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Abstract

Recombinant inbred lines (RILs) can serve as powerful tools for genetic mapping. Re-

cently, members of the Complex Trait Consortium have proposed the development of a

large panel of eight-way RILs in the mouse, derived from eight genetically diverse parental

strains. Such a panel would be a valuable community resource. The use of such eight-way

RILs will require a detailed understanding of the relationship between alleles at linked loci

on an RI chromosome. We extend the work of Haldane and Waddington (1931) on two-

way RILs and describe the map expansion, clustering of breakpoints, and other features of

the genomes of multiple-strain RILs as a function of the level of crossover interference in

meiosis.

In this technical report, we present all of our results, in their gory detail. We don’t

intend to include such details in the final publication, but want to present them here for

those who might be interested.

2

http://biostats.bepress.com/jhubiostat/paper47



1 Introduction

Recombinant inbred lines (RILs) can serve as powerful tools for genetic mapping. An

RIL is formed by crossing two inbred strains followed by repeated selfing or sibling mating

to create a new inbred line whose genome is a mosaic of the parental genomes (Fig. 1). As

each RIL is an inbred strain, and so may be propagated eternally, a panel of RILs has

a number of advantages for genetic mapping: one need only genotype each strain once;

one may phenotype multiple individuals from each strain in order to reduce individual,

environmental, and measurement variability; multiple invasive phenotypes may be obtained

on the same set of genomes; and, as the breakpoints in RILs are more dense than occurs in

any one meiosis, greater mapping resolution may be achieved.

SelfingA

P1 P2

F1

F2

F3

F4
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Sibling matingB
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F2

F3
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Figure 1: The production of recombinant inbred lines by selfing (A) and by sibling mating.

Members of the Complex Trait Consortium recently proposed the development of a

large panel of eight-way RILs in the mouse (Threadgill et al. 2002, Williams et al. 2002).

An eight-way RIL is formed by inter-mating eight parental inbred strains, followed by

repeated sibling mating to produce a new inbred line whose genome is a mosaic of the

eight parental strains (Fig. 2). Such a panel would serve as a valuable community resource
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for mapping the loci that contribute to complex phenotypes inthe mouse.
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Figure 2: The production of an eight-way recombinant inbred line by selfing (A) and by sibling
mating (B).

The use of such a panel will require a detailed understanding of the relationship be-

tween alleles at linked loci on an RI chromosome, particularly for the reconstruction of the

parental origin of DNA (the haplotypes) on the basis of less-than-fully-informative genetic

markers (such as single nucleotide polymorphisms, SNPs). Of primary importance are the

two-point probabilities, such as the probability that the RIL is fixed at alleleA at one locus

and alleleH at a second locus, as a function of the recombination fraction between the

two loci. Also of interest are the three-point probabilities, which inform us regarding the

clustering of breakpoints on the RIL chromosome.

Haldane and Waddington (1931) (which we will abbreviate H&W) studied the case of

two-way RILs by selfing and sibling mating, and, in an impressive feat of algebra, derived

the relationship between the recombination fraction between two loci and the probability

that the loci are fixed at different parental alleles in the RIL. They further showed that such

two-point results may be used to derive three-point probabilities.

In this paper, we extend the work of H&W to the case of eight-way RILs. We derive
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the algebraic relationship between the recombination fraction at meiosis and the analogous

quantity for the RIL chromosome, for the case of multiple-strain RILs by selfing and sib-

ling mating (including the X chromosome in the case of sibling mating). In the case of

multiple-strain RILs by selfing, we also obtain exact results for three-point probabilities.

However, with multiple-strain RILs by sibling mating, such symbolic results for the three-

point probabilities continue to elude us, and so we must be satisfied with numerical results.

There are a number of other features of the genomes of multiple-strain RILs that are

of considerable interest and yet are not amenable to such symbolic or numerical analysis

(for example, the number of generations of inbreeding required to obtain complete ho-

mozygosity, the proportion of the genome that remains heterozygous after 20 generations

of inbreeding, and the distribution of the distance between breakpoints on the RIL chromo-

somes). We investigated such features via computer simulations.
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2 Two Points

We first consider the case of two loci. Letr denote the recombination fraction between

the two loci, and letgm denote the allele at locusm on a random RI chromosome at fixation.

We seek the joint distribution of thegm. We are particularly interested inR = Pr(g1 6= g2),

the quantity analogous to the recombination fraction, but on the fixed RI chromosome. Note

that we assume no mutation and no selection. The alleles at each locus will be denotedA,

B, C, D, . . . ,H. Two-locus haplotypes will be written, for example,AA, AB, BA, BB,

where the first allele corresponds to the first locus and the second allele to the second locus.

Two-locus diplotypes (i.e., phase-known genotypes) will be written, for example,AB|AB

(an individual who is homozygousA at the first locus and homozygousB at the second

locus). It might be better to write the diplotype asA
B
|A
B

, but when we get to three-locus

diplotypes, such notation will be unwieldy.

We assume that two-way RILs are obtained with an initial cross of the form(A×B)×

(A×B), four-way RILs by the cross(A×B)× (C ×D), and eight-way RILs by the cross

[(A × B) × (C × D)] × [(E × F ) × (G × H)], with, in all cases, females listed first.

2.1 RILs by selfing

2.1.1 Two-way RILs, selfing

The results for two-way RILs by selfing were presented in H&W. By symmetry, it is

clear thatPr(gm = A) = Pr(gm = B) = 1/2. They further showed that the two-point

probabilities are:

Pr(g1 = i, g2 = j) =







1
2(1+2r)

if i = j

r
1+2r

if i 6= j

ThusR = Pr(g1 6= g2) = 2r/(1 + 2r).

