug) on an

outcome (e.g., disease) in some target population. Assume each individual in the target population

has two potential outcomes Y 0 and Y 1, where Y 0 is the outcome that would have been seen if

(possibly contrary to fact) the individual received control, and Y 1 is the outcome that would have

been seen if (possibly contrary to fact) the individual received treatment. It is assumed throughout

that the stable unit treatment value assumption (SUTVA) (Rubin, 1980) holds, i.e., there are no

variations of treatment and there is no interference between individuals (i.e., the outcome of one

individual is assumed to be unaffected by treatment assignment of others). Let µ1 = E
(

Y 1
)

and

µ0 = E
(

Y 0
)

denote the mean potential outcomes in the target population. The parameter of interest

is the population average treatment effect (PATE) ∆ = µ1 − µ0.

Consider a setting where two datasets are available. A random sample (e.g., cohort study) of

m individuals is drawn from the near infinite target population. A second sample of n individuals

participate in a randomized trial, and the treatment assignment mechanism is known to the analyst.

Unlike the cohort study, the trial participants are not necessarily assumed to be a random sample

from the target population but rather may be a biased sample. The following random variables

are observed for the cohort and trial participants. In general, let upper case letters denote random
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4 Buchanan et al.

variables and lower case letters denote realizations of those random variables. Define Z as a 1× p

vector of fixed characteristics and assume that information on Z is available for those in the trial and

those in the cohort. Let S = 1 denote trial participation and S = 0 otherwise. For those individuals

who participate in the trial, define X as the treatment indicator, where X = 1 if assigned to treatment

and X = 0 otherwise. Let Y = Y 1X + Y 0(1 − X) denote the observed outcome. Assume (S,Z) is

observed for cohort participants and (S,Z,X, Y ) is observed for trial participants.

Once in the trial assume participants are randomly assigned to received treatment or not such that

the treatment assignment mechanism is ignorable, i.e., P (X = x|S = 1, Z, Y 0, Y 1) = P (X = x|S =

1). Assume an ignorable trial participation mechanism conditional on Z, so P (S = s|Z, Y 0, Y 1) =

P (S = s|Z). In other words, participants in the trial are no different from nonparticipants in regards

to the treatment-outcome relationship conditional on Z. Trial participation and treatment positivity

are also assumed, so P (S = s|Z) > 0 and P (X = x|Z, S = 1) > 0 for all Z = z. Assume participants

in the trial are adherent to their treatment assignment (i.e., ignoring noncompliance issues) and the

model for the sampling scores is correctly specified (e.g., correct covariate functional forms).

3. Estimators of the Population Average Treatment Effect

A traditional (i.e., unweighted) approach to estimating treatment effects is a difference in means. Let

i = 1, . . . , n+m index the trial and cohort participants. The within-trial estimator is defined as

∆̂T =

∑

i SiYiXi
∑

i SiXi
−

∑

i SiYi(1−Xi)
∑

i Si(1−Xi)

where here and in the sequel
∑

i =
∑n+m

i=1 . If trial participants can be assumed to constitute a random

sample from the target population, it is straightforward to show ∆̂T is a consistent and asymptotically

normal estimator of ∆. On the other hand, if we are not willing to assume trial participants are a

random sample from the target population, then ∆̂T is no longer guaranteed to be consistent.

Below we consider two estimators of ∆ which do not assume trial participants are a random sample

from the target population. Both estimators utilize sampling scores. In practice, the sampling scores

are likely unknown and can be estimated using a parametric model. Let βββ be the 1 × p vector of

coefficients in the logistic regression model and β̂ββ denote the maximum likelihood estimator of βββ.

Following Cole and Stuart (2010), the sampling scores P (S = 1|Z = Z) = {1 + exp(−Zβββ)}−1 are

estimated using logistic regression. In particular, let P (S = 1|Z = Z) = w(z,βββ), wi = w(Zi,βββ),

and ŵi = w(Zi, β̂ββ). To account for the random sampling of the cohort from the target population

when estimating βββ, each individual in the cohort is inverse weighted by the sampling fraction ri =

m/(N − n), where N is the size of the target population with N >> n and N >> m, and each trial

participant is given a weight of ri = 1. Following Cole and Stuart (2010), the IPSW estimator of the

PATE is

∆̂IPW = µ̂1 − µ̂0 =

∑

i SiYiXi/ŵi
∑

i SiXi/ŵi
−

∑

i SiYi(1−Xi)/ŵi
∑

i Si(1−Xi)/ŵi
(1)

http://biostats.bepress.com/uncbiostat/art45



Generalizing Evidence from Trials 5

An alternative approach for estimating the PATE uses stratification based on the sampling scores

