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An Empirical Study of Marginal Structural
Models for Time-Independent Treatment

Tanya A. Henneman and Mark J. van der Laan

Abstract

In non-randomized treatment studies a significant problem for statisticians is de-
termining how best to adjust for confounders. Marginal structural models (MSMs)
and inverse probability of treatment weighted (IPTW) estimators are useful in an-
alyzing the causal effect of treatment in observational studies. Given an IPTW
estimator a doubly robust augmented IPTW (AIPTW) estimator orthogonalizes
it resulting in a more e±cient estimator than the IPTW estimator. One purpose
of this paper is to make a practical comparison between the IPTW estimator and
the doubly robust AIPTW estimator via a series of Monte- Carlo simulations. We
also consider the selection of the optimal choice in the class of IPTW estimators.
Also included is an empirical study that examines the range of efficiency across
the class of AIPTW estimators. Both the IPTW and AIPTW estimators are ap-
plied in the analysis of data collected from The Study of Physical Performance
and Age-Related Changes in Sonomans.



1 Introduction

In observational studies when treatment is not randomly assigned, individual characteristics or an individ-
ual’s degree of well-being can affect the health outcome being studied as well as influence treatment decisions.
Even in randomized studies, when the goal is to insure that treatment arms represent similar patient popula-
tions, confounding can occur when for example, subjects decide not to comply with their assigned treatment
based on how well they are feeling. Accounting for confounders, in randomized and non-randomized studies,
in an appropriate manner is an important statistical issue in analyzing data from medical treatment studies.
Techniques such as matching, stratification of the data, and adjusting for all possible confounders in a regres-
sion model are examples of methods statisticians have used to adjust for measured and known confounders.
To estimate causal parameters Robins (1998) proposes a class of inverse probability of treatment weighted
(IPTW) estimators when the assumption of no unmeasured confounders is valid. The IPTW estimator has
been utilized in treatment studies to determine causal effect. Hernan et al. (2001) used the estimator to
estimate the joint effect of zidovudine (AZT) and prophylaxis therapy for Pneumocystis carinii pneumonia
on the survival of HIV-positive men. Under certain conditions, the IPTW estimator can produce consistent
estimates of causal parameters [5]. However, IPTW estimators require model specification and estimation of
the propensity score, and if estimated inconsistently, consistency of the IPTW is not guaranteed. In Robins
(1999b) and Robins et al (2000a), a class of doubly robust augmented IPTW (AIPTW) estimators are intro-
duced for marginal structural models (MSMs) that protect against misspecification of the propensity score
and makes gains in efficiency over the IPTW estimators.

In this paper we consider the problem of estimating causal parameters in point-treatment studies where
all potential confounders are measured and available to the researcher. As of yet, the practical performance
of the AIPTW when estimating treatment effect for point treatment studies, has not been evaluated or
compared to the IPTW in the literature. We aim to present a practical comparison of the IPTW and the
AIPTW estimators via a series of Monte Carlo simulation studies. This paper also includes an empirical
study that examines the range of efficiency across the class of AIPTW estimators. Finally, we apply both
estimators in the analysis of data collected from The Study of Physical Performance and Age-Related changes
in Sonomans.

2 Marginal Structural Models

Let A represent a treatment or exposure variable whose effect on Y is of interest for a given population. Let
A represent the set of all realizations of A. Using Rubin’s Causal Model [4] we assume for each subject the
existence of treatment specific outcomes Ya for each a ∈ A. Each subject in the population is assigned to a
specific treatment arm and for a subject who receives treatment a∗ we observe Ya∗ , the unobserved Y ′

as are
called counterfactuals or potential outcomes. Let X = ((Ya)a∈A, A, W ) represent the full data on a subject
with W representing a set of measured covariates. Let Oi = (Ai, Yi,Wi) represent the observed data for
i = 1, . . . , n subjects. The counterfactual response is modeled as

Ya = m(a, V |β) + ε, E(ε|V ) = 0 (1)

where V ⊂ W is a k-dimensional vector of real-valued covariates and where m(A, V |β) represents a MSM
parameterized by β with dim(β) = q. We are focused on the problem of estimating causal parameters for
point-treatment studies when the treatment variable is dichotomous, i.e. A = {0, 1}, recognizing that many
of our results can be extended for ordinal or continuous treatment variables.

