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Abstract

Proportional hazards mixed e�ects model (PHMM) was recently proposed, which

incorporates general random e�ects of arbitrary covariates and includes the univariate

frailty model as a special case. In this paper we establish the asymptotic properties

of the nonparametric maximum likelihood estimator under PHMM. The asymptotic
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results allow us to use the pro�le likelihood for selection of both nested and non-nested

PHMMs. We de�ne both a pro�le likelihood ratio test and a pro�le Akaike informa-

tion for general models with nuisance parameters. Asymptotic quadratic expansion of

the log pro�le likelihood allows derivation of the asymptotic null distribution of the

likelihood ratio statistic including the boundary cases, as well as unbiased estimation

of the Akaike information by an Akaike information criterion. For computation of the

likelihood under PHMM we apply three algorithms: Laplace approximation, reciprocal

importance sampling and bridge sampling. We compare the three algorithms under

di�erent data structures, and apply the methods to a multi-center lung cancer clinical

trial.

Key words: Akaike information, asymptotic eÆciency, consistency, pro�le likelihood,

likelihood ratio test, testing on the boundary, Laplace approximation, reciprocal im-

portance sampling, bridge sampling.
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1 Motivation

In recent years random e�ects models for failure time data have been applied in var-

ious areas, for unobserved heterogeneity, for dependence induced by clustering in, for

instance, familial studies, and in settings where some e�ects, such as center e�ects in a

multi-center trial, are best thought of as sampled from a wider population. The work

in this paper, although developed under the more general semiparametric models, has

been motivated by the random e�ects models for failure time data. Like linear and

generalized linear models, these random e�ects models have provided a natural way

to model many within-cluster correlations. For example, Vaida and Xu (2000) showed

how such models can be used to understand institutional variation in outcomes of a

multi-center lung cancer trial conducted by the Eastern Cooperative Oncology Group.

The use of random e�ects survival models in clinical trials was also advocated in Glid-

den and Vittingho� (2004), Murray et al. (2004) and Sylvester et al. (2002). Liu et al.

(2004ab), on the other hand, used variance components to identify the genetic contri-

bution to the age of onset of alcohol dependence and alcohol abuse. The full power

and 
exibility of the random e�ects models, however, has not yet been extended to

regression methods for right-censored data.

Vaida and Xu (2000) studied the proportional hazards model with mixed e�ects

(PHMM). It includes the more classical `frailty' models with random e�ects on the

baseline hazard, but also allows random covariate e�ects. In this way it is able to

model covariate by cluster interactions, such as varying treatment e�ects in a multi-

center clinical trial. The model is of the form

�ij(t) = �0(t) exp(�
0Zij + b0iWij); (1)

where �ij(t) is the hazard function of the j-th observation from the i-th cluster, bi is a

vector of random e�ects for the i-th cluster, and Zij ;Wij are the covariate vectors for

the �xed and random e�ects. This model contains a multivariate random e�ect with
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arbitrary design matrix in the log relative risk, in a way similar to the linear, general-

ized linear and nonlinear mixed models. Vaida and Xu developed the nonparametric

maximum likelihood estimator (NPMLE) of the parameters in this model, computed

using the EM algorithm and Markov Chain Monte Carlo (MCMC) methods. However,

the asymptotic properties of the NPMLE remain unproven under the PHMM.

As in any regression setting, model selection is an important aspect of data analysis.

In particular, in the application of model (1), it often needs to be decided whether a

random e�ect term should be incorporated into the model. From the testing point

of view, the null hypothesis is that the corresponding variance component is zero.

Although the standard errors of the estimated variance components are obtained in

Vaida and Xu (2000), they cannot be used directly for testing zero variance components,

because the null hypothesis lies on the boundary of the parameter space. Gray (1995)

and Commenges and Andersen (1995) proposed a score test of homogeneity for this

purpose. The score test, however, is restricted to the null hypothesis of no random

e�ects. In addition, no tests are readily available for testing more than one parameter at

a time, such as for testing the signi�cance of a categorical covariate with more than two

categories. In this paper we develop a likelihood ratio test in the general semiparametric

setting that, under PHMM, allows arbitrary testing on the mixed model, so a data

analyst could test for the signi�cance of a speci�ed subset of the random and/or �xed

e�ects.

Another approach to model selection is via information criteria (Linhart and Zuc-

chini, 1986), which easily handles the comparison of non-nested models, and avoids the

boundary problem in the case of selection of random e�ects. The Akaike information

criterion (AIC; Akaika, 1973; deLeuw, 1992; Burnham and Anderson, 2002) is among

the most commonly used in practice. It has a simple interpretation as penalized log-

likelihood, as well as an information-theoretic foundation. Under the Cox model with

no random e�ects, an AIC has been used in association with the partial likelihood
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(Verweij and van Houwelingen, 1995). However, partial likelihoods do not universally

exist for semiparametric models; in particular, strictly speaking it does not apply to

PHMM (1). Here we aim to give a meaningful derivation of the AIC for general models

with nuisance parameters, and in particular to semiparametric models where only the

�nite dimensional parameters are of interest.

In the next section we prove the consistency and asymptotic normality of the

NPMLE under PHMM. In Section 3 we study the pro�le likelihood for general semi-

parametric models, and use it to derive the pro�le likelihood ratio test including the

boundary case; we also develop an AIC using the pro�le likelihood. In Section 4 we

apply the pro�le likelihood ratio test and the pro�le AIC to PHMM, and consider three

algorithms to compute the maximized likelihood under PHMM. Simulation studies are

carried out in Section 5 and an example is given in Section 6 to illustrate the meth-

ods. Section 7 contains some further discussion. But �rst, we review the proportional

hazards mixed model in some detail below.

1.1 Proportional hazards mixed model

Assume that the data consist of possibly right-censored event time observations from

n clusters, with ni observations in each cluster, i = 1 : : : n. Within a cluster the

observations are dependent, but conditional on the cluster-speci�c d � 1 vector of

random e�ects bi, the survival times Tij are independent and their hazard functions

follow PHMM (1). In (1) Wij is often a subset of Zij , apart from possibly a `1' which

represents the cluster e�ect on the baseline hazard. To insure identi�ability, we assume

that E(bi) = 0. For distribution of the random e�ects we also assume that

bi
iid� N(0;�) (2)

as in Vaida and Xu (2000). Note that the other commonly used frailty distribution,

the gamma distribution, is not suitable under the general random e�ects model (1).

5
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This is because it is not scale-invariant so that the inference is not invariant under a

change of measuring unit for covariates of the random e�ects.

The data from subject j in cluster i can be written yij = (Xij ; Æij ;Zij;Wij), where

Xij is the possibly right-censored failure time and Æij is the failure-event indicator. Let

yi = (yi1; : : : ;yini) be the data for cluster i. For cluster i, conditional on the random

e�ect bi, the log-likelihood is

li = li(�; �0;yijbi) =
niX
j=1

fÆij log �0(Xij) + Æij(�
0Zij + b0iWij)� �0(Xij)e

�0Zij+b
0

i
Wijg; (3)

where �0(t) =
R t
0
�0(s) ds. We rewrite the parameter for the baseline hazard in the

following as �, to be consistent with the general semiparametric model framework that

we will use. The likelihood of the observed data is then

L(�) =
nY
i=1

Z
exp(li)p(bi;�) dbi; (4)

where � = (�;�; �) and p(�) is the multivariate normal distribution. Usually no closed-

form expression is available for L(�) and its calculation involves d-dimensional integra-

tion.

2 Asymptotic theory under PHMM

We assume the following conditions on the data.

C1. Conditional on the covariates Zij and Wij, the latent censoring time C�
ij is inde-

pendent of the failure time Tij and random e�ects bi.

C2. There exists some positive constant � such that P(C�
ij � � jZij ;Wij) � � almost

surely.

C3. Zij and Wij are bounded. In addition, if there exists a constant vector c and a

symmetric matrix � such that

c0[1;Z0ij ]
0 +W0

ij�Wij = 0; j = 1; : : : ; ni

6
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and

W0
ij�Wij0 = 0; j 6= j

0; j; j0 = 1; : : : ; ni

almost surely, then c = 0 and � = 0.

C4. The true cumulative hazard �0(t) is strictly increasing and continuously di�er-

entiable in [0; � ]. Also, �0(�) <1.

C5. The true values of � and �, �0 and �0, belong to the interior of a known compact

set,

� = f(�;�) : j�j � B for some constant B;

� is positive de�nite and its eigenvalues

are bounded away from 0 and 1g

C6. The cluster sizes ni are iid bounded random variables and P(ni � 2) > 0 for all i.

Theorem 1 Under conditions C1{C6, k�̂n��0k ! 0, k�̂n��0k ! 0 and supt2[0;� ] j�̂n(t)�
�0(t)j ! 0 almost surely where k � k is the Euclidean norm.