(Tipton, 2013; O’Muircheartaigh and Hedges, 2013; Tipton et al., 2014). This estimator is computed

in the following steps. First, βββ is estimated using a logistic regression model and the sampling

scores ŵi are estimated. These estimated sampling scores are used to form L strata according to the

distribution in the target population. The distribution of sampling scores in the combined trial and

cohort are used to estimate the strata (Tipton, 2013). The difference of sample means within each

stratum is computed among those in the trial. Lastly, the PATE is estimated as a weighted sum of

the differences of sample means across strata, where the weight ωl is the proportion of observations

in stratum l in the target population. Let nl be the number in the trial in stratum l and ml be the

number in the cohort in stratum l. Let Sil denote trial participation for individual i in stratum l for

i = 1, . . . , (nl +ml) and l = 1, . . . , L (and Sil = 0 otherwise). If Sil = 1, then let Xil and Yil denote

the treatment assignment and outcome for individual i in stratum l; otherwise if Sil = 0 then let

Xil = Yil = 0. The sampling score stratified estimator is defined as

∆̂S =
L
∑

l=1

ωl

(∑

i SilXilYil
∑

i SilXil
−

∑

i Sil(1−Xil)Yil
∑

i Sil(1−Xil)

)

where the L stratum are defined by the distribution of the sampling scores in the target population,

l = 1, . . . , L and i = 1, . . . , (n + m) and ωl = Nl/N with Nl as number in stratum l in the target

population.

4. Large Sample Properties of the IPSW Estimator

Let ∆0 be the true value of ∆. Let w0 = w(Zi,βββ0) be the true weight. Because the trial par-

ticipants are not assumed to be a random sample from the target population, the observed data

(Si, Zi, SiXi, SiYi) are assumed to be independent but not necessarily identically distributed. Be-

low we express the IPSW estimator as the solution to an unbiased estimating equation to establish

asymptotic normality and provide a consistent sandwich-type estimator of the variance.

First, consider the case when βββ is known, so the solution does not require a score equation for the

sampling score model. Let θ̂θθ
∗

= (µ̂1, µ̂0) and θθθ
∗

0 = (µ1, µ0), then θ̂
∗ is the solution to the estimating

equation

∑

i

Ψ∗

∆(Yi,Zi, Xi, Si, θ
∗

0) =





∑

i[SiXi(Yi − µ1)]/wi
∑

i[Si(1−Xi)(Yi − µ0)]/wi



 = 0

The expectation of Ψ∗

∆(Yi,Zi, Xi, Si, θ
∗

0) is zero at the true value ∆0, so θ̂
∗ converges in probability

to θθθ∗0 (Stefanski and Boos, 2002). Define the following matrices:

A (θθθ∗0) = (n+m)−1
∑

i

E [∂/∂θθθ∗0Ψ
∗

∆(Yi,Zi, Xi, Si, θ
∗

0)]

B (θθθ∗0) = (n+m)−1
∑

i

E{cov [Ψ∗

∆(Yi,Zi, Xi, Si, θ
∗

0)]}
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6 Buchanan et al.

Then, θ̂θθ
∗

is asymptotically normally distributed with mean θθθ∗0 and covariance matrix Σ∗

θ = (n +

m)−1
A

−1 (θθθ∗0)B (θθθ∗0)A
−T (θθθ∗0). Because ∆̂IPW is a linear combination of θ̂θθ

∗

, ∆̂IPW is a consistent

estimator of ∆0. Furthermore, (n + m)1/2(∆̂IPW − ∆0) converges in distribution to N(0,Σ∗

IPW )

(Carroll et al. 2010, Appendix A.6) and the sandwich-type estimator of the variance Σ̂∗

IPW (see

Appendix) is consistent for Σ∗

IPW , under the suitable regularity conditions as n,m→ ∞ and n/(n+

m) → c with 0 < c ≤ 1. When βββ1×p is known, by the delta method, it follows that ∆̂IPW is

asymptotically normal with asymptotic variance

Σ∗

IPW =
(

Σ∗
(11)

θ +Σ∗
(22)

θ − 2Σ∗
(12)

θ

)

(2)

where Σ∗
(ij)

refers to the ith row and the jth column of the matrix Σ∗

IPW .

In the more likely case that βββ is unknown, an additional estimating equation for each element

of βββ is needed. Using M-estimation, this suggests that the estimating equation based on the score

function of the logistic regression model can be used to obtain the consistent sandwich-type estimator

of the variance (Carroll et al., 2010; Stefanski and Boos, 2002). The vector of parameters βββ can be

consistently estimated by solving the estimating equations

∑

i

ψβ(Si,Zi,βββ) =
∑

i

r−1
i

Si − wi

wi(1− wi)

∂

∂βββ
wi = 000

(Manski and Lerman, 1977; Scott and Wild, 1986, 2002). Let θ̂θθ = (µ̂1, µ̂0, β̂ββ) and θθθ0 = (µ1, µ0,βββ).