Causal inference is based, in part, on the idea that the existence of all possible outcomes is inherent within
each subject, and that what determines the outcome is the chance of observing one of these counterfactuals.
This makes central to the discussion of causality the propensity score, the probability an individual receives
their assigned treatment. Formally, the propensity score is defined as the conditional probability of treatment
given all measured confounders, i.e. P (A = 1|W ). Note, g(·) will be used to denote the conditional density of
A. In addition to identifying a model of the marginal counterfactual distribution, MSMs require specification
of the treatment mechanism.
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To continue developing the framework necessary for statistical inference, we provide commonly invoked
assumptions involving the propensity score. First is the randomization assumption, given formally as,

g(A|X) = g(A|W ).

This means that treatment assignment is determined only by what is observed, and that there are no
unmeasured confounders. Secondly, we assume that each subject has a positive probability of receiving any
of the proposed treatments, i.e. g(a|W ) > 0 for all a ∈ A and W .

3 Inverse Probability of Weighted Treatment Estimator

The motivation behind the IPTW estimator is that weighting observations by their respective propensity
score creates a pseudo-population in which treatment assignment is no longer confounded [6]. Consider the
following class of estimating functions that is indexed by h, a real-valued function of A and V , and where
ε(β) = Y −m(A, V |β) is the observed residual,

{
θh(O|β, g) =

h(A, V )ε(β)
g(A|W )

: h

}
.

For all h ∈ H = {h : h(A, V )} the following identity

E

(
h(A, V )ε(β)

g(A|W )

)
= 0, (2)

holds if 1) the randomization assumption and the 2) nonparametric identifiability assumption that maxa∈A
h(a,V )
g(a|W ) <

∞, almost everywhere, hold. If this assumption is violated then the data itself does not identify the param-
eter β, so additional assumptions would be needed. From (2) we get unbiased estimating equations of the
form,

1
n

n∑

i=1

h(Ai, Vi)εi(β)
g(Ai|Wi)

= 0. (3)

The estimator that solves (3) is referred to as the IPTW estimator and we will represent this estimator by
β̂1,h. β̂1,h is asymptotically linear with influence function

ICh(O|β, g) = −E

(
d

dβ

h(A, V )ε(β)
g(A|W )

)−1

· h(A, V )ε(β)
g(A|W )

.

That is,

√
n(β̂1,h − β) =

1
n

n∑

i=1

ICh(Oi|β, g) + op(1)

⇒ N(0,Σ),

where Σ = E[ICh(O|β, g)ICh(O|β, g)>] and 0 is the zero vector.

3.1 Selection and estimation of nuisance parameters

As was stated earlier, this is a class of functions that varies over H. Any choice of h can produce a consistent
estimate of β because of the identity in (2), therefore selection of a particular h involves determining which is
the optimal choice in the efficiency sense. When there is no confounding, the optimal estimating procedure
would be a weighted least squares regression with weights given as the inverse of the variance of the residuals.
And because there are no confounders a significant association between the treatment and outcome would
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imply causation [5, 3]. Considering the MSM in (1) a smart choice for h would be a function such that the
resulting IPTW estimator would reduce to the optimal estimator when there is no additional confounding
beyond V . One selection of h is [5]

h∗(A, V ) = g(A|V ) ·
d

dβ m(A, V |β)

Var(ε(β)|A, V )
, (4)

with corresponding IPTW estimating function,

θh∗(O|β, g) =
g(A|V )
g(A|W )

d
dβ m(A, V |β)

Var(ε(β)|A, V )
ε(β). (5)

The incorporation of g(A|V ) in the numerator of (5) helps to control for observations with very small
propensity scores which can result in an estimator with a very large variance [5]. The ratio of weights,
g(A|V )
g(A|W ) , is known as stabilizing weights. Stabilizing weights are useful in reducing the variance of the IPTW

estimator [5]. In the case of no additional confounding beyond V , i.e. g(A|V )
g(A|W ) = 1, (5) reduces to the

optimal estimating function for the regression model E(Y |A, V ) = m(A, V |β). Consequently, the IPTW
using estimated weights will be at least as efficient as the standard regression estimator [13].

In van der Laan et al. (2002) an interesting choice of h is the h which gives an optimal covariance matrix
E[ICh(O | β, g)ICh(O | β, g)>]: i.e. this would be the optimal estimating function in the case where g is
known and probably a good choice in general. This alternate index is given by:

halt(A, V ) =
d

dβ
m(A, V | β)

E(g−1(A | X) | A, V )
E(ε2(β)/g2(A | X) | A, V )

.