Theorem 2 Under conditions C1{C6

p
n(�̂0n � �00; �̂0

n ��0
0; �̂n(�)� �0(�))0

converges to a zero mean Gaussian process in Rd1 �Rd2(d2+1)=2 � l
1[0; � ] where �̂n

and �0 are treated as extended column vectors consisting of the upper triangle elements

and l
1[0; � ] is the space of all bounded functions on [0; � ] with the sup norm on [0; � ].

Furthermore, �̂n and �̂n are asymptotically eÆcient.

Theorem 3 Let V (h1;h2; h3) be the asymptotic variance of

p
nfh01(�̂n � �0) + h02(�̂n ��0) +

Z �

0

h3(t) d(�̂n(t)� �0(t))g;
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hn be the vector h1, h2, and h3(Xij) for which Æij = 1; and Jn be the negative Hessian

matrix of logLn(�̂) with respect to (�;�) and the jump sizes of � at Xij for which Æij =

1. Then under C1-C6, the variance estimator nh0nJ
�1
n hn ! V (h1;h2; h3) uniformly in

probability.

The proofs of the above theorems are given in the Appendix.

3 Pro�le likelihood for model selection

In this section we discuss the pro�le likelihood in the general context of semiparametric

models, using the quadratic expansion of Murphy and van der Vaart (2000). Assume

that the data consists of a random sample of n observations, y1; : : : ;yn, from a dis-

tribution depending on parameters � and �. We assume that � 2 �, a subset of Rp,

and � is a nuisance parameter, possibly of in�nite dimension. The log-likelihood of

the data is l(�; �) =
Pn

i=1 li(�; �), and li is the log-likelihood for yi. The log pro�le

likelihood function for �, with the nuisance parameter � `pro�led out', is

pl(�) = sup
�

l(�; �): (5)

Following Murphy and van der Vaart (2000), under suitable conditions the log pro�le

likelihood behaves as a quadratic function asymptotically; i.e. for any random sequence

�n such that k�n � �0k = Op(1=
p
n) where �0 is the true parameter value,

1

n
fpl(�n)� pl(�0)g = (�n � �0)

0A� 1

2
(�n � �0)

0I(�n � �0) + op

�
1

n

�
; (6)

where A =
Pn

1 s(yi)=n, s is the eÆcient score for �, i.e. the ordinary observed score

function minus its orthogonal projection onto the closed linear span of the score func-

tions for the nuisance parameter �, and I, its covariance matrix, is the eÆcient Fisher

information matrix (Murphy and van der Vaart, 2000; Severini and Wong, 1992). We

will derive the results of this section for semiparametric models that satisfy (6).
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3.1 Pro�le likelihood ratio test

The likelihood ratio statistic for two nested parametric models, when the parameter

space of the smaller model lies entirely in the interior of that of the larger model,

has a chi-squared null distribution with the number of degrees of freedom equal to

the di�erence of those of the two models. For a semiparametric model such as (1), the

number of degrees of freedom of the model itself is not well de�ned, since there is at least

one in�nite dimensional parameter. However, if the in�nite dimensional parameter is

a nuisance parameter, then under certain conditions the likelihood ratio statistic can

be de�ned via the pro�le likelihoods, with the number of degrees of freedom calculated

using the �nite dimensional parameters.

For two nested models let � be the parameter space under the larger model, and �0

the parameter space under the smaller model, or equivalently, under the null hypothesis

H0. We assume that H0 places no additional restrictions on the nuisance parameter �.

Denote L the likelihood, and let

LR =
sup�0

L(�; �)

sup� L(�; �)
: (7)

Then LR is the ratio of the maximized likelihoods under the two models. The above

can also be viewed as the ratio of the maximized pro�le likelihoods, with the nuisance

parameter � `pro�led out'. So

�2 logLR = �2fsup
�0

pl(�)� sup
�

pl(�)g; (8)

where �0 and � are the corresponding parameter spaces for � under the two models.

Murphy and van der Vaart (2000) showed that as result of the quadratic expansion

(6), when �0 lies in the interior of the parameter space, the pro�le likelihood ratio test

for H0 : � = �0 has asymptotically chi-squared null distribution with the number of

degrees of freedom equal to the dimension of �.

Testing on the boundary
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As mentioned in Section 1, the challenging problem in hypothesis testing under

model (1) is when the null hypothesis lies on the boundary of the parameter space,

such as testing against zero variances of the random e�ects. We show in the following

that the asymptotic expansion (6) enables us to obtain results on the null distribution

of the pro�le likelihood ratio statistic similar to those in Self and Liang (1987). First

we obtain a result similar to that of Theorem 1 in Self and Liang (1987), on the
p
n-

consistency of the maximum (pro�le) likelihood estimator when �0 is on the boundary

of �, given the
p
n-consistency when �0 lies in the interior of �.

Theorem 4 Given the quadratic expansion (6), with probability tending to 1 as n!1
there exists a sequence of points in �, �̂n, at which local maxima of pln(�) occur, that

converges to �0 in probability. Moreover,
p
n(�̂n � �0) = Op(1).

See Appendix for proof.

Notice that (6) is equal to

1

2
A0I�1A� 1

2
fzn � (�n � �0)g0Ifzn � (�n � �0)g+ op

�
1

n

�
; (9)

where zn = I�1A. Therefore the same representation of the asymptotic distribution of

�2 logLR as that from Cherno� (1954) and Self and Liang (1987) is obtained, which

can then be used to calculate the null distribution of the likelihood ratio statistics.

Speci�cally, assume that � and �0 are regular enough to be approximated by cones

with vertices at �0 (for de�nition see Self and Liang (1987) or Cherno� (1954)), we

have

Theorem 5 Let Z be a random variable with a multivariate Gaussian distribution

of mean � and covariance matrix I�1(�0), and let C� and C�0
be non-empty cones

approximating � and �0 at �0, respectively. Then the asymptotic distribution of the

likelihood ratio statistic, �2 logLR, is the same as the distribution of the likelihood

ratio test of � 2 C�0
versus � 2 C� based on a single realization of Z when � = �0.
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3.2 Pro�le Akaike information

In this subsection we construct the Akaike information and its associated criterion,

AIC, for models with nuisance parameters. Since the relevant quantity is the pro�le

likelihood, we term the criterion pro�le AIC.

Consider a family of models M parameterized by � = (�; �), where � 2 � is

the parameter of interest, and � 2 � is the nuisance parameter, possibly of in�nite

dimension. The view we take here, similar to Claeskens and Hjort (2003), is that we are

interested in selecting the `� part' of the modelling, while leaving the parameter space

� the same across all competing models. In this way, for model selection purposesM is

really indexed by � alone. Assume that the data vector y, consisting of n independent

observations y1; :::;yn, is generated by a distribution with density f . The classical

`distance' from the true distribution f to a member g� = g(�j�; �) of M is given by

the Kullback-Leibler information (KL), I(f; g�) = Efflog f(y) � log g�(y)g. When

the focus is on � alone, the relevant distance is that between f and the subfamily of

models fg�;� : � 2 �g: min�2� I(f; g�;�). Suppose that the minimum is attained at

some � = ~�(�) for each �. Following Severini and Wong (1992), ~�(�) is in fact a

least favorable curve under smoothness conditions (see also Fan and Wong, 2000). We

denote g� = g(�j�; ~�(�)). Ignoring the constant term Eflog f(y)g in I(f; �), we have
that

Eflog g�(y)g = max
�

Eflog g�;�(y)g;

the expectations here and in the rest of this section are with respect to the true distri-

bution f . Therefore g� is the theoretical equivalent of the pro�le likelihood.

Minimum KL is attained at �0 such that I(f; g�0
) = min� I(f; g�); or, equivalently,

Eflog g�0
(y)g = max

�
Eflog g�(y)g:

Then g�0
is the best approximation to f within the family of models M. When the

model is correct, i.e., f 2M, we have clearly that f = g�0
. In practice �0 is estimated

11
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by �̂(y) which maximizes the pro�le likelihood:

pl(yj�̂) = max
�

pl(yj�) = max
�;�

log g(yj�; �):

Note that (�̂; �̂) is the MLE for (�; �). The predictive value of pl(�j�̂) is given by the

expected KL for predicting new data y�, independent of but from the same distribution

as y. Ignoring the constant term, we de�ne the pro�le Akaike Information

pAI = �2Ef(y)Ef(y�)pl(y
�j�̂(y)): (10)

It is important to note that pl(y�j�̂(y)) is di�erent from the log-likelihood function

computed at the MLE (�̂; �̂), since it allows maximizing the likelihood over � based

on the new data y�. The following result shows that pAI can be estimated by a

corresponding pro�le AIC, where the number in the correction term is p, the dimension

of �.