We describe a general approach to obtain this result, as the technique will be used in

what follows and is most clear in this, the simplest case. LetXn denote the two-locus
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diplotype for the individual at generationn. The {Xn} form a Markov chain, asXn+1

is conditionally independent ofX0, X1, . . . , Xn−1, givenXn. There are ten possible diplo-

types, as the parental origins of the two haplotypes may be ignored. (If parental origin were

taken into account, there would be24 = 16 states.) This number may be reduced further

by accounting for further symmetries: the order of the two loci may be ignored, and the

symbolsA andB may be switched. Thus we form five distinct states, shown in Table 1.

Let Yn denote the state at generationn, among these five minimal states. The{Yn} also

form a Markov chain.

Table 1: Equivalence classes of two-locus diplotype states in the formation of two-way
RILs by selfing.

Prototype state All possible states

AA|AA AA|AA BB|BB

AB|AB AB|AB BA|BA

AA|AB AA|AB AA|BA AB|BB BA|BB

AA|BB AA|BB

AB|BA AB|BA

Let Pij = Pr(Yn+1 = j | Yn = i), the transition matrix for the chain. Calculation

of thePij deserves further explanation. Consider the stateAA|BB, corresponding to het-

erozygosity at each locus, with theA alleles on the same haplotype. The possible meiotic

products areAA, AB, BA, andBB, with probabilities(1− r)/2, r/2, r/2, and(1− r)/2,

respectively. The probabilities in the next generation may be obtained by calculating the

Kronecker product of this vector with itself, and then collapsing the 16 probabilities to give

the probabilities of the five states in Table 1. Thus the probabilities of transition from state

AA|AB to statesAA|AA, AB|AB, AA|AB, AA|BB, andAB|BA, are(1 − r)2/2, r2/2,

2r(1 − r), (1 − r)2/2, andr2/2, respectively.

The statesAA|AA andAB|AB are absorbing; for these states,Pii = 1. Our goal

is to obtain the absorption probabilities starting at stateAA|BB (for example, starting at

7
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the stateAA|BB, the chance that the chain will eventually hit the stateAA|AA.) These

absorption probabilities may be obtained as the solutions of sets of linear equations (Norris

1997, Section 1.3).

Let hi denote the probability, starting at statei, that the chain is absorbed into the state

AA|AA. ClearlyhAA|AA = 1 andhAB|AB = 0. For the other three states, we condition on

the first step, and obtainhi =
∑

k Pikhk. Thus we obtain a set of three linear equations

in three unknowns, which may be solved to obtainhAA|BB = 1/(1 + 2r). ThusPr(Yn =

AA|AA | Y0 = AA|AB) → 1/(1 + 2r) asn → ∞. The states within an equivalence class

are equally likely, and soPr(Xn = AA|AA | X0 = AA|BB) → 1/[2(1 + 2r)] asn → ∞.

2.1.2 Four-way RILs, selfing

The results for two-way RILs by selfing may be extended immediately to obtain those

for four-way RILs by selfing, by considering one preceding generation of recombination,

as the two-chromosome generation (in which inbreeding begins) is a bottleneck: alleles

that do not appear in this generation cannot appear on the final RI chromosome.

For example, the chance that the final haplotype in a four-way RIL by selfing isAA

is the probability that in the initial cross ofAA × BB, theAA haplotype is transmitted,

multiplied by the probability that a two-way RIL by selfing is fixed atAA. Thus,Pr(AA) =

1
2
(1 − r) · 1

2

(

1
1+2r

)

. Similarly, the chance that the final haplotype isAB is the chance

that the initial cross ofAA × BB deliversAB, multiplied by the chance that a two-way

RIL by selfing is fixed atAA, and soPr(AB) = 1
2
r · 1

2

(

1
1+2r

)

. Finally, the chance that

the final haplotype isAC is the chance that the initial cross ofAA × BB deliversA at

the first locus, multiplied by the chance that the cross ofCC × DD deliversC at the

second locus, multiplied by the chance that a two-way RIL by selfing is fixed atAB, and

soPr(AC) = 1
2
· 1

2
· r

1+2r
.

For four-way RILs, the marginal probabilities are of coursePr(gm = i) = 1/4 for

8
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i = A, B, C, D. The two-locus probabilities are:

Pr(g1 = i, g2 = j) =







1−r
4(1+2r)

if i = j

r
4(1+2r)

if i 6= j

ThusR = Pr(g1 6= g2) = 3r/(1 + 2r). Whenr = 1/2, R = 3/4.

2.1.3 Eight-way RILs, selfing

The results for eight-way RILs can be deduced from the results for four-way RILs, by

the same technique that allowed us to obtain the results for four-way RILs by selfing from

those for two-way RILs by selfing.

For eight-way RILs by selfing, the marginal probabilities arePr(gm = i) = 1/8 for

i = A, B, . . . , H. The two-locus probabilities are the following. It is especially interesting

that here the off-diagonal elements are not all the same.