θ̂θθ = (µ̂1, µ̂0, β̂ββ) is the solution to the estimating equation

∑

i

Ψ∆(Yi,Zi, Xi, Si,∆,βββ) =











∑

i[SiXi(Yi − µ1)]/wi
∑

i[Si(1−Xi)(Yi − µ0)]/wi
∑

i ψβ(Si,Zi,βββ)











Define the following matrices: A (θθθ0) = (n + m)−1
∑

iE [∂/∂θθθ0Ψ∆(Yi,Zi, Xi, Si,∆)] and B (θθθ0) =

(n + m)−1
∑

iE{cov [Ψ∆(Yi,Zi, Xi, Si,∆)]}. Then, θ̂θθ is asymptotically normally distributed with

mean θθθ0 and covariance matrix Σθ = (n + m)−1
A

−1 (θθθ0)B (θθθ0)A
−T (θθθ0). Therefore, by the delta

method, it follows that ∆̂IPW is asymptotically normal with asymptotic variance

ΣIPW =
(

Σ
(11)
θ +Σ

(22)
θ − 2Σ

(12)
θ

)

(3)

where Σ(ij) refers to the ith row and the jth column of the matrix ΣIPW .

By comparison of equations (2) and (3), it follows that the variance is smaller when the sampling

scores are estimated because Σ
(12)
θ is larger than Σ∗

(12)

θ . This is analogous to a well-known result

for inverse probability of treatment weighted estimators (Hirano et al., 2003; Robins et al., 1992;

Wooldridge, 2007). Even if the correct sampling scores are known, estimation of the sampling scores

is preferable due to improved efficiency. It is common practice to compute the variance using standard

software assuming the weights are known. This leads to valid, but conservative confidence intervals.

The consistent sandwich-type estimators of the variance of ∆̂IPW are provided in the Appendix.

http://biostats.bepress.com/uncbiostat/art45



Generalizing Evidence from Trials 7

In the Electronic Supplement, an R function is provided to compute the IPSW estimator and its

corresponding sandwich-type estimator of the variance.

5. Estimator of the Variance of the Stratified Estimator

One approach to obtain an estimator of the variance of the stratified estimator is to employ estimating

equations, which include an estimating equation for the means, quintiles, proportion in each quintile,

and each element of β. This approach also demonstrates that the estimator is asymptotically normal;

however, this property depends critically on the density of the propensity score (Lunceford and

Davidian, 2004). In practice, it is routine to approximate the sampling variance of ∆̂S by treating

the estimator as the average of L independent, within-stratum, treatment effect estimators (Tipton,

2013; Lunceford and Davidian, 2004). Define the quintiles of ŵi, where the lth sample quintile is q̂l,

l = 1, . . . , L, such that the proportion of ŵi ≤ q̂l is roughly l/L in the target. Since we assume the

trial and cohort both arise from the same target, the distribution of sampling scores in the combined

trial and target are used to estimate the quintiles (Tipton, 2013). In practice, the cohort data will

need to be weighted to get the correct distribution of the sampling scores in the target. Let q̂0 = 0

and q̂L = 1. Define Q̂l = (q̂l−1, q̂l). Let Nl =
∑N

i=1 I(ŵi ∈ Q̂l) be the number of individuals in

stratum l in the target. Let nl =
∑n+m

i=1 SiI(ŵi ∈ Q̂l) be the number of individuals in stratum l who

are selected into the trial. Let n1l =
∑n+m

i=1 SiXiI(ŵi ∈ Q̂l) be the number of individuals in stratum

l who are selected into the trial and randomized to treatment. The approximate variance of ∆̂S is

L−2
L
∑

l=1

σ̂2l

assuming an equal number of participants in each stratum (Tipton, 2013), where σ̂2l = n−1
1l s

2
1l+(nl−

n1l)
−1s20l, s

2
1l = n−1

1l

∑n
i=1 I(ŵi ∈ Q̂l)(XiYi−ȳ1l)

2, s20l = (nl−n1l)
−1

∑n
i=1 I(ŵi ∈ Q̂l)((1−Xi)Yi−ȳ0l)

2,

ȳ1l = n−1
1l

∑n
i=1 I(ŵi ∈ Q̂l)XiYi, and ȳ0l = (nl − n1l)

−1
∑n

i=1 I(ŵi ∈ Q̂l)(1−Xi)Yi. This estimator of

the variance is conservative because it does not account for estimation of the additional parameters

β, Q, or n1l (Lunceford and Davidian, 2004).

6. Simulations

A simulation study was conducted to compare the performance of the IPSW and stratified estimators

and included scenarios with a continuous or discrete covariate and a continuous response. The

following quantities were computed in the simulated datasets: the bias for each estimator, which

was the difference between the average of the estimated difference in means and the true difference

in means, standard error, which was the average of the estimated standard errors, Monte Carlo

standard error, which was the standard deviation of the estimated difference in means, and empirical

coverage probability, which was the proportion of times the 95% confidence interval contained the

true difference in means.

Hosted by The Berkeley Electronic Press



8 Buchanan et al.

A total of 5,000 datasets per scenario were simulated as follows. There were N = 106 observations

in the target population and each had (Z1i, wi), where the true sampling score was wi = {1 +

exp(−β0−β1Z1i)}
−1. In the first two scenarios, one binary covariate Z1i ∼ Bern(0.2) was considered

and, for scenarios 3 to 6, one continuous covariate Z1i ∼ N(0, 1) was considered. The covariate Z1i

was associated with trial participation and a treatment effect modifier. A Bernoulli trial participation

indicator, Si, was simulated according to the true sampling score wi in the target population and

those with Si = 1 were included in the trial. The parameters β0 and β1 were set to ensure that the

probability of sampling into the trial was a rare event (i.e., the size of the trial was approximately

n ≈ 1,000). The cohort was a random sample of size m = 4,000 from the target population (less those

selected into the trial) and Si was set to zero for those in the cohort. The trial was small compared

to the size of the target, so the cohort was essentially a random sample from the target.