Theorem 6 Assume that (6) holds. Assume also that f 2 M, i.e. f = g(:j�0), with
�0 in the interior of the parameter space. Further, assume that y;y� consist of n i.i.d.

vectors, and �̂ is consistent for �0. Then the pro�le AIC

pAIC = �2pl(yj�̂(y)) + 2p (11)

is an approximately unbiased estimator of pAI, in the sense that

pAI = E(pAIC) +E(r);

where r = op(1) as n!1. If in addition r is uniformly integrable, then E(r) = o(1),

and pAIC is asymptotically unbiased for pAI.

See Appendix for proof.

Note that in proving the above we assume that the family of models under con-

sideration contains the operating model f , so that the parameters lie in the interior
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of the parameter space. This is generally the case in the theory of AIC. Incidentally,

for model selection this avoids the boundary problem encountered in likelihood ratio

testing for nested models, since the AIC is computed assuming that the model in each

case holds. We also noted earlier that with new data y� the pro�le likelihood function

at �̂(y) is not the same as the likelihood function at the MLE based on data y. How-

ever, when computing the pAIC, the observed pro�le likelihood in (11) is the same as

the maximized likelihood at �̂. The correction term, 2p, depends on the de�nition of

the parameter of interest. In particular, if � has �nite dimension q, the classic AIC for

� = (�; �) is �2l(�̂) + 2(p+ q), while the pro�le AIC for � is �2l(�̂) + 2p.

4 Application to PHMM

Under PHMM our parameter of interest is � = (�;�), whereas the baseline hazard

� is seen as a nuisance parameter. Asymptotic normality of the MLE established in

Section 2 implies that the likelihood surface is asymptotically quadratic near the true

parameter values, which in turn implies that the same holds for the pro�le likelihood

(Murphy and van der Vaart, 2000; Li, 2000) . The asymptotic properties of the MLE

have also been established for the gamma frailty models (Murphy, 1994, 1995; Parner,

1998), and Maple et al. (2002) veri�ed empirically that the contours of the pro�le

likelihood under PHMM are elliptic.

4.1 Pro�le likelihood ratio test under PHMM

The representation given in Theorem 5 only involves the �nite dimensional parameter

� under the PHMM, so for the cases of null distributions considered by Self and Liang,

or by Stram and Lee (1994, 1995) for linear mixed e�ects model, the results are exactly

the same.

13
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In the following we list the cases which are the most likely to be encountered in

practice, and correct an error in the existing literature. Denote in the following d as

the dimension of b.

Case 1: d = q + 1 and

� =

0
B@ �11 �12

�12 �22

1
CA ;

where �11 is q�q and q � 0. The asymptotic null distribution of �2 logLR for testing

H0 : �22 = 0 (and therefore �12 = 0) against � positive semide�nite is (�2q + �
2
q+1)=2.

When q = 0, the above distribution is a 50:50 mixture of a point mass at 0 and �
2
1;

note that in this case the maximum likelihood estimator of the variance components

has a positive probability of being zero. Our Case 1 corresponds to cases 1-3 of Stram

and Lee (1994).

Case 2: Same as in Case 1, but the test also includes a r-dimensional subvector of

�xed e�ects, �2, i.e., H0 : �22 = 0; �12 = 0;�2 = 0 against � positive semide�nite and

general �2. The asymptotic distribution of �2 logLR is (�q+r + �q+r+1)=2.

Case 3: d = q + k and

� =

0
B@ �11 �12

�0
12 �22

1
CA ;

where �11 is q � q and �22 is k � k. The asymptotic null distribution of �2 logLR
for testing H0 : �22 = 0 (and therefore �12 = 0) against � positive semide�nite

is a mixture of �2 distributions with degrees of freedom s; s + 1; : : : ; s + k, where

s = kq + k(k � 1)=2.

This corresponds to Case 4 of Stram and Lee (1994). Note, however, that the de-

grees of freedom for the mixture indicated in their paper was in error. In Stram and

Lee (1995) they corrected the maximum degrees of freedom to s+ k, but not the min-

imum degrees of freedom. To see why the correct mixture is the one we stated above,

reparameterize � = diag(�)Rdiag(�), where � is the vector of standard deviations,

14
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i.e. the square roots of the diagonal values of �, and R = (�ij) is the correlation

matrix. Testing �22 = 0 and �12 = 0 is equivalent to testing �q+1 = : : : = �q+k = 0,

and �ij = 0; i > j > k; that is, k variance parameters tested on the boundary and

s unconstrained correlation parameters. The result then follows along the same lines

as in Case 7 of Self and Liang (1987). The mixing probabilities, however, are not di-

rectly available in general, and simulation methods may be used to estimate the mixing

probabilities, or to estimate the null distribution itself. See Self and Liang (1987) and

Stram and Lee (1994) for further discussion.

If, in addition, the condition �1 = 0 is part of the null hypothesis, then the asymp-

totic distribution of �2 logLR is a �2 mixture with degrees of freedom s+r; : : : ; s+r+k.

Case 4: Another situation of interest is when in the full model �12 = 0 and �22 is

diagonal. Similarly to Case 3, the asymptotic null distribution for testing �22 = 0 is

a �2 mixture with degrees of freedom 0 through k.

Remark The above asymptotic results are obtained under the assumption that the

number of clusters, n, goes to in�nite. For small n, the approximation by the mixture

distributions given above may not be accurate. Crainiceanu and Ruppert (2004) showed

that, for balanced linear one-way ANOVA with a single variance component, the mass

at zero is larger than 0.5 when n is �nite. We further discuss this issue in the simulation

section.

4.2 Pro�le AIC under PHMM

The PHMM was our original motivation for developing the pro�le AIC. When the focus

is on the �xed e�ects � and the variance components �, the pAIC is given by (11),

where p is the number of parameters in � and �. Computation of the likelihood term

in (11) is addressed in the next subsection.

As a special case, when there are only �xed e�ects in the proportional hazards
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model, the pro�le AIC is also given by (11), where p is the dimension of the regression

parameter �. The pro�le likelihood in this case is the partial likelihood (Cox, 1975;

Murphy and van der Vaart, 2000). This AIC has been previously used, for example, by

Verweij and van Houwelingen (1995), although no formal justi�cation has been given

as an unbiased estimate of a de�ned Akaike information. Murphy and van der Vaart

(2000) veri�ed the conditions for the quadratic expansion (6) in this case. The validity

of this AIC as an unbiased estimate of an Akaika information can also be shown directly,

using the facts that asymptotically the partial likelihood score has zero expectation,

and the second derivative of the log partial likelihood gives the observed information

for �̂ (Andersen and Gill, 1982).

4.3 Computing the likelihood under PHMM

For the PHMM we computed �̂ using an EM-type algorithm, see Vaida and Xu (2000).

To compute the likelihood ratio statistic and the pAIC, only the maximum of the

full likelihood function given in (4) is needed, since pl(�̂) = logL(�̂). The likelihood

function (4) is, in general, an intractable integral of dimension d. Here we consider three

methods for computing l(�̂) = logL(�̂): Laplace approximation, reciprocal importance

sampling (RIS, Gelfand and Day, 1994), and bridge sampling (BS, Meng and Wong,

1996). Laplace approximation is computationally simple, but it is less accurate when

ni, the number of observations per cluster, is small. RIS and BS provide a numerically

unbiased estimator for l(�̂) regardless of ni, at an additional computational expense.

We will compare the performance of the three methods in simulations and data analysis.

In the following we denote b = (b01; :::;b
0
n)
0 and y = (y01; :::;y

0
n)
0.

Laplace approximation. This general method of computing integrals (see, e.g.,

Tierney and Kadane, 1986) is based on a normal approximation to the posterior dis-

tribution of the non-normalized integrand in (4), p(yi)p(bijyi), and is justi�ed asymp-
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totically, as ni !1. The approxmation for cluster i is given by the formula:

l
(i)
L = (d=2) log(2�) + (1=2) log jV̂ij+ log p(yijb̂i; �̂) + log p(b̂ij�̂); (12)

where b̂i = E(bijyi; �̂), V̂i = Var(bijyi; �̂) are the posterior mean and variance of the

random e�ects (DiCiccio et al., 1997). We compute b̂i and V̂i using MCMC sample

averages after convergence of the EM algorithm. Alternatively, b̂i; V̂i can be taken

as the posterior mode and inverse negative curvature of p(bijyi; �̂), respectively. We

compute the Laplace approximation separately for each cluster, and let

lL =

nX
i=1

l
(i)
L = (nd=2) log(2�) + (1=2) log jV̂ j+ log p(yjb̂; �̂) + log p(b̂j�̂); (13)

where b̂ = E(bjy; �̂) and V̂ = Var(bjy; �̂). Note that Ripatti and Palmgren (2000)

and Therneau and Grambsch (2000) used Laplace approximation for estimation of �

in PHMM.