The resulting IPTW estimating function under the randomization assumption is

θhalt(O|β, g) =
E(g−1(A | W ) | A, V )

E(ε2(β)/g2(A | W ) | A, V )

d
dβ m(A, V | β)

g(A|W )
ε(β),

and is a consistent estimating function for β. β̂1,halt

represents the estimator which solves

1
n

n∑

i=1

θhalt(Oi|β, g),

and has influence function

IChalt(O|β, g) = −E

[
E(g−1(A | W ) | A, V )

E(ε2(β)/g2(A | W ) | A, V )

d
dβ m(A, V | β)

g(A|W )
d

dβ
ε(β)

]−1

× E(g−1(A | W ) | A, V )
E(ε2(β)/g2(A | W ) | A, V )

d
dβ m(A, V | β)

g(A|W )
ε(β).

One thing to observe is that when there is no additional confounding beyond V , β̂1,halt

reduces to the
optimal estimating function for the regression model E(Y |A, V ) = m(A, V |β). In order to see that one gains
in efficiency using halt we ran Monte Carlo simulations to compare the limiting variance for β̂1,h∗ and β̂1,halt

.
In the settings we examined they were comparable and it remains to be seen if there are situations where
there is a notable difference.

Generally, the functional form of g is not known to the researcher, and must be estimated. When A is
binary a logistic model is commonly used to model g [10, 9, 2]. Similarly a logistic model can be used to
estimate g(A|V ). If g(A|W ) is correctly specified, then the resulting estimator from (5) is consistent, even
if the model for g(A|V ) is misspecified [3, 6]. However, if g(A|W ) is misspecified then the IPTW estimator
can be inconsistent.

3
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In addition to g being unknown, E(ε2(β)|A, V ) is also usually unknown. The variance component can
be estimated by assuming a reasonable model for E(ε2(β̂)|A, V ), with some initial estimate β̂. Once the
nuisance components of the IPTW estimator have been modelled and estimated, a weighted least squares
(WLS) regression with weights for a subject i given as

wi =
gn(Ai|Vi)
gn(Ai|Wi)

or wi =
gn(Ai|Vi)

gn(Ai|Wi)Ê(ε2i (β̂)|Ai, Vi)
,

and where gn is an estimate of g, can be performed to calculate β̂1,h. Alternately, a Newton-Raphson
procedure can be employed to determine β̂1,h by solving the estimating equation in (3).

There exists a couple of options when considering the calculation of standard errors and confidence
intervals. One is to use the resulting standard error estimates from the WLS procedure. However, these
estimates will be conservative when using estimated, instead of known, weights. Alternately, bootstrapping
methods may be employed or standard error estimates can obtained using the corresponding influence curve
for β̂1,h. The covariance matrix can be estimated as

Σ̂ =
1
n

n∑

i=1

ˆICh(Oi|β̂1,h, gn) ˆICh(Oi|β̂1,h, gn)>. (6)

A 95% confidence interval for β̂1,h
j , for j = 1, . . . , q, is β̂1,h

j ±1.96 · σ̂/
√

n, where σ̂ is the appropriate diagonal
element in (6).

4 Augmented Doubly Robust IPTW Estimators

In observational studies the mechanism for assigning treatment is often not known. Thus the propensity
score must be estimated when implementing the IPTW estimating procedure. Two potential concerns arise
in this situation. One is that resulting standard error estimates can be conservative since they do not take
into account the use of an estimated propensity score. Secondly, if the specified model for the treatment
mechanism is incorrect, then the IPTW estimator could produce inconsistent parameter estimates. One can
always improve an estimating function by subtracting its projection on a nuisance tangent space [1], thus
efficiency is improved by subtracting from an IPTW estimator its projection on the tangent space of the
propensity score. The resulting doubly robust AIPTW estimator [7, 8] is more efficient than the IPTW
estimator and under certain conditions can be protected against misspecification of the propensity score.

Let θh(O|β, g) be an IPTW estimating function for β. To obtain a more efficient estimator we should
subtract from the IPTW estimator its projection onto the space spanned by all scores of g. Consider an
extended class of estimating functions

{
Ψh,φ(O|β, g) =

h(A, V )ε(β)
g(A|W )

+ φ(A,W ) : φ, h

}
,

indexed by h ∈ H and φ, where φ is a real-valued dim(β) function of A and W . Let Tprop denote the tangent
space of the propensity score, defined as the space of all scores corresponding to the propensity score, i.e. the
space of all functions of A and W with conditional mean 0. Then the projection of θh(O|β, g) onto Tprop is

Π(θh(O|β, g)|Tprop) = E(θh(O|β, g)|A,W )− E[E(θh(O|β, g)|A,W )|W ].