A B C D E F G H

A (1−r)2

8(1+2r)
r(1−r)
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

B r(1−r)
8(1+2r)

(1−r)2

8(1+2r)
r/2

8(1+2r)
r/2

8(1+2r)
r/2

8(1+2r)
r/2

8(1+2r)
r/2

8(1+2r)
r/2

8(1+2r)

C r/2
8(1+2r)

r/2
8(1+2r)

(1−r)2

8(1+2r)
r(1−r)
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

D r/2
8(1+2r)

r/2
8(1+2r)

r(1−r)
8(1+2r)

(1−r)2

8(1+2r)
r/2

8(1+2r)
r/2

8(1+2r)
r/2

8(1+2r)
r/2

8(1+2r)

E r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

(1−r)2

8(1+2r)
r(1−r)
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

F r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r(1−r)
8(1+2r)

(1−r)2

8(1+2r)
r/2

8(1+2r)
r/2

8(1+2r)

G r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

(1−r)2

8(1+2r)
r(1−r)
8(1+2r)

H r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r/2
8(1+2r)

r(1−r)
8(1+2r)

(1−r)2

8(1+2r)

ThusR = r(4 − r)/(1 + 2r). Whenr = 1/2, R = 7/8.

One can easily go backwards, from eight-way RILs to four-way RILs, by takingA =

B, C = D, E = F , G = H, and collapsing the joint probabilities. Similarly, taking

A = B = C = D andE = F = G = H, one can collapse to obtain the results for
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two-way RILs.

2.2 X chromosome for RILs by sibling mating

2.2.1 Two-way RILs, X chromosome

H&W derived the connection betweenr andR for the X chromosome for two-way

RILs by sibling mating. The full two-point distribution may be obtained from their result,

using the marginal distributionPr(gm = A) = 2/3, Pr(gm = B) = 1/3, and the fact that

Pr(AB) = Pr(BA). The two-locus probabilities are the following.

A B

A 2(1+2r)
3(1+4r)

4r
3(1+4r)

B 4r
3(1+4r)

1
3(1+4r)

And soR = (8/3)r/(1 + 4r). Whenr = 1/2, R = 4/9.

2.2.2 Four-way RILs, X chromosome

The case of four-way RILs by sibling mating cannot be deduced from the above, but we

were able to calculate the results symbolically using a combination of R (Ihaka and Gen-

tleman 1996) and Mathematica (Wolfram Research, Inc., 2003), by the approach described

above, in Section 2.1.1.

Let Xn denote the parental type at thenth generation, withX0 = AA|BB × CC.

There are 405 such parental types, but they may be reduced to 116 distinct states by taking

account of two symmetries: the order of the two loci may be reversed, and theA andB

alleles may be exchanged. There are four absorbing states:AA|AA×AA, AB|AB ×AB,

AC|AC × AC, andCC|CC × CC. The determination of the absorption probabilities

again requires the solution of systems of linear equations, in this case 112 equations in 112

unknowns.

The marginal probabilities arePr(gm = i) = 1/3 for i = A, B, C. The transition
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matrix is

Pr(g1 = i, g2 = j) =







1
3(1+4r)

if i = j

2r
3(1+4r)

if i 6= j

ThusR = 4r/(1 + 4r). Whenr = 1/2, R = 2/3.

2.2.3 Eight-way RILs, X chromosome

The case of eight-way RILs can be deduced from the case of four-way RILs (due to

the bottleneck at the four-chromosome stage), by the technique described above (Sec-

tion 2.1.2). For example, the chance that an eight-way RIL is fixed atAB on the X chromo-

some is equal to the chance that, in theAA × BB cross, theAB haplotype is transmitted,

times the chance that a four-way RIL is fixed atAA, giving r
2
· 1

3(1+4r)
.

The marginal probabilities arePr(gm = A) = Pr(gm = B) = Pr(gm = E) =

Pr(gm = F ) = 1/6 andPr(gm = C) = 1/3. The joint two-locus probabilities are:

A B C E F

A 1−r
6(1+4r)

r
6(1+4r)

2r
6(1+4r)

r
6(1+4r)

r
6(1+4r)

B r
6(1+4r)

1−r
6(1+4r)

2r
6(1+4r)

r
6(1+4r)

r
6(1+4r)

C 2r
6(1+4r)

2r
6(1+4r)

2
6(1+4r)

2r
6(1+4r)

2r
6(1+4r)

E r
6(1+4r)

r
6(1+4r)

2r
6(1+4r)

1−r
6(1+4r)

r
6(1+4r)

F r
6(1+4r)

r
6(1+4r)

2r
6(1+4r)

r
6(1+4r)

1−r
6(1+4r)

ThusR = (14/3)r/(1 + 4r). Whenr = 1/2, R = 7/9.

2.3 Autosomes for RILs by sibling mating

2.3.1 Two-way RILs, autosomes by sib mating

H&W provided the results for the autosome in two-way RILs by sibling mating. The

marginal distribution isPr(gm = A) = Pr(gm = B) = 1/2. The two-locus joint probabil-
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ities are:

Pr(g1 = i, g2 = j) =







1+2r
2(1+6r)

if i = j

2r
1+6r

if i 6= j

ThusR = 4r/(1 + 6r). Whenr = 1/2, R = 1/2.

2.3.2 Four-way RILs, autosomes by sib mating

The case of four-way RILs cannot be deduced from the above. LetXn denote the

parental type at generationn, with X0 = AA|BB × CC|DD. There are 9316 such states,

which reduce to 700 distinct states after we take account of several symmetries: reversing

the order of the two loci, exchanging theA andB alleles, exchanging theC andD alleles,

exchangingA for C andB for D, and any combination of these. There are three distinct

absorbing states,AA|AA × AA|AA, AB|AB × AB|AB, andAC|AC × AC|AC. The

determination of the absorption probabilities requires the simultaneous solution of a system

of 697 linear equations in 697 unknowns.