Reciprocal importance sampling. Let p0(b) be the density of a fully speci�ed

approximating distribution to p(bjy; �̂), for example, the normal density p0(b) from

N(b̂; V̂ ). If b(1); : : : ;b(M) is a MCMC sample from p(bjy; �̂), then the reciprocal

importance sampling estimator of l(�̂) is

lR = lL � logA; (14)

where

A =
1

M

MX
k=1

expfv(b(k))g (15)

and

v(b) = lL + log p0(b)� log p(y;bj�̂): (16)

For numerical accuracy, the computations are done on the logarithmic scale as in (16).

Theoretically, lL can be omitted in (16), in which case lR = � logA. However, using

the Laplace approximation lL as a \point of reference" in (16) greatly improves the

17

Hosted by The Berkeley Electronic Press



numerical accuracy of lR. A simple probabilistic argument shows that indeed A in (15)

is a Monte Carlo unbiased estimator of expflL� l(�̂)g; see Gelfand and Day (1994) for

details.

The sampling and computation for lR are straightforward to implement. The fol-

lowing result shows that in practice it is more eÆcient to compute lR separately for

each cluster.

Proposition 1 Assume that lR is computed as in (14) over the whole dataset, and

~lR is the same except computed cluster-by-cluster. More precisely, ~lR =
Pn

i=1 l
(i)
R ,

where l
(i)
R = l

(i)
L � logAi, l

(i)
L is given by (12), and Ai =

P
k expfv(b(k)i )g=M . Put

~A =
Qn

i=1Ai, so that ~lR = lL � log ~A. Then both ~lR and lR converge to l(�̂) with

probability one, and the sampling variance of A is at least as large as the sampling

variance of ~A.

See Appendix for proof.

Bridge sampling. Assume that the Monte Carlo samples b(1); : : : ;b(M) from

p(bjy; �̂) and u(1); : : : ;u(M0) from p0(b) are both available, where p0(b) is a fully

speci�ed approximation to p(bjy; �̂), as described for RIS above. The bridge sampling

(Meng and Wong, 1996) estimator for l(�̂) is given by

lB = log(B)� log(C) + lL; (17)

where

B =
1

M0

M0X
k=1

[1 + expfv(u(k))g]�1 (18)

C =
1

M

MX
k=1

[1 + expf�v(b(k))g]�1: (19)

It is again more eÆcient to compute lB separately for each cluster and then combine

the results, as in Proposition 1.

The three methods will be compared using simulation experiments in the next

section.
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5 Simulation experiments

In this section we carry out simulations to compare the accuracy of the three methods

described above for calculating the likelihood values, and to study the �nite sample

distribution of the likelihood ratio statistic.

We simulate data under model (1) with a single binary covariate Z, � = 1:5,

�0(t) = 1, and no random e�ects. The censoring distribution is Uniform (0; �), where

� is chosen to achieve about 15% censoring. We then �t model (1) with a random

intercept, i.e. �ij(t) = �0(t) exp(�Zij + bi). Di�erent combinations of numbers of

clusters and cluster sizes (n � ni) are used. In Figure 1 the likelihood ratios are

computed using the three methods described in the last section. We see that reciprocal

importance sampling (RIS) and bridge sampling (BS) have extremely close agreement

in computing the likelihood (ratio) for all cases. For the number of observations per

cluster ni = 20 Laplace approximation also gives similar results to RIS and BS. For

ni = 2, however, there are discrepancies between Laplace approximation and RIS or

BS. The discrepancies increase with the number of clusters n since the log likelihood

is the sum of that from each cluster, and the overall discrepancies are the sums of the

discrepancies from each cluster.

In Figure 1 the ordered likelihood ratio statisitcs from 100 simulations are plotted

against the theoretical mixture distribution quantiles. The asymptotic results for the

null distribution of the likelihood ratio statistic requires that the number of clusters

n ! 1. For n = 100 (lower panels) we compare the distribution of the likelihood

ratio statistic with its asymptotic distribution given in Case 1 of Section 4.1, i.e. a

50:50 mixture of point mass at zero and �
2
1. In Figure 1 `p0' denotes the probability

of point mass at zero. For n = 10 (upper panels) the asymptotic distribution does

not appear to provide good approximation, and we use the result of Crainiceanu and

Ruppert (2004) on linear mixed models (balanced one-way ANOVA) as a guideline,
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i.e. a 65:35 mixture of point mass at zero and �
2
1. Note that their result requires the

cluster size ni !1 while keeping the number of clusters n �xed.

There is a clear e�ect of the number of observations per cluster on the null distri-

bution of the likelihood ratio. For ni = 20 the empirical distributions of the computed

likelihood ratio statistics agree reasonably well with their theoretical distributions ac-

cording to the plots, for both n = 100 and n = 10. But for ni = 2 even the distributions

of the likelihood ratio values computed using RIS and BS have a clear departure from

the theoretical mixtures. As mentioned before, for n = 10 Crainiceanu and Ruppert's

result requires that ni be reasonably large. It is interesting to note that the departure

also exists for ni = 2 and n = 100. The asymptotic mixture of 50:50 is theorectically

valid for any cluster size ni although it requires that the number of clusters n!1. The

asymptotic distribution does seem to provide a reasonable approximation for n = 100

and ni = 20. For ni = 2 we noticed (data not shown here) that the distribution of the

likelihood ratio statisitcs (computed using RIS and BS) is much better approximated

by the 50:50 mixture when n is as large as 250.

6 An example

In this section we consider the multi-center non-small cell lung cancer trial that was

used as an example in Vaida and Xu (2000). The trial enrolled 579 patients from 31

institutions. The primary endpoint was patient death. There were two randomized

treatment arms in the trial, a standard chemotherapy (CAV) arm and an alternating

regimen (CAV-HEM) arm. Other important covariates that a�ected patient survival

were: presence or absence of bone metastases, presence or absence of liver metastases,

performance status at study entry and whether there was weight loss prior to entry.

Gray (1995) used a score test for the existence of random treatment e�ect, and found

it to be signi�cant.
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In the following we mainly consider the three nested models of Vaida and Xu (2000);

they are named Models 1-3 in Table 1. They all include the �xed e�ects of the �ve

covariates. Model 1 includes no random e�ect; Model 2 includes a random treatment

e�ect; and Model 3 includes random treatment and random bone metastases e�ects.

The estimate of the other variance components corresponding to potential random

e�ects for the rest three of the covariates, as well as random center e�ect on the baseline

hazard function (see also Gray, 1995), converged to zero during the EM algorithm

(Vaida and Xu, 2000). The parameter estimates under the three models were given

in Table 1 of Vaida and Xu (2000). Table 1 here gives minus twice the log likelihood

values for the models, computed using Laplace approximation, reciprocal importance

sampling and bridge sampling for models 2 and 3. Note that the likelihood can be

computed directly when there are no random e�ects, and such is the case for Models

1 and 0 (see below). The likelihood values for Models 2 and 3 are computed after

50 EM steps where the maximum likelihood estimate has converged; the sample sizes

for Gibbs sampler during MCEM are 100 initially and increased to 1000 for the last

10 EM steps. The Monte Carlo sample sizes for RIS and BS are 1000, respectively.

>From the table we see that the values of the log likelihoods agree well among the three

computational methods.

As seen in the table, if we are to test Model 2 versus Model 1 using the likelihood

ratio statistic, its sampling distribution under Model 1 is asymptotically (�20 + �
2
1)=2,

according to Case 1 of Section 4.1, with critical value of 2.71 at .05 signi�cance level.

Model 1 is then rejected in favor of Model 2. Similarly, to test Model 3 versus Model 2,

the likelihood ratio statistic is again asymptotically (�20 + �
2
1)=2 under Model 2. This

is a special case of Case 4, and the mixing probabilities can be derived directly as in

Case 1. Therefore Model 2 is rejected in favor of Model 3. Note that the �nite sample

distribution we considered in Section 5 puts more point mass at zero, leading to even

smaller critical values for the likelihood ratio statistic.
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We can also compare Models 1 and 3 directly. Under Model 1 the asymptotic

distribution of the likelihood ratio statistic is a mixture of �20, �
2
1 and �

2
2. This is againn

Case 4 in Section 4.1. The mixing probabilities are not straightforward to compute;

however, given that the 0.95 quantile of �22 is 5.99, and that the same quantile for the

mixture is smaller, Model 1 is therefore rejected in favor of Model 3.

Finally, Model 0 is the Cox model with only �xed e�ects for the 4 covariates other

than treatment. The comparison of Model 0 versus Model 2 provides an illustration

for Case 2 of Section 4.1, i.e. neither the �xed nor the random treatment e�ect is

signi�cant. Here q = 0 and r = 1, so the null asymptotic distribution of the likelihood

ratio statistic is (�21 + �
2
2)=2. It is again easy to see that Model 0 is rejected in favor

of Model 2 at 0.05 sign�cance level.