To estimate the weights, the combined trial (Si = 1) and cohort data (Si = 0) was used to fit a

(weighted) logistic regression model with Si as the outcome and the covariate Z1i. To account for

the sampling of the cohort from the target, each participant in the cohort was inverse weighted by

r̂i = m/(N −n). Each trial participant was given a weight of r̂i = 1 in the logistic model. A weighted

score equation for the logistic regression model was included in the computation of the sandwich-

type estimator of the variance for the IPSW estimator. This allowed for unbiased estimation of the

parameters in the logistic regression model, as well as the correct information for computation of the

variance estimator of ∆̂IPW .

For the stratified estimator, the distribution of the sampling scores in the target population was

needed. The quintiles and number within each sampling score stratum were obtained from the inverse

weighted data. The approximate estimator of the variance was employed (i.e., the average variance

across sampling score strata).

For those included in the randomized trial (Si = 1), Xi was generated as Bern(0.5) and the

response Y was generated according to Yi = ν0 + ν1Z1i + ξXi + αZ1iXi + ǫi, ǫi ∼ N(0, 1). For

scenarios 1 to 4, (ν0, ν1, ξ, α) = (0, 1, 2, 1). For scenarios 5 to 6, (ν0, ν1, ξ, α) = (0, 1, 2, 2). Two

sampling score models were considered (i.e., weak or moderate Z and S association): Scenario 1, 3,

and 5 set βββ = (−7, 0.4); Scenario 2, 4, and 6 set βββ = (−7, 0.6). The truth was calculated for each

scenario using the distribution of Z in the target population. The truth was ∆0 = 2.2 for scenarios

1 and 2 and ∆0 = 2 for scenarios 3 through 6.

Comparisons between the IPSW and stratified estimator when the sampling score model is cor-

rectly specified are summarized in Table 1. The estimated sampling scores were computed using

logistic regression with the covariate Z1i. The within trial estimator was biased for all scenarios

(Table 1) and had low coverage (results not shown). Depending on the scenario, the size of the trial

ranged from n = 987 to n = 1,091 participants on average over the simulations for each scenario.

For all scenarios, ∆̂IPW was unbiased. For scenarios 1 to 2, ∆̂S was unbiased and standard errors

http://biostats.bepress.com/uncbiostat/art45



Generalizing Evidence from Trials 9

were comparable for the two estimators. For scenarios 3 to 6, ∆̂S was biased, possibly due to residual

confounding from a continuous covariate in the sampling score model. For the IPSW estimator, the

average of the estimated standard error was approximately equal to the Monte Carlo standard error,

supporting the derivations of the sandwich-type estimator of the variance. Coverage was around

95% for the Wald confidence interval of ∆̂IPW for all scenarios. With a continuous covariate, the

Wald confidence interval of the stratified estimator had poor coverage, particularly in the presence

of stronger effect modification (e.g., scenarios 5 and 6). Upon visual inspection, the IPSW estimator

appeared to be normally distributed (Figure 1).

Simulations were also performed with the sampling score model misspecified. A second covariate

was generated for each member of the target population and the true sampling score was wi =

{1 + exp(−β0 − β1Z1i − β2Z2i)}
−1. For the first two scenarios, Z2i ∼ Bern(0.6), and for scenarios

3 to 6, Z2i ∼ N(0, 1). For those included in the randomized trial (Si = 1), Xi was generated as

Bern(0.5) and the response Y was generated according to Yi = ν0 + ν1Z1i + ν2Z2i + ξXi +α1Z1iXi +

α2Z2iXi + ǫi, ǫi ∼ N(0, 1). For scenarios 1 to 4, (ν0, ν1, ν2, ξ, α1, α2) = (0, 1, 1, 2, 1, 1). For scenarios

5 to 6, (ν0, ν1, ν2, ξ, α1, α2) = (0, 1, 1, 2, 2, 2). The estimated sampling scores were computed using

logistic regression with Z1i as the only covariate. Two sampling score models were considered (i.e.,

weak (w) or moderate (m) Z and S association): Scenario 1, 3, and 5 set βββ = (−7, 0.4); Scenario 2,

4, and 6 set βββ = (−7, 0.6). The truth was calculated for each scenario using the distribution of ZZZ

in the target population. The truth was ∆0 = 2.8 for scenarios 1 and 2 and ∆0 = 2 for scenarios 3

through 6.

When the sampling score model is misspecified, comparisons between the IPSW and stratified

estimator are summarized in Table 2. The bias was reduced by approximately half when either the

IPSW or the stratified estimator was employed, as compared to the within-trial estimator. The

empirical sandwich-type estimator of the variance of the IPSW estimator performed reasonably well

when the sampling score model was misspecified; however, coverage was below the nominal level.