This system of equations proved too large to solve symbolically; however, the numeri-

cal solution for any particular value of the recombination fractionr was relatively simple to

obtain, and we could infer the algebraic forms of the equations, which are correct to within

round-off error.

The marginal distribution isPr(gm = i) = 1/4 for i = A, B, C, D. The two-locus joint

probabilities are:

Pr(g1 = i, g2 = j) =







1
4(1+6r)

if i = j

r
2(1+6r)

if i 6= j

ThusR = 6r/(1 + 6r). Whenr = 1/2, R = 3/4.

2.3.3 Eight-way RILs, autosomes by sib mating

The case of eight-way RILs can be deduced from the results for four-way RILs. The

marginal distribution isPr(gm = i) = 1/8 for i = A, B, . . . , H. The two-locus joint
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probabilities are:

Pr(g1 = i, g2 = j) =







1−r
8(1+6r)

if i = j

r
8(1+6r)

if i 6= j

ThusR = 7r/(1 + 6r). (This was the key target of all of our efforts.) Whenr = 1/2,

R = 7/8. Note that here, all off-diagonal elements are the same.

The basic two-point results (the relationship betweenr andR) for all types of RILs are

assembled in Table 2.

Table 2: Crossover probabilities on recombinant inbred line chromosomes

Sibling mating

Selfing X chromosome Autosome

Two-way 2r
1+2r

(8/3)r
1+4r

4r
1+6r

Four-way 3r
1+2r

4r
1+4r

6r
1+6r

Eight-way r(4−r)
1+2r

(14/3)r
1+4r

7r
1+6r

13
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3 Three Points

We consider the case of three loci. We assume the recombination fractions in the two

intervals are the same,r12 = r23 = r. Results for the case of separate recombination

fractions could also be obtained, but the expressions can be much more complex, and they

provide essentially no further insight.

Let c denote the three-point coincidence at meiosis,c = Pr(double recombinant)/r2,

which may also be written asPr(rec’n in 2-3 | rec’n in 1-2)/ Pr(rec’n in 2-3). Note that

c is generally a function ofr, with c = 0 for smallr (indicating strong positive crossover

interference) andc = 1 for r = 1/2. We definer13 to be the recombination fraction

between the first and third loci, so thatc = (2r − r13)/(2r2) and sor13 = 2r(1 − cr).

In the case of no crossover interference, we have, of course,c = 1 for all r. We are

particularly interested in the case of positive crossover interference. Broman et al. (2002)

studied crossover interference in the mouse, and showed that the gamma model (McPeek

and Speed 1995) provided a good fit to available data. The gamma model involves a single

parameter,ν, which indicates the strength of crossover interference;ν = 1 corresponds to

no interference, andν > 1 corresponds to positive crossover interference. Broman et al.

(2002) obtained the estimateν̂ = 11.3 for the mouse, indicating especially strong crossover

interference.

Zhao and Speed (1996) derived the map function for stationary renewal models of the

recombination process at meiosis. Their results may be used to calculate the three-point

coincidence for the gamma model, as a function ofr and the interference parameter,ν. The

map function for the gamma model is the following:

Mν(d) =

∫ d

0

∫ ∞

x

f(t; ν) dt dx

wheref(t; ν) = e−2νx(2ν)νxν−1/Γ(ν), the density of the gamma distribution with shape

parameterν and rate parameter2ν.

We thus have, for the gamma model,r13 = Mν [M
−1
ν (2r)], and we can obtain the three-

point coincidence byc = (2r − r13)/(2r2). While Mν(d) cannot be obtained in closed

14
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form, it can be calculated by numerical integration. Further, M−1
ν (r) cannot be calculated

directly, but can be obtained by solvingr = Mν(d) for d by Newton’s method. This was

done in R (Ihaka and Gentleman 1996).

The three-point coincidence for the gamma model withν = 11.3 is displayed as the

dashed curve in Fig. 3A. Forr < 0.1, the coincidence is essentially 0, indicating that if the

first pair of loci recombine, the second pair will not. Asr approaches 1/2, the coincidence

approaches 1.
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Figure 3: Three-point coincidence in meiosis (A), RILs by selfing (B), the X chromosome for RILs
by sibling mating (C), and autosomes for RILs by sibling mating (D). Solid curves are for the case
of no interference; dashed curves correspond to strong positive crossover interference (according
to the gamma model withν = 11.3, as estimated for the mouse genome). In panels B-D, black,
blue, and red curves correspond to two-way, four-way, and eight-way RILs, respectively. Note that
coincidence on the RIL chromosome is displayed as a function of the recombination fraction per
meiosis.
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3.1 RILs by selfing

3.1.1 Two-way RILs, selfing

H&W showed that the two-point probabilities for two-way RILs by selfing are sufficient

to determine the three-point probabilities. The key idea is that the equationR = 2r/(1 +

2r) applies to each interval between loci, and so, becauser13 = 2r(1 − cr), we have

R13 = 2r13/(1 + 2r13) = 4r(1 − cr)/[1 + 4r(1 − cr)]. Thus, for example, to calculate

the probability of the haplotypeAAA on the RIL, we note thatPr(AAA) + Pr(AAB) =

Pr(AA-), Pr(ABB) + Pr(ABA) = Pr(AB-), andPr(AAA) + Pr(ABA) = Pr(A-A),

and thus, asPr(ABB) = Pr(AAB), we have

Pr(AAA) = 1
2
{Pr(AA-) − Pr(AB-) + Pr(A-A)}

= 1
2
{(1 − R)/2 − R/2 + (1 − R13)/2}.