We choose φ so that Ψh,φ(O|β, g) corresponds to the IPTW estimator minus it’s projection on the tangent
space of the propensity score. Let ⊥ denote the orthogonal complement and let φ∗ be such that

φ∗(A,W ) = −Π(θh(O|β, g)|Tprop).
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Under the nonparametric identifiability assumption, the proposed AIPTW estimator has as an estimating
function

Ψh,φ∗(O|β, g) = Π(θh(O|β, g)|T⊥prop)

=
h(A, V )ε(β)

g(A|W )
− h(A, V )

g(A|W )
E(ε(β)|A,W ) +

∑

A
h(a, V )E(ε(β)|A = a, W ).

This proposed estimator retains the consistency property of the IPTW estimator since Π(θh(O|β, g)|Tprop)
has conditional mean zero. Let β̂2,h denote the AIPTW estimator that solves the following estimating
equation

1
n

n∑

i=1

Ψh,φ∗(Oi|β, g) = 0. (7)

Under standard regularity conditions, β̂2,h is a consistent and asymptotically linear estimate of β with
influence function

ICh,φ∗(O|β, g) = −E

[
d

dβ
Ψh,φ∗(O|β, g)

]−1

·Ψh,φ∗(O|β, g).

Thus, √
n(β̂2,h − β) ⇒ N(0, Σ),

where Σ = E[ICh,φ∗(O|β, g)ICh,φ∗(O|β, g)>]. One thing to observe is

d

dβ
Ψh,φ∗(O|β, g) =

d

dβ
E

[
h(A, V )ε(β)

g(A|W )

]
.

Therefore the influence curve for β̂2,h can be expressed as,

ICh,φ∗(O|β, g) = E

[
d

dβ

h(A, V )ε(β)
g(A|W )

]−1

·Ψh,φ∗(O|β, g).

The Newton-Raphson procedure can be employed to solve the equations in (7) and produce AIPTW
estimates of causal parameters. After obtaining an estimate of β we can calculate standard error estimates
using an estimate of the influence function. The empirical covariance matrix is estimated as

Σ̂ =
1
n

n∑

i=1

ˆICh,φ∗(Oi|β̂2,h) ˆICh,φ∗(Oi|β̂2,h)
>
,

and a 95% confidence interval for β2,h
j , for j = 1, . . . , q is computed by β̂2,h

j ± 1.96 · σ̂/
√

n where σ̂ is the
appropriate diagonal element of Σ̂.

An important note is that the AIPTW estimator is dependent on the specification of a subclass of
parameter models. We have already discussed the selection of φ∗ to correspond to the projection of the
IPTW estimator on Tprop. Two additional nuisance parameters of concern are g and E(ε(β)|A,W ). A
desirable property of the AIPTW is that it is doubly robust in the sense that only one of the models for g
or E(ε(β)|A,W ) needs to be correctly specified to achieve consistency [7].

4.1 Efficiency of AIPTW estimators

We performed a simulation exercise to compare the range of limiting variances for β̂2,h for different choices
of h. Consider the data given by O = (Y,A, W ) where W is a univariate real valued variable that represents
a potential confounder. We are interested in the following linear MSM, E(Ya) = β0 +β1a and our parameter

5
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Table 1: Empirical variance calculations for β̂2,h
1 with α̃ = 0.

(h0, h1) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 - 617.73 106.76 32.48 13.35 7.63 6.22 6.39 7.16 8.14 9.16
0.1 542.38 - 197.01 27.07 8.39 6.17 7.12 8.70 10.29 11.74 13.02
0.2 77.67 156.00 - 14.57 6.95 10.78 13.89 16.13 17.79 19.05 20.04
0.3 18.81 15.16 7.92 - 70.43 46.41 39.65 36.50 34.68 33.50 32.68
0.4 7.39 6.17 12.22 98.14 - 364.58 145.44 94.99 74.00 62.76 55.84
0.5 6.30 8.80 20.02 68.85 426.65 - 897.03 304.04 176.81 126.40 100.38
0.6 7.98 12.66 25.11 60.33 185.06 993.45 - 1667.77 522.22 285.11 193.69
0.7 10.35 16.18 28.55 56.31 127.13 360.84 1798.54 - 2676.80 799.97 419.88
0.8 12.77 19.15 31.00 53.97 102.40 220.40 596.20 2841.93 - 3924.12 1137.29
0.9 15.03 21.64 32.83 52.44 88.92 163.39 340.15 891.12 4123.61 - 5409.74
1.0 17.09 23.73 34.24 51.36 80.50 133.40 239.26 486.38 1245.62 5643.58 -

of interest is β1. Since A is binary, h(A) is a two-dimensional vector that is completely determined by two
numbers, say h0 and h1. Define

h(A) =
(

1
h0I(A = 0) + h1I(A = 1)

)
.