7. Applications

In this section, the methods described in the previous sections were applied to generalize results from

two different ACTG randomized clinical trials, ACTG 320 and ACTG A5202. The methods in this

paper were developed for continuous outcomes, so this application focused on generalizing results for

continuous outcomes in the trials. Results from these two trials were generalized to two different

target populations, namely all women currently living with HIV in the US and all people currently

living with HIV in the US.

The ACTG 320 trial examined the safety and efficacy of adding a protease inhibitor (PI) to an

HIV treatment regimen with two nucleoside analogues. A total of 1,156 participants were enrolled in

ACTG 320 between January 1996 and January 1997 and were recruited from 33 AIDS clinical trial
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units and 7 National Hemophilia Foundation sites in the US and Puerto Rico (Hammer et al., 1997).

In ACTG 320, 200 women were enrolled (Hammer et al., 1997). The baseline characteristics of these

women and all participants are shown in Supplemental Tables 1 and 2, respectively.

The ACTG A5202 trial examined equivalence of abacavir-lamivudine (ABC-3TC) or tenofovir

disoproxil fumarate-emtricitabine (TDF-FTC) plus efavirenz or ritonavir-boosted atazanavir. A total

of 1,857 participants were enrolled in ACTG A5202 between September 2005 and November 2007 and

were recruited from 59 ACTG sites in the US and Puerto Rico (Sax et al., 2009, 2011). 322 women

were enrolled in ACTG A5202 (Sax et al., 2009, 2011). The baseline characteristics are shown in

Supplemental Table 3 among women and in Supplemental Table 4 among all participants.

WIHS and Center for AIDS Research Network of Integrated Clinical Systems (CNICS) were con-

sidered to be representative samples of the target populations (i.e., all women living with HIV in

the US and all people living with HIV in the US). The analysis for ACTG 320 only included cohort

participants who were HIV-positive, highly active antiretroviral therapy (HAART) naive, and had

CD4 cell counts ≤ 200 cells/mm3 at the previous visit (m = 493 and m = 6,158, respectively). The

analysis for A5202 included cohort participants who were HIV-positive, antiretroviral (ART) naive,

and had viral load > 1,000 copies/ml at the previous visit (m = 1,012 and m = 12,302, respectively).

The WIHS is a prospective, observational, multicenter study of women living with HIV and women at

risk for HIV infection in the U.S. (Bacon et al., 2005). A total of 4,129 women (1,065 HIV-uninfected)

were enrolled between October 1994 and December 2012 at six US sites. Supplemental Table 1 dis-

plays the characteristics of the women in the WIHS sample for ACTG 320. Supplemental Table 3

displays the characteristics of the women in the WIHS sample for ACTG A5202.

The CNICS captures comprehensive and standardized clinical data from point-of-care electronic

medical record systems for population-based HIV research (Kitahata et al., 2008). For this analysis,

CNICS is considered to be representative of all people living with HIV and in clinical care in the

US. The CNICS cohort includes over 27,000 HIV-infected adults (at least 18 years of age) engaged in

clinical care since January 1, 1995 at eight CFAR sites in the US. Supplemental Table 2 displays the

characteristics of participants in the CNICS sample for ACTG 320. Supplemental Table 4 displays

the characteristics of participants in the CNICS sample for ACTG A5202.

The IPSW estimator was employed to assess the generalizability of the difference in the average

change in CD4 from baseline between treatment groups observed among women in the trials to all

women currently living with HIV in the U.S. and among all participants in the trials to all people

currently living with HIV in the U.S. Based on CDC estimates, the size of the first target population

was assumed to be 280,000 women and the size of the second target population was assumed to be

1.1 million people (CDC, 2012).

First, presence of conditions that could induce a lack of generalizability was assessed in the

datasets. Namely, variables associated with trial participation that are also treatment effect mod-
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ifiers were identified. Among women in ACTG 320 and WIHS participants, CD4 at baseline was

both associated with trial participation (P = 0.003) and an effect modifier (P = 0.003). There were

differences in the point estimates of treatment effects across levels of all four covariates (Supplemental

Figure 1). Among ACTG 320 participants and CNICS participants, race/ethnicity was both associ-

ated with trial participation (P < 0.001) and an effect modifier (P = 0.05). There were differences

in the point estimates of treatment effects across levels of all five covariates (Supplemental Figure

2). Among women in ACTG A5202 and WIHS participants, age, history of IDU, and hepatitis were

both associated with trial participation (P < 0.001, P < 0.001, and P = 0.003, respectively) and

effect modifiers (P = 0.02, P = 0.03, and P = 0.04, respectively). There were differences in the point

estimates of treatment effects across levels of all seven covariates (Supplemental Figure 3). Among

ACTG A5202 participants and CNICS participants, history of IDU and baseline CD4 were both as-

sociated with trial participation (P < 0.001 for each variable) and effect modifiers (P = 0.007 and P

= 0.05, respectively). There were differences in the point estimates of treatment effects across levels

of all covariates, except AIDS diagnosis (Supplemental Figure 4).

Second, the within-trial treatment effects were computed separately among women only and all

participants (Table 3). This was an as-treated analysis and ignored treatment compliance issues.