Plugging inR = 2r/(1 + 2r), and using a similar approach for the other two cases,

we obtain the distribution for the three-locus haplotype on the RI chromosome, in two-way

RILs by selfing:

x1 = Pr(AAA) = Pr(BBB) =
1 + 2r − 4r2 − 2cr2 + 4cr3

2(1 + 2r)(1 + 4r − 4cr2)

x2 = Pr(AAB) = Pr(BBA)

= Pr(ABB) = Pr(BAA) =
r − cr2

1 + 4r − 4cr2

x3 = Pr(ABA) = Pr(BAB) =
2r2 + cr2 − 2cr3

(1 + 2r)(1 + 4r − 4cr2)

We are especially interested in the quantity analogous to the coincidence for the RI chro-

mosome,C = [Pr(ABA) + Pr(BAB)]/R2, which gives the following.

C =
2 + c + 4r − 4cr2

2 + 8r − 8cr2
=

1 + (1 + c)(1 − 2R)

2[1 − (1 + c)R2]
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Note that in the caseR = 0, we haveC = (2+c)/2; with no interference (c = 1), C = 3/2,

and with strong positive interference (c = 0), C = 1. In the case thatR = 1/2 andc = 1,

we have, of course,C = 1.

The coincidence is plotted as the black curves in Fig. 3B, with the solid and dashed

curves corresponding to no interference and strong positive interference (the gamma model

with ν = 11.3), respectively. Note that in the case of no interference, the coincidence is

entirely above 1, indicating clustering of breakpoints: if the first two loci are recombined

on the RIL chromosome, the second two loci aremore likely to recombine. In the case of

strong positive interference, the coincidence is≤ 1 for all r.

3.1.2 Four-way RILs, selfing

In the case of four-way RILs by selfing, the joint three-locus genotype probabilities

may be derived from the above results, by the technique used for the case of two loci

in Section 2.1.2. There are 64 possible three-locus genotypes, which collapse into seven

distinct cases. These cases and the corresponding probabilities are shown in Table 3. Note

thatr13 is the recombination fraction between the first and third loci, so thatr13 = 2r(1 −

cr).

The coincidence-type quantity for the RI chromosome is thenC = (4a3 +8a5 +16a6 +

8a7)/R
2, which gives the following.

C =
(1 + 2r)[8(1 + r) + 3c(1 − 2r − 4r2) − 2c2r2(1 − 2r)]

9(1 + 4r − 4cr2)

=
8(3 − 2R)2(3 − R) + 3c(27 − 72R + 48R2 − 8R3) − 2c2(3 − 4R)R2

3(3 − 2R)2[9 − 4(1 + c)R2]

Thus, forr = 0, C = (8+3c)/9, and in the case of no interference,C = 11/9; with strong

positive interference,C = 8/9. With r = 1/2 andc = 1, C = 1.

The coincidence is displayed as the blue curves in Fig. 3B, and is generally smaller than

for the case of two-way RILs by selfing.
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Table 3: Three-locus haplotype probabilities for four-way RILs by selfing.

Three-locus haplotypes Probability of each

AAA BBB CCC DDD a1 = x1(1 − 2r + c r2)/2

AAB BBA CCD DDC ABB BAA CDD DCC a2 = x1 r(1 − c r)/2

ABA BAB CDC DCD a3 = x1 c r2/2

AAC AAD BBC BBD CCA CCB DDA DDB

ACC ADD BCC BDD CAA CBB DAA DBB a4 = x2(1 − r)/4

ACA ADA BCB BDB CAC CBC DAD DBD a5 = x3(1 − r13)/4

ABC ABD BAC BAD CDA CDB DCA DCB

ACD ADC BCD BDC CAB CBA DAB DBA a6 = x2 r/4

ACB ADB BCA BDA CAD CBD DAC DBC a7 = x3 r13/4

3.1.3 Eight-way RILs, selfing

The case of eight-way RILs by selfing can be derived directly from the case of four-way

RILs by selfing. There are83 = 512 three-locus haplotypes, but they collapse to 13 distinct

classes. The joint three-locus haplotype probabilities are presented in Table 4. Here, we

present only one genotype pattern for each of the 13 classes, but also list the number of

genotypes that fall into each class.

We thus haveC = [1 − 8(b1 + 2b2 + 4b4 + 8b6)]/R
2, which gives the following.

C =
(1 + 2r)[2(7 + 8r − 8r2) + 4c(1 − 3r − 8r2 + 8r3) − 2c3r4(1 − 2r) − c2r2(3 − 18r + 20r2)]

(4 − r)2(1 + 4r − 4cr2)

It is difficult to write this in terms ofR, asr = (2 − R) −
√

(2 − R)2 − R, and so we

neglect to do so. Note that whenr = 0, C = (7 + 2c)/8, which takes value 9/8 under no

interference and 7/8 under strong positive interference.
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Table 4: Three-locus haplotype probabilities for eight-wayRILs by selfing.

Prototype No. cases Probability of each

AAA 8 b1 = a1(1 − 2r + c r2)/2

AAB 16 b2 = a1 r(1 − c r)/2

ABA 8 b3 = a1 c r2/2

AAC 32 b4 = a2(1 − r)/4

ACA 16 b5 = a3(1 − r13)/4

AAE 64 b6 = a4(1 − r)/4

AEA 32 b7 = a5(1 − r13)/4

ABC 32 b8 = a2 r/4

ACB 16 b9 = a3 r13/4

ABE 64 b10 = a4 r/4

AEB 32 b11 = a5 r13/4

ACE 128 b12 = a6/8

AEC 64 b13 = a7/8

The coincidence is displayed as the red curves in Fig. 3B, and is generally smaller than

for the case of four-way RILs by selfing.