Alternatively, we can use the pro�le AIC to compare the nested models. From the

table it is also clear that the larger models are chosen by the criterion.

7 Discussion

In this paper we established the asymptotic properties of the nonparametric maximum

likelihood estimator under the proportional hazards mixed e�ects model. Motivated

by model selection problems under PHMM, we developed the pro�le likelihood ratio

test and a pro�le Akaike information criterion that are generally applicable to models

with nuisance parameters. The development was based on the asymptotic quadratic

expansion of the log pro�le likelihood function. The pro�le likelihood ratio test for the

null hypothesis that lies in the interior of the parameter space was given in Murphy and

van der Vaart (2000); here we further developed it for testing on the boundary. The

pro�le AIC has not been previously proposed in the literature, to our best knowledge.

It applies to both parametric and semiparamtric models, and for the latter type of

models the focus is on the �nite dimenstional parameter. The AIC approach does
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not encounter the boundary problem as in hypothesis testing. The pro�le AIC also

provides a theoretical justi�cation for the use of the partial likelihood in the AIC under

the classic Cox model.

Model selection has been an area of growing interest in the recent years. In this

paper we restricted our attention to the classic derivation of the Akaike information

criterion. However we acknowledge, as Longford (2005) pointed out, that, whatever

the selection criterion, single-model based inference can be inherently biased. Alterna-

tives may include the use of a mixture of plausible models, and the focused information

criteria of Claeskens and Hjort (2003). The associated new challenges of such improve-

ments in practice are model interpretability and variability of inferences following the

model averaging or selection.

For computation of the maximized likelihood, the Laplace approximation is the

most straightforward but is only accurate when the cluster sizes are reasonably large. In

view of theMCEM algorithm that is used to �t the PHMM, the additional computation

of RIS or BS is often comparable to one step of the MCEM. Therefore we include RIS

and BS as default in our computational program.

Finally, under linear mixed models when the interest lies in the inference of the

random e�ects themselves, Vaida and Blanchard (2005) propose a conditional AIC

using the notion of e�ective degrees of freedom. The usefulness of conditional inference

carries over to PHMM, and it is our future work to develop a conditional AIC under

the PHMM. Additionally, the �nite sample distribution of the likelihood ratio statistic

for testing zero variance components is another area that requires further work.

APPENDIX

PROOF OF THEOREM 1. To prove consistency we follow methods used by

Murphy (1994) and Zeng et al. (2005). First prove �̂n(�) is bounded on [0; � ]. We
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then invoke the compactness of the parameter space and Helly's selection theorem to

conclude the existence of convergent subsequence of f�ng. Finally we show the limit

of this subsequence must be �0.

Step 1. We show �̂n(�) has an upper bound int [0; � ]. First let

��n(t) =
X
ij

Æij(1� Yij(t))P
kl Ykl(Xij)e�

0

0
ZklE�(e

b0
k
Wkl jyk)

;

ai(t) =

niX
j=1

Z t

u=0

fdNij(u)� Yij(u)e
�0
0
ZijE�(e

b0
i
Wij jyi) d�0(u)g;

fn(u) = n
�1

nX
i=1

niX
j=1

Yij(u)e
�0
0
ZijE�(e

b0
i
Wij jyi):

We show supt2[0;� ] j��n(t)� �0(t)j ! 0 almost surely.

Note that fai(t) : i = 1; 2; : : : g is a mean zero independent sequence for �xed t.

Also, by the boundedness assumptions on Wij and ni:

E�(e
b0
i
Wij jyi) < B�0

<1

for some constant B�0
. Similarly e

�0
0
Zij < B�0 < 1, and since ai(t) is bounded for

any t 2 [0; � ] we have Var(ai(t)) is bounded and by the SLLN n
�1
P

i ai(t)! 0 almost

surely.

Similarly, fn(u) � E(fn(u)) ! 0 almost surely. Since E[Yij(u)e
�0
0
ZijE�(e

b0
i
Wij jyi)]

is bounded away from zero, there exists some c1 > 0 such that eventually fn(u) � c1

almost surely. Likewise, since ni is bounded, there exist some c2 > 0 such that fn(u) �
c2.

Now consider

X
ij

Z t

u=0

n
dNij(u)� Yij(u)e

�0
0
ZijE�(e

b0
i
Wij jyi) d��n(u)

o
= 0; (20)
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since by switching the order of summation,

LHS =
X
ij

(
Æij(1� Yij(t))�

X
kl

Yij(Xkl)e
�0
0
ZijE�(e

b0
i
Wij jyi)Ækl(1� Ykl(t))P

rs Yrs(Xkl)e
�0
0
ZrsE�(er̂

0Wrs jyr)

)

=
X
ij

Æij(1� Yij(t))�
X
kl

(P
ij Yij(Xkl)e

�0
0
ZijE�(e

b0
i
Wij jyi)Ækl(1� Ykl(t))P

rs Yrs(Xkl)e
�0
0
ZrsE�(er̂

0Wrs jyr)

)

= 0:

Now by adding and subtracting dNij(u) in (20) we have for �xed t

Z t

u=0

fn(u) d(�0 � ��n)(u) = n
�1
X
ij

Z t

u=0

Yij(u)e
�0
0
ZijE�(e

b0
i
Wij jyi) d(�0 � ��n)(u)

= n
�1
X
ij

Z t

u=0

fdNij(u)� Yij(u)e
�0
0
ZijE�(e

b0
i
Wij jyi) d�0(u)g

= n
�1

nX
i=1

ai(t)

! 0 a.s.;

by SLLN. Futhermore

c1

Z t

u=0

d(�0 � ��n)(u) �
Z t

u=0

fn(u) d(�0 � ��n)(u)! 0 a.s.

and

c2

Z t

u=0

d(�0 � ��n)(u) �
Z t

u=0

fn(u) d(�0 � ��n)(u)! 0 a.s.:

Since c1 and c2 are both positive, we must have

Z t

u=0

d(�0 � ��n)(u)! 0 a.s.;

which implies ��n(t) ! �0(t) a.s. for all t 2 [0; � ]. Pointwise convergence of non-

decreasing functions to a continuous limit implies local (on [0; � ] in particular) uniform

continuity.
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Since �̂n, �̂n, Zkl, and Wkl are in compact sets, there exists some �nite, possibly

negative C such that

�̂0nZkl + log E
�̂n
[eb

0

k
Wkl jyk] � �00Zkl + logE�0 [e

b0
k
Wkl jyk] +C:

Therefore

�̂n(�) =
X
ij

Æij(1� Yij(�))P
kl Ykl(Xij) expf�̂0nZkl + log E

�̂n
[eb

0

k
Wkl jyk]g

�
X
ij

Æij(1� Yij(�))P
kl Ykl(Xij) expf�00Zkl + log E�0 [e

b0
k
Wkl jyk] + Cg

= e
�C ��n(�)! e

�C�0(�):

Step 2. Since �̂ has an upper bound almost surely, and �̂n and �̂n are in compact

sets, we can use Helly's selection theorem to establish a convergent subsequence which

we now denote by �̂n = (�̂n; �̂n; �̂n) with limit ��.

Taking limits of both sides of

�̂n(t) =

Z t

0

P
kl Ykl(u) expf�00Zkl + log E�0 [e

b0
k
Wkl jyk]gP

kl Ykl(u) expf�̂0nZkl + log E
�̂n
[eb

0

k
Wkl jyk]g

d��n(u) (21)

we see that �� is absolutely continuous with respect to �0. Furthermore, ��(t) is

di�erentiable with respect to t and d�̂n(t)= d��n(t) converges to d��(t)= d�0(t). Note

that the �nite sample likelihood as expressed via (3) has no �nite maximum, since �

is free to go to in�nity at any Xij . We restrict � to be right continuous with jumps at

Xij ; and for cluster i, conditional on the random e�ect bi, we let the log-likelihood be

li = li(�; �;yijbi) =
niX
j=1

fÆij log �fXijg+ Æij(�
0Zij + b0iWij)� �(Xij)e

�0Zij+b
0

i
Wijg;(22)

where �ftg is the size of the jump in � at t. The likelihood of the observed data,

Ln(�), is still as de�ned in (3) and we let ln(�) = logLn(�). In place of �0, which is
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continuous at Xij , we use ��n. In particular we have:

0 � n
�1fln(�̂n; �̂n; �̂n)� ln(�0;�0;

��n)g

= n
�1

nX
i=1

log

�Z
b

Ri(�̂n; �̂n;b)p(b; �̂n)db

�

� n
�1

nX
i=1

log

�Z
b

Ri(�0; ��n;b)p(b;�0)db

�

+ n
�1

nX
i=1

niX
j=1

Æij log(�̂nfXijg=��nfXijg)

where

Ri(�;�;b) =

niY
j=1

exp[Æij(�
0Zij + b0Wij)� �(Xij) exp(�

0Zij + b0Wij)]:

Letting n!1 we have

0 � E log

8<
:
Z
b

Ri(�
�
;��;b)p(b;��)db

niY
j=1

�
�(Xij)

Æij

�
�Z

b

Ri(�0;�0;b)p(b;�0)db

niY
j=1

�0(Xij)
Æij
��19=

; :

Because the right side is negative the Kullback-Leibler information we have

Z
b

Ri(�
�
;��;b)p(b;��)db

niY
j=1

�
�(Xij)

Æij =

Z
b

Ri(�0;�0;b)p(b;�0)db

niY
j=1

�0(Xij)
Æij

or

Z
b

niY
j=1

�
�(Xij)

Æij exp[Æij(�
�0Zij + b0Wij)� ��(Xij) exp(�

�0Zij + b0Wij)]p(b;�
�)db

=

Z
b

niY
j=1

�0(Xij)
Æij exp[Æij(�

0
0Zij + b0Wij)� �0(Xij) exp(�

0
0Zij + b0Wij)]p(b;�0)db

(23)

Now we use techniques adapted from Zeng et al. (2005) to conclude �� = �0. Fix

some k in 1; : : : ; ni. For j = 1; : : : ; k, let Æij = 1;Xij = 0 in (23) and note that we
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assume ��(0) = �0(0) = 0. If j = k + 1; : : : ; ni and Æij = 0, we replace Xij with � .

Otherwise, if j = k + 1; : : : ; ni and Æij = 1, we integrate Xij from 0 to � . We get:

Z
b

kY
j=1

�
�(0) exp[��0Zij + b0Wij ]

�
niY

j=k+1

�
exp[���(�) exp(��0Zij + b0Wij)]

	1�Æij

�
niY

j=k+1

�Z �

y=0

�
�(y) exp[��0Zij + b0Wij � ��(y) exp(��0Zij + b0Wij)]dy

�Æij

p(b;��)db

=

Z
b

kY
j=1

�0(0) exp[�
0
0Zij + b0Wij ]

�
niY

j=k+1

�
exp[��0(�) exp(�0

0Zij + b0Wij)]
	1�Æij

�
niY

j=k+1

�Z �

y=0

�0(y) exp[�0
0Zij + b0Wij � �0(y) exp(�0

0Zij + b0Wij)]dy

�Æij

p(b;�0)db

or

Z
b

kY
j=1

�
�(0) exp[��0Zij + b0Wij]

�
niY

j=k+1

�
exp[���(�) exp(��0Zij + b0Wij)]

	1�Æij

�
niY

j=k+1

�
1� exp[���(�) exp(��0Zij + b0Wij)]

	Æij p(b;��)db

=

Z
b

kY
j=1

�0(0) exp[�
0
0Zij + b0Wij ]

�
niY

j=k+1

�
exp[��0(�) exp(�0

0Zij + b0Wij)]
	1�Æij

�
niY

j=k+1

�
1� exp[��0(�) exp(�0

0Zij + b0Wij)]
	Æij p(b;�0)db: (24)

28

http://biostats.bepress.com/harvardbiostat/paper43



Because Æij are arbitrary, we sum the two sides of (24) over all possible Æij to yield:

Z
b

kY
j=1

�
�(0) exp[��0Zij+b

0Wij]p(b;�
�)db =

Z
b

kY
j=1

�0(0) exp[�
0
0Zij+b

0Wij]p(b;�0)db

and

exp

8<
:

kX
j=1

��
0
Zij +

(
Pk

j=1Wij)
0��(

Pk
j=1Wij)

2

9=
;�

�(0)k

= exp

8<
:

kX
j=1

�0
0Zij +

(
Pk

j=1Wij)
0�0(

Pk
j=1Wij)

2

9=
;�0(0)

k

We assume ��(0) > 0. Since the index set can be replaced by any subset of 1; : : : ; ni

we have

W0
ij�

�Wij0 =W0
ij�0Wij0 ; j 6= j

0 : j; j0 = 1; : : : ; ni;

and

��
0
Zij +

W0
ij�

�Wij

2
+ log ��(0)

= �0
0Zij +

W0
ij�0Wij

2
+ log �0(0); j = 1; : : : ; ni

Therefore, under C3, �� = �0, �
� = �0, and �

�(0) = �0(0).

To show �� = �0, we manipulate the terms of (23) again. Let Æi1 = 1 and integrate

Xi1 from 0 to t. Also for j = 2; : : : ; ni, if Æij = 0, replace Xij with � and if Æij = 1

integrate Xij from 0 to � . Summing the result over all possible fÆij : j = 2; : : : ; nig,
this time we get

Z
b

1� exp[���(t) exp(�00Zi1 + b0Wi1)]p(b;�0)db

=

Z
b

1� exp[��0(t) exp(�0
0
Zi1 + b0Wi1)]p(b;�0)db: (25)

Because both sides of (25) are strictly monotone in ��(t) and �0(t), we have �
�(t) =

�0(t). Since �0 is non-decreasing and continuous, the pointwise convergence can be

extended to uniform convergence on [0; � ].

29

Hosted by The Berkeley Electronic Press



PROOF OF THEOREM 2. To prove asymptotic normality and eÆciency we

invoke methods of Murphy (1995) and Zeng et al. (2005). Consider the set

H =
�
(h1;h2; h3) : h1 2 Rd1 ;h2 2 Rd2(d2+1)=2;

h3(�) is a function on [0; � ]; kh1k; kh2k; kh3kV � 1
	

(26)

where kh3kV denotes the total variation of h3(�) in [0; � ]. We de�ne a sequence of maps

Sn mapping a neighborhood of (�0;�0;�0), denoted by U , in the parameter space for

(�;�;�) into l1(H) as:

Sn(�;�;�)[h1;h2; h3]

� n
�1 d

d�
ln

�
� + �h1;�+ �h2;�(t) + �

Z t

0

h3(s) d�(s)

� ���
�=0

� An1[h1] +An2[h2] +An3[h3]

where � is treated as extended column vector consisting of the upper triangle elements;

and Anp, p = 1; 2; 3, are linear functionals on Rd1 ;Rd2(d2+1)=2 and BV [0; � ] (the space

of functions with �nite total variation in [0; � ]). If we let l�, l� and l� be the score

functions for �;�, and � (along
R t
0
1 + �h3(s) d�(s)) for a single cluster, then

An1[h1] = Pn[h01l�]; An2[h2] = Pn[h02l�]; and An3[h3] = Pn [l�[h3]]

where Pn denotes the empirical measure based on n independent clusters. We now

seek explicit expression for Anp. Recall the log likelihood

n
�1
ln(�) = n

�1
nX
i=1

log

�Z
b

Ri(�;�;b)p(b;�)db

�
+ n

�1
nX
i=1

niX
j=1

Æij log �fXijg

where

Ri(�;�;b) = exp

8<
:

niX
j=1

Æij(�
0Zij + b0Wij)� �(Xij) exp(�

0Zij + b0Wij)

9=
; :

Note that

@

@�
Ri(� + �h1;�;b)

��
�=0

= Ri(�;�;b)

niX
j=1

h01Zij
�
Æij � �(Xij) exp(�

0Zij + b0Wij)
�
:
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Furthermore let ��(t) =
R t
0
1 + �h3 d�, then

@
@���(t) =

R t
0
h3(s) d�(s) and

@

@�
Ri (�;��;b)

��
�=0

= �Ri (�;�;b)

niX
j=1

Z Xij

0

h3(s) d�(s) exp(�
0Zij + b0Wij):

Also ��ftg = (1 + �h3(t)) �ftg, so

d

d�
log ��ftg

��
�=0

=
h3(t)�ftg
��ftg

����
�=0

= h3(t):

If we let D(h2) denote the matrix corresponding to the extended vector h2 and de�ne

the \ � " operation on two matrices M1 and M2 to be trace(M1M
0
1), then

@

@�
p(b;�+ �h2)

��
�=0

=
@

@�
j�+ �h2j�1=2e�b0(�+�h2)�1b=2

��
�=0

=
�
b0��1D(h2)��1b=2���1 � D(h2)=2

	
e
�b0��1b=2

:

Finally, we can explicitly write Anp as

An1[h1] =n
�1

nX
i=1

0
@Z

b

niX
j=1

h01Zij

�
Æij � �(Xij)e

�0Zij+b
0Wij

�

�Ri(�;�;b)e
�b0��1b=2

db

!