A collection of AIPTW estimators was created by considering all parings of h0 and h1 where h0 6= h1 and
h0, h1 ∈ {0.0, 0.1, 0.2, . . . , 1.0}. Data was generated in the following manner:

P (W = 1) = 0.5
logit(P (A = 1|W )) = −0.5 + α̃W

YA = 1 + A + W + ε, ε ∼ N(0, 1).

We generated three data sets, each consisting of one million observations, with varying degrees of confounding.
The level of confounding was determined by the parameter α̃, and we considered α̃ = 0.0, 0.7 and 1.1. All
necessary components for the influence curve of each AIPTW estimator were calculated explicitly using the
known data generating mechanism. For each estimator, β̂2,h, the empirical covariance matrix was calculated,
and we report the limiting variance for β̂2,h

1 , the second diagnal element of the covariance matrix.
In Tables 1-3 we report empirical variance calculations for β̂2,h

1 for each pairing of h0 and h1. To quantify
the range in efficiency over the collection of estimators we compute the ratio of the variance of each pairing
to the minimum variance within each data set. We report quantile information for this ratio in Table 4, and
observe that the range in relative efficiency is quite large, with the maximum greater than 300 for all data
sets. We also observe that the estimator producing the smallest variance is at least as four times as efficient
for half of the estimators (α̃=0.7 and 1.1), and at least eight times as efficient as half of the estimators
when there is no confounding. It appears that the selection of h can indeed have a significant effect on the
efficiency of the AIPTW estimator. For an implicit characterization of the optimal solution hopt, we refer
the reader to Robins (1998).

5 Simulation Study

As of yet, no practical comparisons have been made between the IPTW and AIPTW estimators. We consider
estimation of causal parameters of linear MSMs and present three different simulation studies to illustrate
the applicability of these estimators. For all simulations the observed data is given as O = (Y, A, W =
(V, W1)), where V and W1 are both univariate real-valued covariates and the MSM is given by (1) with
m(A, V |β) = β0 +β1A+β2V . In this scenario, β1 measures the causal effect of treatment and is the primary
parameter of interest.

6
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Table 2: Empirical variance calculations for β̂2,h
1 with α̃ = 0.7.

(h0, h1) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 - 1165.51 226.57 76.86 32.63 15.88 8.80 5.74 4.54 4.25 4.43
0.1 1139.25 - 638.07 113.65 35.10 13.87 6.91 4.67 4.26 4.59 5.23
0.2 215.16 618.71 - 269.11 40.36 10.95 5.02 4.28 4.95 6.01 7.11
0.3 70.41 105.70 256.64 - 58.61 6.68 4.40 6.08 7.98 9.63 10.99
0.4 28.65 30.95 35.85 53.05 - 6.59 12.62 15.46 17.03 18.03 18.71
0.5 13.39 11.62 9.09 5.62 7.93 - 113.04 58.18 44.13 37.90 34.41
0.6 7.30 5.80 4.49 4.84 15.02 121.28 - 377.97 143.36 90.41 68.66
0.7 4.95 4.32 4.54 7.27 18.21 64.03 393.10 - 801.36 268.16 154.29
0.8 4.28 4.45 5.75 9.63 19.96 49.18 152.65 823.40 - 1383.23 432.57
0.9 4.40 5.19 7.18 11.58 21.06 42.54 97.75 280.90 1412.17 - 2123.58
1.0 4.91 6.14 8.57 13.15 21.81 38.82 75.04 163.94 448.76 2159.42 -

Table 3: Empirical variance calculations for β̂2,h
1 with α̃ = 1.1.

(h0, h1) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 - 1622.67 326.46 115.00 50.63 25.25 13.84 8.39 5.79 4.63 4.26
0.1 1632.22 - 1008.52 191.41 63.19 26.11 12.51 7.05 4.91 4.28 4.35
0.2 330.73 1016.05 - 540.21 92.81 27.58 10.70 5.61 4.31 4.41 5.04
0.3 117.51 194.66 545.72 - 217.75 30.68 8.18 4.41 4.54 5.62 6.88
0.4 52.26 65.02 95.06 221.23 - 41.12 5.01 4.99 7.23 9.30 10.98
0.5 26.35 27.23 28.74 31.91 42.57 - 10.33 15.79 18.00 19.17 19.90
0.6 14.59 13.21 11.32 8.67 5.23 9.76 - 125.38 63.04 47.21 40.22
0.7 8.89 7.46 5.90 4.52 4.80 15.00 122.79 - 386.27 146.74 92.63
0.8 6.09 5.12 4.38 4.42 6.84 17.13 61.23 381.65 - 793.01 266.91
0.9 4.79 4.33 4.33 5.36 8.78 18.27 45.67 143.93 786.36 - 1345.58
1.0 4.31 4.29 4.85 6.51 10.38 18.98 38.82 90.41 263.08 1336.90 -

Table 4: Quantile information for V̂ar(β̂2,h
1 )/ minh0,h1 V̂ar(β̂2,h

1 ).