Among participants and among women in ACTG 320, there was a significant increase in CD4 at week

4. Among women in A5202 at week 48, those randomized to ABC-3TC had an average change in

CD4 cell count comparable to those randomized to a regimen with TDF-FTC. Among all participants

in A5202, those randomized to ABC-3TC had an average change in CD4 cell count slightly higher

than those randomized to a regimen with TDF-FTC.

Third, the population average treatment effect was estimated using the IPSW estimator in equation

(1). To estimate the sampling scores, the data from the ACTG trial and cohort (i.e., WIHS or

CNICS) were analyzed together, with S = 1 for those in the ACTG trial and S = 0 for those

in the cohort, and overlap between the trial and cohort was assumed to be negligible. A logistic

regression model was fit on the combined trial and weighted cohort data. 116 (10%) of ACTG 320

participants were missing CD4 count at week 4, so they were excluded. 417 (22%) of ACTG A5202

trial participants were missing CD4 count at week 48, so they were excluded. Cohort participants

were inverse weighted by the size of the cohort divided by the size of the target and trial participants

were given a weight of 1. The outcome was trial participation and the possible covariates were sex,

race/ethnicity, age, history of IDU, and baseline CD4 for ACTG 320 and sex, race/ethnicity, age,

history of IDU, hepatitis B/C, AIDS diagnosis, baseline CD4 and baseline log10 viral load for ACTG

A5202. Variables associated with trial participation, the outcome, or effect modifiers, as well as all

pairwise interactions, were included in the sampling score model. Due to positivity, sex was excluded

from the analysis generalizing the trial results among women.

Table 3 displays the results for the two ACTG trials generalized to both target populations.
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Among women in ACTG 320 at week 4, those randomized to the regimen with a PI had an average

change in CD4 cell count 46 cells/mm3 higher than women randomized to regimen without a PI

(95% confidence interval (CI) = (23, 70)). Among all participants in ACTG 320 at week 4, those

randomized to a regimen with a PI had a change in an average CD4 cell count 17 cells/mm3 higher

than those randomized to a regimen without a PI (95% CI = (9, 25)). In ACTG A5202, women

randomized to ABC-3TC had an average change in CD4 cell count 35 cells/mm3 higher than women

randomized to TDF-FTC (95% CI = (−45, 115)). Among all participants in ACTG A5202, those

randomized to ABC-3TC had an average change in CD4 cell count 2 cells/mm3 lower than those

randomized to TDF-FTC (95% CI = (−31, 28)).

8. Discussion

In this paper, we considered an estimator using inverse probability of sampling weights to generalize

results from a randomized trial to a specific target population. The IPSW estimator and correspond-

ing confidence interval provide inference about the effect of treatment in the target population, i.e.,

a contrast in the average outcome had (contrary to fact) everyone in the target population received

treatment compared to if everyone in the target population did not receive treatment. The IPSW

estimator was shown to be consistent and asymptotically normal and a consistent sandwich-type esti-

mator of the variance was provided. In the illustrative example, the IPSW estimator was employed to

generalize results from the ACTG to all people currently living with HIV in the US. For ACTG 320,

the within-trial effect was comparable to the effect estimated with the IPSW, so the results appear

to be generalizable to all people living with HIV in the US. On the other hand, the within trial effect

from ACTG A5202 was not comparable to the effect estimate based on the IPSW estimator. For the

A5202 results among women, the difference in the effect estimates is primarily due to hepatitis, which

was negatively associated with participation in the trial and a treatment effect modifier. Results from

both ACTG A5202 and ACTG 320 were not sensitive to the specification of the size of the target

population; however, some results were sensitive to the specification of the sampling score model.

For the sake of focusing on generaliziability in the example, the missing information on the outcome

was ignored in the analysis; however, in practice, one would want to address the possibly not missing

(completely) at random data.

When applying this method, the analysis is subject to the following considerations. The absence

of unmeasured covariates associated with the trial participation mechanism and treatment effect

modifiers is an untestable assumption. Treatment compliance issues were ignored in this method;

however, this issue should be considered in analyses. The sampling score model was assumed to

be correct (i.e., correct covariate functional forms); however, this is not guaranteed in practice. The

stratified estimator (Tipton et al., 2014; O’Muircheartaigh and Hedges, 2013) requires that individuals

sharing the same stratum of the distribution of sampling scores can be identified, which may be
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difficult in practice. This estimator may be biased when there is residual confounding within strata

and, therefore, is not a consistent estimator of the PATE in some cases (e.g., a continuous covariate

in the sampling score model) (Lunceford and Davidian, 2004).

In the application, the cohort study was assumed to be a random sample (i.e., representative) of

the target population. If we do not believe the cohort is representative, one possibility is weighting the

cohort data to the distribution of covariates in a census (e.g., CDC estimates). The downside of this

is the census may not have covariate information as rich as the cohort data. The CDC estimates used

in the example were for all people living with HIV. A future refinement could be to use surveillance

studies that would report on the number of ART and HAART naive HIV patients in the U.S.