3.2 X chromosome for RILs by sibling mating

3.2.1 Two-way RILs, X chromosome

In the case of the X chromosome for two-way RILs by sibling mating, the two-point

probabilities are not sufficient to determine the full three-locus probabilities, due to the

difference in the frequency of theA andB alleles on the X chromosome, which prevents

us from making use of symmetries, such as the relationPr(ABB) = Pr(AAB), which

held in the case of two-way RILs by selfing.

However, the two-point probabilities are sufficient to determine the coincidence-type

quantity, which has the formC = [Pr(ABA) + Pr(BAB)]/R2. By the approach used in
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Section 3.1.1, we obtain the following.

C =
3(1 + 4r)(4 + c − 4cr)

8(1 + 8r − 8cr2)
=

3[2 + (2 + c)(1 − 3R)]

8 − 9(2 + c)R2

With r = 0, C = 3(4 + c)/8, so that with no interference,C = 15/8, while with strong

positive interference,C = 3/2. Whenr = 1/2 andc = 1, C = 9/8.

The coincidence is displayed as the black curves in Fig. 3C, and is greater than that

for two-way RILs by selfing. For both no interference and strong positive interference, the

coincidence is entirely above 1.

The full distribution of the three-locus haplotypes may be obtained by the approach

we used to calculate the two-locus probabilities (see Section 2.1.1). There are 288 parental

types, which reduce to 168 distinct states after accounting for symmetries, of which 6 states

are absorbing. Thus, the absorption probabilities may be obtained by solving a set of 162

linear equations. Alternatively, one may collapse the results for the more complex case of

four-way RILs, derived below, to obtain the results for two-way RILs.

3.2.2 Four-way RILs, X chromosome

In the case of four-way RILs, the two-point probabilities are not sufficient to determine

the three-point probabilities, or even the three-point coincidence. Thus we must return

to the technique used to calculate the two-point probabilities (described in Section 2.1.1),

calculating the absorption probabilities of a Markov chain, here defined by the parental

types at three loci at each generation of inbreeding.

There are 10,206 parental types, of the formAAA|BBB × CCC (the three-locus, X

chromosome diplotype of the female parent and the three-locus, X chromosome haplotype

of the male parent). These reduce to 2,690 distinct states after accounting for symmetries

(exchange allelesA andB, and invert the order of the three loci), of which 10 states are

absorbing. The transition matrix contains 65,612 non-zero elements (that is, approximately

1% of the matrix).

The absorption probabilities could, conceivably, be obtained by solving a system of
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2,680 linear equations, but the scale and complexity of this system was too unwieldy in

practice. We thus took a different approach. We also abandoned the effort to obtain sym-

bolic solutions, seeking instead numerical solutions. (The absorption probabilities are ra-

tios of polynomials, but we hypothesize that, in this case, the expressions are extremely

complex.)

Let π
(n) denote the distribution (as a row vector) of the Markov chain at generationn,

with π
(0) denoting the starting distribution, for which the stateAAA|BBB × CCC has

probability 1 and all other states have probability 0. LetP denote the transition matrix for

the chain. Thenπ(n) = π
(0)P n. We seeklimn→∞ π

(n), which we calculated numerically.

For each value of the recombination fraction,r, and the three-point coincidence at meiosis,

c, we iterated across generations until the maximum difference betweenπ
(n) andπ

(n+1)

was small (< 10−14). Approximately 150 generations were required.

The most difficult part of the calculation was the construction of the transition matrix,

and the most difficult part of that construction was the reduction of the full set of 10,206

parental types to the minimal set of 2,690 states, to account for symmetries. This was done

by first creating a look-up table. (Because the central task concerned this collapse of states

by symmetry, we performed these calculations via a pair of short Perl programs. Such

text manipulation is most conveniently accomplished in Perl.) Rather than construct the

entire transition matrix in advance, each row of the transition matrix was constructed anew

at each generation, and only those rows that were needed were so constructed (rowsi for

whichπ
(n)
i > 10−16). This approach, which saves memory but requires considerably more

computation, was used in anticipation of the case of autosome for four-way RILs by sibling

mating, in which the transition matrix contained 73 million non-zero elements.

The ten absorbing states for the X chromosome in four-way RILs by sibling mating are

presented in Table 5A. It turns out thatc1 = Pr(AAA) ≡ Pr(CCC) = c10, which could

not have been anticipated in advance. (Note that theci here are not at all related to the

coincidence,c.)

The coincidence-type quantity isC = [2c3+2c6+2c7+4c8+2c9]/R
2. This is displayed

as the blue curves in Fig. 3C.
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Table 5: Three-locus haplotype probabilities for the X chromosome in four-and eight-way
RILs by sibling mating.