α̃ 1st Qu. Median Mean 3rd Qu. Max.
0.0 2.38 8.41 64.35 34.77 914.68
0.7 1.47 4.26 38.92 24.40 508.10
1.1 1.37 4.12 33.90 21.78 383.15

7
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The specific estimators we consider are β̂1,h∗ and β̂2,h∗ . For both estimators and for all simulations
gn(A|V ) and gn(A|W ) were computed using a logistic regression model. To calculate an estimate of
E[ε2(β)|A, V ], ε(β̂) was first computed with an initial estimate of β obtained by performing a WLS regression
of Y on A and V with weights gn(A|V )/gn(A|W ). Next, E[ε2(β̂)|A, V ] was estimated using a generalized
additive model. β̂1,h∗ was computed using the WLS procedure described in Section 3.1 with standard errors
calculated empirically from the estimated influence function. To compute β̂2,h∗ a Newton-Raphson procedure
was used with E[ε(β)|A,W ] estimated using the linear model γ0 +γ1A+γ2V +γ3W1. For all simulations the
number of iterations was one-thousand. The measures of performance reported in the following examples
are bias, mean squared error(mse), relative mean squared error, given by mse(β̂1,h∗)/mse(β̂2,h∗), and 95%
coverage probabilities.

Example 1 demonstrates the gains in efficiency made by the AIPTW estimator over the IPTW when
applied to a data set of a moderate size. In Example 2 we consider causal parameter estimation when the
treatment mechanism is misspecified. We see in this scenario that not only is the IPTW less efficient, but
inconsistent. Furthermore, the AIPTW proves to be consistent. Example 3 inspects the performance of the
estimators, in particular the AIPTW, when the treatment mechanism is modelled correctly but, the model
for E(ε(β)|A,W ) is misspecified. Here we see that the AIPTW retains its consistency properties.
Example 1: Varying the Level of Confounding

The data was generated so that both V and W1 confounded the effect of treatment. The data generating
distribution has

P (V = 1) = 0.5
W1 ∼ Unif(1, 3)

logit(P (A = 1|W )) = −3 + 2V + W1

YA = 4 + 2A + V + β̃W1 + ε, ε ∼ N(0, 1).

We conducted simulations for a fixed sample size of n = 5000 while varying the parameter β̃ = (0.5, 1.0, 2.0, 4.0, 6.0).
The results, presented in Table 5, validate the theory that while both estimators are unbiased, the AIPTW
is more efficient than the IPTW, this is reflected in the coverage probabilities and the relative mean squared
error, which increases when the effect of W1 on the outcome becomes stronger.

Table 5: Linear MSM, varying the level of confounding.

IPTW Augmented IPTW
β̃ RMSE Bias Cov(%) n·MSE Bias Cov(%)
0.5 1.006 -0.001 94.1 6.112 -0.001 92.8
1.0 1.009 -0.001 98.3 5.814 -0.001 95.2
2.0 1.095 0.002 99.6 5.414 0.0004 96.0
4.0 1.353 0.003 100.0 5.280 0.001 96.1
6.0 1.761 0.003 100.0 5.812 0.002 94.1

Example 2: Misspecified Model for Propensity Score
Data for this example was generated in such a manner that estimating the treatment mechanism with a

logistic model would be incorrect. The data generating distribution has

P (W1 = 1) = 0.5
P (A = 1|W ) = 0.1 + 0.25V W1 + 0.6W1,

YA = 1 + 2A + V + 7W1 + ε, ε ∼ N(0, 1),
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with V generated in the same manner as the previous example. The results are presented in Table 6 are
for a range of sample sizes (n = 500, 1000, 2000, 5000, and 7000). For all sample sizes the IPTW is clearly
biased, and is outperformed by the AIPTW estimator in terms of bias and efficiency.

Table 6: Linear MSM, misspecification of the propensity score.