Weighted logistic regression was used as an approach to consistently estimate the parameters

of the logistic regression model (e.g., the intercept); however, other approaches may be possible.

Additional research to develop an augmented estimator could improve efficiency (Zhang et al., 2008).

This method could be extended to accommodate the presence of interference. Lastly, this method

holds for continuous outcomes. Further results are needed for estimation with right-censored data.

Acknowledgments

These findings are presented on behalf of the Women’s Interagency HIV Study (WIHS), the Center

for AIDS Research (CFAR) Network of Integrated Clinical Trials (CNICS), and the AIDS Clinical

Trials Group (ACTG). We would like to thank all of the WIHS, CNICS, and ACTG investigators,

data management teams, and participants who contributed to this project. Funding for this study was

provided by National Institutes of Health (NIH) grants R01AI100654, R01AI085073, U01AI042590,

U01AI069918, R56AI102622, 5 K24HD059358-04, 5 U01AI103390-02 (WIHS), R24AI067039 (CNICS),

and P30AI50410 (UNC CFAR). The views and opinions of authors expressed in this manuscript do

not necessarily state or reflect those of the NIH.

Data in this manuscript were collected by the Womens Interagency HIV Study (WIHS). The

contents of this publication are solely the responsibility of the authors and do not represent the of-

ficial views of the National Institutes of Health (NIH). WIHS (Principal Investigators): UAB-MS

WIHS (Michael Saag, MirjamColette Kempf, and Deborah Konkle-Parker), U01-AI-103401; Atlanta

WIHS (Ighovwerha Ofotokun and Gina Wingood), U01-AI-103408; Bronx WIHS (Kathryn Anastos),

U01-AI-035004; Brooklyn WIHS (Howard Minkoff and Deborah Gustafson), U01-AI-031834; Chicago

WIHS (Mardge Cohen and Audrey French), U01-AI-034993; Metropolitan Washington WIHS (Mary

Young), U01-AI-034994; Miami WIHS (Margaret Fischl and Lisa Metsch), U01-AI-103397; UNC

WIHS (Adaora Adimora), U01-AI-103390; Connie Wofsy Womens HIV Study, Northern California

(Ruth Greenblatt, Bradley Aouizerat, and Phyllis Tien), U01-AI-034989; WIHS Data Management

and Analysis Center (Stephen Gange and Elizabeth Golub), U01-AI-042590; Southern California

WIHS (Joel Milam), U01-HD-032632 (WIHS I WIHS IV). The WIHS is funded primarily by the

Hosted by The Berkeley Electronic Press



14 Buchanan et al.

National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the

National Cancer Institute (NCI), the National Institute on Drug Abuse (NIDA), and the National

Institute on Mental Health (NIMH). Targeted supplemental funding for specific projects is also pro-

vided by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute

on Alcohol Abuse and Alcoholism (NIAAA), the National Institute on Deafness and other Communi-

cation Disorders (NIDCD), and the NIH Office of Research on Womens Health. WIHS data collection

is also supported by UL1-TR000004 (UCSF CTSA) and UL1-TR000454 (Atlanta CTSA).

http://biostats.bepress.com/uncbiostat/art45



Generalizing Evidence from Trials 15

Table 1: Summary of Monte Carlo results for estimators of the population average treatment

effect when the sampling score model was correctly specified with a continuous outcome

for 5,000 samples with m = 4,000 and n ≈ 1,000. Scenarios are described in Section

6. For scenarios 1 and 2, ∆0 = 2.2 and, for scenarios 3 to 6, ∆0 = 2.0 (T = within

trial; S = stratified; IPSW = inverse probability of sampling weighted; ESE = Empirical

standard error (×100); ASE = Average standard error (×100); ECP = Empirical coverage

probability)

Bias ESE ASE ECP

Scenario Cov. (β1,α) ∆̂T ∆̂S ∆̂IPSW ∆̂S ∆̂IPSW ∆̂S ∆̂IPSW ∆̂S ∆̂IPSW

1 Bin. (0.4,1) 0.07 2e-3 2e-3 6.2 7.1 7.1 7.3 0.98 0.95

2 Bin. (0.6,1) 0.11 -3e-5 -6e-4 6.3 7.1 6.6 7.1 0.96 0.95

3 Cont. (0.4,1) 0.20 0.04 1e-3 8.1 13.4 7.9 13.4 0.91 0.95

4 Cont. (0.6,1) 0.60 0.07 -1e-3 8.6 15.0 8.6 14.9 0.88 0.95

5 Cont. (0.4,2) 0.80 0.09 3e-3 9.4 17.2 8.9 17.2 0.81 0.95

6 Cont. (0.6,2) 1.20 0.14 -1e-3 10.1 19.9 9.8 19.6 0.70 0.95

Table 2: Summary of Monte Carlo results for estimators of the population average treatment

effect when the sampling score model was misspecified with a continuous outcome for 5,000

samples withm = 4,000 and n ≈ 1,000. Scenarios are described in Section 6. For scenarios 1

and 2, ∆0 = 2.8 and, for scenarios 3 to 6, ∆0 = 2.0 (T = within trial; S = stratified; IPSW