A B

Four-way RILs Eight-way RILs

Prototype No. cases Prob. of each Prototype No. cases Probability of each

AAA 2 c1 AAA/EEE 4 d1 = c1(1 − 2r + c r2)/2

AAB 4 c2 AAB/EEF 8 d2 = c1 r13/4

ABA 2 c3 ABA/EFE 4 d3 = c1 c r2/2

AAC 4 c4 CCC 1 d4 = c1

ACC 4 c5 AAC 4 d5 = c2(1 − r)/2

ACA 2 c6 CCA 4 d6 = c2/2

CAC 2 c7 ACA 2 d7 = c3(1 − r13)/2

ABC 4 c8 CAC 2 d8 = c3/2

ACB 2 c9 ABC 4 d9 = c2 r/2

CCC 1 c10 ACB 2 d10 = c3 r13/2

AAE 8 d11 = c4(1 − r)/4

AEE 8 d12 = c5(1 − r)/4

AEA 4 d13 = c6(1 − r13)/4

EAE 4 d14 = c7(1 − r13)/4

ABE 8 d15 = c4 r/4

AEF 8 d16 = c5 r/4

AEB 4 d17 = c6 r13/4

EAF 4 d18 = c7 r13/4

CEE 4 d19 = c5(1 − r)/2

CCE 4 d20 = c4/2

CEC 2 d21 = c6/2

ECE 2 d22 = c7(1 − r13)/2

EFC 4 d23 = c5 r/2

ECF 2 d24 = c7 r13/2

ACE 16 d25 = c8/4

AEC 8 d26 = c9/4
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3.2.3 Eight-way RILs, X chromosome

The three-point probabilities for the X chromosome in eight-way RILs by sibling mat-

ing may be obtained from those for four-way RILs, by the same approach used in the case

of selfing (Section 3.1.3). There are 29 distinct absorbing states (see Table 5B), though

three pairs may be collapsed due to the fact that, for the X chromosome four-way RILs by

sibling mating,Pr(AAA) = Pr(CCC).

The coincidence-type quantity is thenC = [1− (4d1 + 8d2 + d4 + 4d5 + 4d6 + 8d11 +

8d12 + 4d19 + 4d20)]/R
2. (These are the sorts of things that won’t appear in the published

version of this manuscript.) This is displayed as the red curves in Fig. 3C, with the solid

curve corresponding to no interference, and the dashed curve corresponding to the case of

strong positive crossover interference.

3.3 Autosomes for RILs by sibling mating

3.3.1 Two-way RILs, autosome by sib mating

The results for autosomes in two-way RILs by sibling mating can be derived immedi-

ately from the results of H&W, by the technique described in Section 3.1.1. The three-point

distribution is the following.

Pr(AAA) = Pr(BBB) =
1 + 10r − 8cr2

2(1 + 6r)(1 + 12r − 12cr2)

Pr(AAB) = Pr(BBA) = Pr(ABB)

= Pr(BAA) =
2r(1 − cr)

1 + 12r − 12cr2

Pr(ABA) = Pr(BAB) =
2r2(6 + c − 6cr)

(1 + 6r)(1 + 12r − 12cr2)

Thus the coincidence for the autosome in two-way RILs by sibling mating is the fol-
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lowing.

C =
(1 + 6r)(6 + c − 6cr)

4(1 + 12r − 12cr2)
=

3 + (3 + c)(1 − 3R)

4 − 3(3 + c)R2

With r = 0, C = (6 + c)/4, so that with no interference,C = 7/4, while with strong

positive interference,C = 3/2. With r = 1/2 andc = 1, C = 1. This is displayed as

the black curves in Fig. 3D, with the solid curve corresponding to no interference, and the

dashed curve corresponding to the case of strong positive crossover interference. Note that

the coincidence is yet smaller than that for the X chromosome in two-way RILs by sibling

mating, and that in the case of strong positive interference, the coincidence is very close to

1 for all r.

3.3.2 Four-way RILs, autosome by sib mating

The three-point probabilities for autosomes in four-way RILs by sibling mating may

be calculated by the approach described in Section 3.2.2, for the X chromosome, though

the scale of the problem is greatly increased. There are 2,164,240 parental types (of the

form AAA|BBB×CCC|DDD), which reduce to 137,488 distinct states after accounting

for symmetries; there are 7 absorbing states. The transition matrix contains 73,022,406

non-zero elements (that is, approximately 0.4% of the matrix).

Calculation of the three-point probabilities for a single(r, c) pair took approximately

1 min. for the X chromosome, but required approximately 1 1/2 days for the autosome.

Thus, the three-point coincidence curves (one for no interference, one for strong positive

interference), displayed in blue in Fig. 3D and containing 250 points each, required ap-

proximately 750 days of computation time. (Spread across 12 computers, that is just two

months.)

3.3.3 Eight-way RILs, autosome by sib mating

The three-point probabilities for autosomes in eight-way RILs by sibling mating may

be obtained from those for four-way RILs, by the same approach used in the case of selfing

(Section 3.1.3). The equations in Table 4 (page 19) apply, with theai now representing the
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probabilities for the autosome in four-way RILs by sibling mating (from Section 3.3.2).

The three-point coincidence for the autosomes in eight-way RILs by sibling mating

are displayed as the red curves in Fig. 3D, with the solid curve corresponding to no in-

terference, and the dashed curve corresponding to the case of strong positive crossover

interference. Note that, again, the three-point coincidence is entirely above 1 in the case of

no interference, and is very near 1 in the case of strong positive crossover interference.

The autosomes in eight-way RILs by sibling mating are of particular interest to us, and

so it is valuable to study the probabilities more thoroughly. The three-point coincidence is

most informative for the two-way RILs; here they give information largely on the clustering

of breakpoints, rather than on the dependence between alleles at adjacent loci.

First, we consider the symmetry of the alleles. In the two-point probabilities, complete

symmetry was observed: the chance of switching fromA to x across an interval on an

eight-way RIL autosome was identical for allx 6= A. An inspection of the three-point

probabilities, however, indicates that such symmetry does not continue to hold.