IPTW Augmented IPTW
n RMSE Bias Cov(%) n·MSE Bias Cov(%)
500 4.780 0.230 99.8 12.640 -0.002 94.1
1000 6.272 0.223 99.7 13.082 0.003 95.0
2000 9.650 0.207 99.6 11.826 -0.00003 95.4
5000 18.976 0.197 95.5 11.722 0.003 95.7
7000 21.897 0.193 91.2 13.312 -0.002 94.1

Example 3: Misspecification of E(ε|A,W )
For this example an interaction term between A, V and W1 was incorporated into the mean model

generating distribution for Y . For the AIPTW estimator the model for E(ε|A,W ) was specified in the same
manner as for the first two examples, meaning no interaction term was included. We wanted to validate the
assertion that the AIPTW would prove to still be a consistent estimator if g was correctly specified while
E(ε|A,W ) was not. The data generating distribution has

YA = 4 + 2A + 0.5V + W1 + AV (W1 − 2) + ε, ε ∼ N(0, 1)
logit(P (A = 1|W )) = −2 + 2V + W1,

with V and W1 generated in the same manner as Example 1. Table 7 presents the results for various sample
sizes, and indeed the augmented IPTW estimator proved to be consistent in spite of the model for E(ε|A,W )
being misspecified.

Table 7: Linear MSM, misspecification of E(ε|A,W ).

IPTW Augmented IPTW
n RMSE Bias Cov(%) n·MSE Bias Cov(%)
500 1.012 -0.002 97.0 6.877 -0.004 94.8
1000 1.015 -0.001 97.8 6.271 -0.003 96.0
2000 0.986 0.0002 98.3 6.118 -0.00004 96.0
5000 1.006 0.001 97.1 6.455 0.001 95.7
7000 1.000 -0.0002 97.5 6.333 -0.0004 95.6

6 Exercise and the risk of cardiovascular conditions in older adults

6.1 SPPARCS Data

We apply our methods to data collected from The Study of Physical Performance and Age-Related Changes
in Sonomans (SPPARCS). This data arises from a study designed to examine the relationship between
physical functionality and aging in a cohort of individuals over the age of fifty living in and around Sonoma,
California. Specifically, we are interested in the relationship between exercise and the development of a
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cardiac or non-cardiac cardiovascular condition. More details regarding the study design can be found
elsewhere [11, 12].

Data was collected on 2092 individuals in a baseline interview and a follow-up interview given approx-
imately two years later. A cardiovascular condition was defined as having any one of the following: a
myocardial infarction, stroke, heart bypass, angioplasty of the heart, cartiod artery surgery, congestive heart
failure, surgery to repair a blocked artery, angioplasty of a blocked artery or an aortic aneurysm. Cardiac
conditions involve only the heart while non-cardiac cardiovascular conditions include all other diseases re-
lated to arteriosclerosis of blood vessels, such as strokes. Each subject was determined to belong to one
of four levels of physical activity. The lowest level consists of anyone who engaged in moderate activities,
biking on level ground, intramural activities, leisurely walking, light gardening. The second level consists of
anyone who might be engaged in moderate activities, but is also engaged in brisk walking and/or digging
in the garden and/or dancing, level three may or may not include any activities in the previous two levels
but requires participation in one vigorous activity such as swimming, jogging, aerobics. The last level is the
same as the previous level, except the requirement is participation in at least two vigorous activities.

There were several time-independent covariates measured at the baseline interview. Measured covariates
included a self-reported measure of difficulty in performing everyday tasks (NRB), smoking status, if they
were an ex-smoker, body mass index (BMI), age, indicator of a dramatic drop in activity in the past 5-10
years prior to baseline (decline), gender, a measure of consistent level of activity in a person’s recollected
history of their physical activity (past activity history), indicator of whether the individual participated in
high school sports (team), self-perception of overall health, and the presence of a cardiovascular condition
reported at baseline. Table 8 presents a list of frequencies of covariates by activity level. For the binary
and ordinal variables p-values were calculated using a χ2 test of independence. For continuous covariates,
association with activity level was determined using standard linear regression.

6.2 Analysis

Let Y be the indicator of an individual first reporting a cardiovascular condition at the follow-up interview.
Let A be an indicator of engaging in vigorous levels of activity (level three or four). The observed data is
represented by O = (Y, A, W ), where W =(NRB, smoker, ex-smoker, BMI, age, decline, gender, past history,
team, perception, baseline condition). The model we are interested in fitting is a logistic MSM represented
by

E(Ya) = [1 + exp(−(β0 + β1a))]−1.

Our causal parameter of interest is the causal odds ratio exp(β1).
We considered two estimators of β1, β̂1,h∗ an IPTW estimator, and an AIPTW estimator β̂2,h∗ , where

from (4)

h∗(A) =
g(A)

Var(ε(β)|A)
d

dβ
[1 + exp(−(β0 + β1A))]−1.