= inverse probability of sampling weighted; ESE = Empirical standard error (×100); ASE

= Average standard error (×100); ECP = Empirical coverage probability)

Bias ESE ASE ECP

Scenario Cov. (β1,α) ∆̂T ∆̂S ∆̂IPSW ∆̂S ∆̂IPSW ∆̂S ∆̂IPSW ∆̂S ∆̂IPSW

1 Bin. (0.4,1) 0.16 0.09 0.09 7.03 7.67 7.73 7.61 0.80 0.77

2 Bin. (0.6,1) 0.24 0.13 0.13 6.36 6.82 6.62 6.86 0.49 0.52

3 Cont. (0.4,1) 0.80 0.45 0.40 13.12 16.53 12.88 16.57 0.07 0.32

4 Cont. (0.6,1) 1.20 0.67 0.60 13.19 17.58 12.90 17.24 <0.01 0.08

5 Cont. (0.4,2) 1.60 0.89 0.80 17.37 22.12 16.98 22.20 <0.01 0.05

6 Cont. (0.6,2) 2.39 1.34 1.20 17.49 23.79 17.04 23.32 <0.01 <0.01
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Table 3: Results for continuous outcomes in two AIDS Clinical Trials Group (ACTG) trials

where the sampling score model included all variables associated with trial participation, the

outcome, or effect modifiers (with a linear term for continuous variables) and all pairwise

interactions (T = within trial; S = stratified; IPSW = inverse probability of sampling

weighted).

Difference in Means (95 % CI)

Cohort Trial ∆̂T ∆̂S ∆̂IPSW

WIHS 320a 24 (7, 41) 38 (17, 59) 46 (23, 70)

WIHS A5202b 1 (-35, 37) -19 (-62, 25) 35 (-45, 115)

CNICS 320 19 (12, 25) 18 (9, 26) 17 (9, 25)

CNICS A5202 6 (-8, 20) 7 (-18, 32) -2 (-31, 28)

aFor ACTG 320, the treatment contrast was PI vs. no PI.

bFor A5202, the treatment contrast was ABC-3TC vs. TDF-FTC.
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Fig. 1: Comparison of the distributions of within-trial estimator ∆̂T , stratified estimator ∆̂S , and

inverse probability of sampling weighted estimator ∆̂IPSW , based on 5,000 simulated datasets where

the sampling score model is correctly specified and ∆0 = 2.0 with one continuous covariate, βββ =

(−7, 0.6) and α = 1.
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Appendix: Sandwich-Type Estimators of the Variance for the IPSW Estimator

The empirical sandwich-type estimator is used to estimate the asymptotic variance of the IPSW esti-

mator. Substituting the following empirical estimates for their corresponding quantities in equation

(2) produces a consistent sandwich-type estimator of the variance when βββ is known. Define the fol-

lowing matrices: Â∗ = (n+m)−1
∑

i ∂/∂θθθ
∗

0Ψ
∗

∆(Yi,Zi, Xi, Si, θ̂θθ
∗

) and

B̂
∗ = (n + m)−1

∑

iΨ
∗

∆(Yi,Zi, Xi, Si, θ̂θθ
∗

)Ψ∗
T

∆ (Yi,Zi, Xi, Si, θ̂θθ
∗

). θ̂θθ
∗

is asymptotically normally dis-

tributed with mean θθθ∗0 and covariance matrix Σ̂∗

θ = Â
∗
−1

B̂
∗
Â

∗−T . When βββ is known, the estimator

of the asymptotic variance of ∆̂IPW is

Σ̂∗

IPW = Σ̂∗
(11)

θ + Σ̂∗
(22)

θ − 2Σ̂∗
(12)

θ

where Σ̂∗
(ij)

θ refers to the ith row and the jth column of the matrix Σ̂∗

IPW . The estimated standard

error is ŝe(∆̂) =
√

(n+m)−1Σ̂∗

IPW .

Similarly, when the weights are estimated, the following expressions can be used to obtain a

consistent sandwich-type estimator of the variance. Let θ̂θθ = (µ̂1, µ̂0, β̂ββ) and θθθ0 = (µ1, µ0,βββ0). Define

the following matrices: Â = (n+m)−1
∑

i
∂

∂θθθ0
Ψ∆(Yi,Zi, Xi, Si, θ̂θθ) and

B̂ = (n+m)−1
∑

iΨ∆(Yi,Zi, Xi, Si, θ̂θθ)Ψ
∗
T

∆ (Yi,Zi, Xi, Si, θ̂θθ). θ̂θθ is asymptotically normally distributed

with mean θθθ0 and covariance matrix Σ̂θ = Â
−1

B̂Â
−T . When βββ is not known, the estimator of the

asymptotic variance of ∆̂IPW is

Σ̂IPW = Σ̂
(11)
θ + Σ̂

(22)
θ − 2Σ̂

(12)
θ

where Σ̂
(ij)
θ refers to the ith row and the jth column of the matrix Σ̂IPW . The estimated standard

error is ŝe(∆̂) =

√

(n+m)−1Σ̂IPW .
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