�
�Z

b

Ri(�;�;b)e
�b0��1b=2

db

��1

An2[h2] =n
�1

nX
i=1

�Z
b

�
b0��1D(h2)��1b=2���1 � D(h2)=2

	

�Ri(�;�;b)e
�b0��1b=2

db

�

�
�Z

b

Ri(�;�;b)e
�b0��1b=2

db

��1

An3[h3] =n
�1

nX
i=1

niX
j=1

Æijh3(Xij)�
Z Xij

0

h3(s) d�(s)

�
Z
b

e
�0Zij+b

0WijRi(�;�;b)e
�b0��1b=2

db

�
�Z

b

Ri(�;�;b)e
�b0��1b=2

db

��1
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or

An1[h1] =n
�1

nX
i=1

Z
b

niX
j=1

h01Zij

�
Æij � �(Xij)e

�0Zij+b
0Wij

�
d�i(b)

An2[h2] =n
�1

nX
i=1

Z
b

�
b0��1D(h2)��1b=2 ���1 � D(h2)=2

	
d�i(b)

An3[h3] =n
�1

nX
i=1

niX
j=1

Æijh3(Xij)�
Z Xij

0

h3(s) d�(s)

Z
b

e
�0Zij+b

0Wijd�i(b)

where

d�i(b) =
Ri(�;�;b)e

�b0��1b=2
dbR

b
Ri(�;�;b)e�b

0��1b=2db

We de�ne the limit map S : (�;�;�)[h1;h2; h3]! l
1(H) as

S(�;�;�)[h1;h2; h3] = A1[h1] +A2[h2] +A3[h3]

where the linear functionals Ap are obtained by replacing the empirical sum in Anp by

the expectation. By construction, Sn(�̂n; �̂n; �̂n) = 0 and S(�0;�0;�0) = 0.

Asymptotic normality will follow as desired by verifying the four conditions of The-

orem 2 in Murphy (1995). First,
p
n(Sn(�0;�0;�0)�S(�0;�0;�0)) weakly converges

to a tight Gaussian process on l1(H), because H is a Donsker class and the functionals

Anp are bounded Lipschitz functionals with respect toH. The approximation condition

that

sup
(h1;h2;h3)2H

j(Sn � S)(�̂n; �̂n; �̂n)� (Sn � S)(�0;�0;�0)j

= op

 
n
�1=2 _

(
k�̂n � �0k+ k�̂n ��0k+ sup

t2[0;� ]

j�̂n(t)� �0(t)j
)!

can be proved in a manner similar to Lemma 1 in the appendix of Murphy (1995).

By the smoothness of S(�;�;�), the Fr�echet di�erentiability condition holds and the

derivative of S(�;�;�) at (�0;�0;�0) by _S(�0;�0;�0). We consider _S(�0;�0;�0) to

be a map, T , from the space

f(� � �0;���0;�� �0) : (�;�;�) is in the neighborhood U of (�0;�0;�0)g
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to l1(H). Lastly, we need to show the linear map, T , is continuously invertible on its

range.

Now we can write

T (� � �0;���0;�� �0) = (� � �0)0Q1(h1;h2; h3) + (���0)
0Q2(h1;h2; h3)

+

Z �

0

Q3(h1;h2; h3) d(�� �0)

where the Qi are the respective partial derivatives of S with respect to �, �, and �.

The Qi are of the form

Q1(h1;h2; h3) =B1

�
h1

h2

�
+

Z �

0

h3(t)D1(t) dt;

Q2(h1;h2; h3) =B2

�
h1

h2

�
+

Z �

0

h3(t)D2(t) dt;

and

Q3(h1;h2; h3) = B3

�
h1

h2

�
+ b4h3(t) +

Z �

0

h3(t)D3(t) dt;

where B1, B2, and B3 are constant matrices; D1(t), D2(t), D3(t) are continuously

di�erentiable functions; and b4 > 0; each of which depends on �0. Therefore the

operator Q = (Q1;Q2;Q3)
0 can be considered the sum of a continuously invertible

operator and a compact operator from H to itself.

To prove T is invertible, we need only show the invertibility of the linear operator

Q(h1;h2; h3); or equivalently that Q is one-to-one (Zeng et al. 2005; Rudin 1973, pp.

99-103). Suppose Q(h1;h2; h3) = 0, then T (���0;���0;���0)[h1;h2; h3] = 0 for

any (�;�;�) in the neighborhood U . In particular, �x some small constant � and let

� = �0 + �h1; � = �0 + �h2;

�(t) = �0(t) + �

Z t

0

h3(t) d�0(t):

By de�nition of T , we have

0 =T (� � �0;���0;�� �0)[h1;h2; h3]

=�Ef(l�0 [h1] + l�0
[h2] + l�0

[h3])
2g;
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so that l�0 [h1] + l�0
[h2] + l�0

[h3] = 0 almost surely. Expanding this expression we get

0 =

niX
j=1

Z
b

h01Zij

�
Æij � �0(Xij)e

�0
0
Zij+b

0Wij

�
R2i(�0;�0;b) dbN(0;�0)

+

Z
b

�
b0��1

0 D(h2)��1
0 b=2���1

0 � D(h2)=2
	
R2i(�0;�0;b) dbN(0;�0)

+

niX
j=1

Z
b

�
Æijh3(Xij)�

Z Xij

0

h3(s) d�0(s)e
�0
0
Zij+b

0Wij

�
R2i(�0;�0;b) dbN(0;�0)

(27)

where

R2i(�0;�0;b) = Ri(�0;�0;b)

niY
j=1

f�0(Xij)gÆij

=

niY
j=1

exp[Æij(�
0
0Zij + b0Wij)� �0(Xij) exp(�

0
0Zij + b0Wij)]f�0(Xij)gÆij :

Using techniques from Zeng et al. (2005) similar to the identi�ability step of the

consistency proof, we show that (27) implies h1 = 0, h2 = 0, and h3 = 0. Let Zij and

Wij be �xed. Then for �xed integer k in 1; : : : ; ni, we de�ne measures �1; : : : ; �ni on

the set f0; 1g � [0; � ] as follows:

�m(f0g �A) = 0; �m(f1g �A) = I(0 2 A); m � k;

and

�m(f0g �A) = I(� 2 A); �m(f1g �A) =

Z
IAdx; m > k;

where A is any Borel set in [0; � ]. We integrate both sides of (27) with respect to

f(Æi1;Xi1); : : : ; (Æini ;Xini)g and the product measure d�1; : : : ; d�ni . That is, we let

Æim = 1 and Xim = 0 for all m � k. Where m > k, we choose Xim = � if Æim = 0,

integrate Xim from 0 to � if Æim = 1, then sum over Æij 2 f0; 1g. Then we sum all of

the equalities of (27) for all possible combinations of fÆi1; : : : ; Æinig 2 f0; 1gni�k.
We compute the integral of each term on the right side of (27) with respect to the
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product measure,
Qni

m=1 �m, the sum of which must be 0. First note, for any b,

Z
R2i(�0;�0;b) d

 
niY

m=1

�m

!

=
Y
m�k

f�0(0)e�00Zim+b0Wimg

�
X

Æim2f0;1g
m>k

Y
m>k

�
exp[��0(�) exp(�

0
0Zim + b0Wim)]

�1�Æim

�
�Z �

y=0

exp[�00Zim + b0Wim � �0(y) exp(�
0
0Zim + b0Wim)]�0(y)dy

�Æim

=
Y
m�k

f�0(0)e�00Zim+b0Wimg

�
X

Æim2f0;1g
m>k

Y
m>k

�
exp[��0(�) exp(�

0
0Zim + b0Wim)]

�1�Æim

� �1� exp[��0(�) exp(�
0
0Zim + b0Wim)]

�Æim
=
Y
m�k

f�0(0)e�00Zim+b0Wimg

For the �rst term of (27), if j � k, then for any b:

Z
h01Zij

�
Æij � �0(Xij)e

�0
0
Zij+b

0Wij

�
R2i(�0;�0;b) d

 
niY

m=1

�m

!

=

Z
h01ZijR2i(�0;�0;b) d

 
niY

m=1

�m

!

=h01Zij
Y
m�k

f�0(0)e�00Zim+b0Wimg
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If j > k, then

Z
h01Zij

�
Æij � �0(Xij)e

�0
0
Zij+b

0Wij

�
R2i(�0;�0;b) d

 
niY

m=1

�m

!

=h01Zij
Y
m�k

f�0(0)e�00Zim+b0Wimg

�
X

Æim2f0;1g
m>k;m6=j

Y
m>k
m6=j

�
exp[��0(�) exp(�

0
0Zim + b0Wim)]

�1�Æim

� �1� exp[��0(�) exp(�
0
0Zim + b0Wim)]

�Æim
�

X
Æij2f0;1g

(1� Æij)
�
��0(�)e

�0
0
Zij+b

0Wij

�
exp[��0(�) exp(�

0
0Zij + b0Wij)]

+ Æij

Z �

y=0

�
1� �0(y)e

�0
0
Zij+b

0Wij

�
exp[�00Zij + b0Wij � �0(y) exp(�

0
0Zij + b0Wij)]�0(y)dy

=h01Zij
Y
m�k

f�0(0)e�00Zim+b0Wimg

�
X

Æij2f0;1g

(1� Æij)
���0(�) exp[�

0
0Zij + b0Wij � �0(�) exp(�

0
0Zij + b0Wij)]

�

+ Æij�0(�) exp[�
0
0Zij + b0Wij � �0(�) exp(�

0
0Zij + b0Wij)]

=0

Therefore

Z niX
j=1

Z
b

h01Zij

�
Æij � �0(Xij)e

�0
0
Zij+b

0Wij

�
R2i(�0;�0;b) dbN(0;�0) d

 
niY

m=1

�m

!