For both estimators, g(A|W ) was estimated using a logistic regression model, while g(A) was estimated
empirically from the data. For the AIPTW estimator, E(ε(β)|A,W ) was estimated using a linear model.
Both estimates of β were calculated using a Newton-Raphson algorithm with standard errors calculated from
their respective estimated influence function.

6.3 Results

Subjects with missing data (N=76) were removed from the analysis, so calculations were performed on data
from 2016 men and women ranging in ages from 53 to 96. Nearly, 60% of the subjects were women. At the
baseline interview almost 19% of the subjects reported having at least one cardiovascular condition. Nearly
5% of subjects reported having a cardiovascular condition at the second interview.

The results are presented in Table 9. We observe that engaging in a vigorous level of exercise appears
to have a protective effect against the risk of developing a cardiovascular condition, however, the effect was
not shown to be statistically significant. We also computed odds ratios within different strata of the data.
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Table 8: Individual characteristics by exercise level.
Level of Exercise

CHARACTERISTIC 1 2 3 4 p
Smoker
No 268 (14.5) 538 (29.1) 616 (33.4) 425 (23.0) 0.0006
Yes 32 (18.9) 60 (35.5) 61 (36.1) 16 (9.5)
Ex-smoker
No 147 (14.4) 325 (31.9) 342 (33.5) 206 (20.2) 0.096
Yes 153 (15.4) 273 (27.4) 335 (33.6) 235 (23.6)
Drop in activity
No 97 (7.8) 379 (30.4) 430 (34.5) 339 (27.2) <0.0001
Yes 203 (26.3) 219 (28.4) 247 (32) 102 (13.2)
Gender
Female 196 (16.3) 360 (30.0) 402 (33.5) 241 (20.1) 0.034
Male 104 (12.7) 238 (29.1) 275 (33.7) 200 (24.5)
History of activity
Not much 65 (21.3) 99 (32.5) 96 (31.5) 45 (14.8) <0.0001
Some 87 (21.8) 123 (30.8) 132 (33) 58 (14.5)
Habitual 148 (11.3) 376 (28.7) 449 (34.2) 338 (25.8)
High school sports
Did not participate 182 (16.5) 342 (31.1) 377 (34.2) 200 (18.2) <0.0001
Participated 118 (12.9) 256 (28) 300 (32.8) 241 (26.3)
Perception of health
Excellent/good 189 (11.3) 508 (30.4) 579 (34.6) 396 (23.7) <0.0001
Fair/poor 111 (32.3) 90 (26.2) 98 (28.5) 45 (13.1)
Cardiovascular
None reported 223 (13.4) 502 (30.2) 561 (33.8) 374 (22.5) 0.001
At least one 77 (21.6) 96 (27.0) 116 (32.6) 67 (18.8)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)
NRB score 0.67 (0.32) 0.87 (0.19) 0.86 (0.21) 0.90 (0.12) <0.0001
BMI 27.37 (5.20) 26.42 (4.42) 26.87 (4.65) 26.74 (4.26) 0.03
Age 73.86 (8.88) 69.98 (8.15) 69.74 (8.25) 67.95 (8.06) <0.0001

11

Hosted by The Berkeley Electronic Press



Table 9: The effect of exercise on the risk of developing a cardiovascular condition.

Estimator OR CI (95%)
All subjects (N=2016)
IPTW 0.80 (0.52, 1.23)
AIPTW 0.80 (0.52, 1.22)
Men (N=817)
IPTW 0.92 (0.49, 1.73)
AIPTW 0.93 (0.50, 1.72)
Women (N=1199)
IPTW 0.71 (0.39, 1.28)
AIPTW 0.71 (0.40, 1.27)
No condition reported at baseline (N=1660)
IPTW 0.78 (0.47, 1.31)
AIPTW 0.78 (0.47, 1.30)
Condition reported at baseline (N=356)
IPTW 0.89 (0.40, 1.96)
AIPTW 0.89 (0.40, 1.97)

It appears that women receive a greater benefit than men by engaging in moderately vigorous exercise,
although again the protective effect of exercise is not statistically significant. We also compared odds ratios
between individuals who reported having a cardiovascular condition at baseline, and those who did not. As
may be expected, those not reporting a condition at baseline appear to benefit slightly more from moderately
vigorous exercise, but in both stratum the effect was not statistically significant. There were no remarkable
differences in estimates produced by the IPTW and the AIPTW estimators.
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