=
X
j�k

h01Zij

Z
b

Y
m�k

f�0(0)e�00Zim+b0Wimg dbN(0;�0): (28)

Likewise, from the second term of (27):

Z Z
b

�
b0��1

0 D(h2)��1
0 b=2 ���1

0 � D(h2)=2
	
R2i(�0;�0;b) dbN(0;�0) d

 
niY

m=1

�m

!

=

Z
b

�
b0��1

0 D(h2)��1
0 b=2 ���1

0 � D(h2)=2
	 Y
m�k

f�0(0)e�00Zim+b0Wimg dbN(0;�0):

(29)
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Furthermore, from the third term of (27), if j � k thenZ �
Æijh3(Xij)�

Z Xij

0

h3(s) d�0(s)e
�0
0
Zij+b

0Wij

�
R2i(�0;�0;b) d

 
niY

m=1

�m

!

= h3(0)
Y
m�k

f�0(0)e�00Zim+b0Wimg; (30)

if j > k, thenZ �
Æijh3(Xij)�

Z Xij

0

h3(s) d�0(s)e
�0
0
Zij+b

0Wij

�
R2i(�0;�0;b) d

 
niY

m=1

�m

!

=
Y
m�k

f�0(0)e�00Zim+b0Wimg

�
X

Æij2f0;1g

�
� (1� Æij)

Z �

0

h3(s) d�0(s)

� exp[�00Zij + b0Wij � �0(t) exp(�
0
0Zij + b0Wij)]

+ Æij

Z �

y=0

�
h3(y)�

Z y

s=0

h3(s) d�0(s)e
�0
0
Zij+b

0Wij

�

� exp[�00Zij + b0Wij � �0(t) exp(�
0
0Zij + b0Wij)]�0(y)dy

�

=
Y
m�k

f�0(0)e�00Zim+b0Wimg

�
X

Æij2f0;1g

�
� (1� Æij)

Z �

0

h3(s) d�0(s)

� exp[�00Zij + b0Wij � �0(t) exp(�
0
0Zij + b0Wij)]

+ Æij

Z �

s=0

h3(s) d�0(s) exp[�
0
0Zij + b0Wij � �0(t) exp(�

0
0Zij + b0Wij)] = 0:

Thus,Z niX
j=1

Z
b

�
Æijh3(Xij)�

Z Xij

0

h3(s) d�0(s)e
�0
0
Zij+b

0Wij

�
R2i(�0;�0;b) dbN(0;�0) d

 
niY

m=1

�m

!

=
X
j�k

h3(0)

Z
b

Y
m�k

f�0(0)e�00Zim+b0Wimg dbN(0;�0) (31)

Combining (28), (29), and (31) and integrating over b, we obtain

kX
j=1

h01Zij +
1

2

0
@ kX

j=1

Wij

1
A
0

D(h2)
0
@ kX

j=1

Wij

1
A+ kh3(0) = 0:
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Since the index set j = 1; : : : ; k is arbitrary, we conclude

k2X
j=k1+1

h01Zij +
1

2

0
@ k2X

j=k1+1

Wij

1
A
0

D(h2)
0
@ k2X

j=k1+1

Wij

1
A+ (k2 � k1)h3(0) = 0:

for any 1 � k1 < k2 � ni. Therefore W0
ijD(h2)Wij0 = 0 for j 6= j

0 and Z0ijh1 +

W0
ijD(h2)Wij=2 + h3(0) = 0. Condition C3 yields D(h2) = 0, and it follows that

h1 = 0, h2 = 0, and h3(0) = 0.

Next, we set Xij = 0; j = 2; � � � ; ni, and Æij = 1; j = 1; : : : ; ni in (31) to get

h3(Xi1) =

RXi1

0
h3(s) d�0(s)

R
b
e
�0
0
Zi1+b

0Wi1R2i(�0;�0;b)dbN(0;�0)R
b
R2i(�0;�0;b)dbN(0;�0)

:

So the expression g(y) � R y
0
h3(t) d�0(t) satis�es the homogeneous equation

g
0(y)

�0(y)
� g(y)

R
b
e
�0
0
Zi1+b

0Wi1R2i(�0;�0;b)dbN(0;�0)R
b
R2i(�0;�0;b)dbN(0;�0)

= 0

with boundary condition g(0) = 0. Therefore g(y) = 0, h3(y) = 0, Q is one-to-one,

and _S(�0;�0;�0) is invertible.

Asymptotic normality follows from Theorem 2 of Murphy (1995) and the proof of

asymptotic eÆciency for �̂n and �̂n is identical to Zeng et al. (2005).

PROOF OF THEOREM 3. The proof is analogous to the proof of Theorem 3

in Zeng et al. (2005).

PROOF OF THEOREM 4. The proof is similar to the proof of Theorem 1 in

Self and Liang (1987), except that the Taylor series expansion cited in Lehmann (1983,

pp.429-432) is now replaced by (6).

PROOF OF THEOREM 5. From Theorem 1 we have that
p
n(�̂��0) = Op(1).

Applying (6) for the sequence �n = �̂, we get

pl(y�j�̂(y)) = pl(y�j�0) + s(y�j�0)
0(�̂� �0)� n(�̂� �0)

0I0(�̂� �0)=2 + r1; (32)

where r1 = op(1). The main result (5) from Murphy and van der Vaart (2000) implies

that Es(y�j�0) = 0 (divide by
p
n and take limits on both sides of (5), and then apply
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the strong law of large numbers). Therefore, taking expectations on both sides of the

equality in (32), the �rst-order term vanishes and we get

Ef(y�)pl(y
�j�̂(y)) = Epl(�0)� n(�̂� �0)

0I0(�̂� �0)=2 +Er1: (33)

Taking expectation one more time, with respect to y on both sides of (33), we have

pAI = �2Epl(yj�0) +Efn(�̂��0)
0I0(�̂��0)g+Er1

= �2Epl(yj�̂(y)) + 2Efpl(yj�̂(y))� pl(yj�0)g+Efn(�̂� �0)
0I0(�̂� �0)g+Er1:

>From Corollary 2 and 1 of Murphy and van der Vaart (2000), the middle term and

the last term under expectation signs in the last equation above have a �2p distribution,

except for remainder terms of op(1). Collecting all the remainder terms in r2 = op(1),

we get that

pAI = �2Epl(yj�̂(y)) + 2p+Er

which proves the theorem. If r is uniformly integrable, then E(r) = o(1), and pAIC is

asymptotically unbiased for pAI.

PROOF OF PROPOSITION 1. The consistency part is immediate by applying

the strong law of large numbers to A and Ai.

To show the variance inequality, note that A =
P

k expf
P

i v(b
(k)
i )g=M . Assume for

simplicity that n = 2 (the general case follows by induction). Put expfv(bi)(k)g = �
(k)
i ,

for i = 1; 2. Then A = �1�2, and ~A = ��1 ��2, where the bar denotes sample average of M

observations. Let �i; �
2
i denote respectively the mean and variance of �i, i=1,2. Then

Var(�1�2) = Var(�1�2)=M

= �
2
1�

2
2=M + �

2
1�

2
2=M + �

2
2�

2
1=M

Var(��1��2) = (�21=M)(�22=M) + �
2
1�

2
2=M + �

2
2�

2
1=M

The �rst term in Var(�1�2) is no smaller than the corresponding term in Var(��1 ��2),

while the other two terms are identical, so the result follows.
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Table 1: �2� Log likelihood values from the lung cancer data

Model Laplace RIS BS pAIC+

0� 7241.76 7241.76 7241.76 7249.76

1� 7232.80 (8.96) 7232.80 7232.80 7242.80

2 7228.98 (3.82) 7228.80 (4.00) 7228.78 (4.02) 7240.80

3 7222.72 (6.26) 7222.55 (6.25) 7222.60 (6.18) 7236.55

RIS - reciprocal importance sampling, BS - bridge sampling.
+ computed using RIS.
� likelihood computed directly when there are no random e�ects.

In (�) are the likelihood ratio statistics between the model and its immediate submodel (3 vs. 2, 2 vs. 1, etc.).
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Ordered observed likelihood ratio
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Figure 1: Q-Q plots of likelihood ratio statistics from simulated data
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