For example, consider the case of haplotypes of the formAxA for x 6= A. In Fig. 4, we

plot the conditional probabilitiesPr(AxA | A-A) for x = B, C, E. (The allelesC andD

are equivalent in this context, as are the allelesE, F, G, H.) A stretch ofA alleles is much

more likely to contain a small segment ofE than ofB, especially in the case of strong

positive interference.

Most interesting is an assessment of deviation from the Markov property for the alleles

at three points on an eight-way RIL autosome. If the process along an RIL chromosome

were Markov, then the allele at the first of three loci would provide no further information

about the allele at the third locus, given knowledge of the allele at the central locus. In other

words, if the Markov property held, we would havePr(xyA | xy-) = Pr(-yA | -y-) for all

x andy. Thus we considerlog2{Pr(xyA | xy-)/ Pr(-yA | -y-)}, which would be strictly

0 if the Markov property held. These are displayed in Fig. 5 for all distinct cases(x, y).

(We make careful use of the symmetries of the problem to reduce the possible cases to 19.)

The solid and dashed curves correspond to no interference and strong positive crossover

interference, respectively.
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Figure 4: Assessment of symmetry in the three-point probabilities on the autosomes of eight-way
RILs by sibling mating. The conditional probabilitiesPr(AxA | A-A) are displayed as a function
of the recombination fraction between adjacent loci, with the solid curves corresponding to no
interference and the dashed curves corresponding to strong positive interference.

In the case of no crossover interference (the solid curves), the probabilities are largely

Markov-like, though with important exceptions: if the first two loci areAC or AE, the

third locus is more likely to beA than one would expect in the absence of information

about the allele at the first locus (see the black curves in Figs. 5C and 5D), while if the first

two loci areBC or BE, the third locus is less likely to beA (see the blue curves in Figs. 5C

and 5D). In the case of strong positive crossover interference (the dashed curves), we also

see thatAB is considerably less likely to be followed by anotherA (see the black dashed

curve in Fig. 5B). These observations are closely connected to the lack of symmetry in the

three-point probabilities seen in Fig. 4: small segments ofC or E will be inserted within

longer stretches ofA.

As it turns out, the casesCCA andDCA give identical probability ratios, though this

could not be anticipated in advance. (These are the red and orange curves in Fig. 5C,

though only the red curves may be seen, as they overlap.) The same is true for the cases

EEA andFEA (the green and purple curves in Fig. 5D, of which only the green curves

may be seen).
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case ofx, y, with the solid and dashed curves corresponding to no interference and strong positive
crossover interference, respectively.

27

Hosted by The Berkeley Electronic Press



4 The Whole Genome

A number of interesting questions about multiple-strain RILs cannot easily be answered

by analytic means, and so require large-scale computer simulations. For example, we are

interested in the number of generations of breeding that will be required to achieve genome-

wide fixation, and the density of genotypes that will be required in order to identify all

breakpoints. We are most interested in the eight-way RILs formed by sibling mating, but

we also considered two-way RILs by selfing and sibling mating, to serve as benchmarks.

The simulated genome was modeled after the mouse, with the genetic lengths of the

chromosomes taken from the Mouse Genome Database (see Table 6). The total genetic

length was 1665 cM. We considered solely the case of strong positive crossover interfer-

ence, as has been observed in the mouse (Broman et al. 2002). To simulate meiosis, we

used theχ2 model (Zhao et al. 1995), which is a special case of the gamma model (consid-

ered in the previous two sections), for which the interference parameterν = m + 1, for a

non-negative integerm. (Theχ2 model is more convenient for computer simulation.) We

usedm = 10, corresponding toν = 11, close to the estimate obtained by Broman et al.

(2002). We used 10,000 simulation replicates, and bred until complete fixation of the entire

genome.

A variety of summaries of the results of the whole-genome simulations are displayed in

Fig. 6. The distribution of the number of generations of breeding required to achieve fixa-

tion at 99% of the genome is displayed in Fig.6A. It is important to note that this includes

the initial mixing generations of breeding in addition to the many generations of inbreed-

ing. (One additional mixing generation is required for eight-way RILs than for two-way

RILs; see Figs. 1 and 2.) Two-way RILs by selfing required an average of 8 generations,

while two- and eight-way RILs by sibling mating required 23.5 and 26.7 generations, on

average, respectively, to achieve 99% fixation. Thus, eight-way RILs require an additional

three generations of breeding (including the additional generation of mixing). There is con-

siderable variation in the number of generations required to achieve this level of fixation.

The distribution of the number of generations to achievecomplete fixation is displayed
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Table 6: Chromosomal lengths (in cM) used in the computer simulations.

Chr. Length Chr. Length

1 127.0 11 80.0

2 114.0 12 66.0

3 119.2 13 80.0

4 84.0 14 69.0

5 92.0 15 81.0

6 75.0 16 72.0

7 74.0 17 81.6

8 82.0 18 60.0

9 79.0 19 55.7

10 77.0 X 96.5

in Fig. 6B. For two-way RILs by selfing, 10.5 generations are required, on average. For

two- and eight-way RILs by sibling mating, complete fixation requires an average of 35.6

and 38.9 generations, respectively. (Initially, I had simulated eight-way RILs only, and had

looked at complete fixation, and so was astounded by the large number of generations that

would be required, relative to the often cited 20 generations for two-way RILs by sibling

mating. But, as seen here, eight-way RILs only require three or so additional generation of

breeding to achieve the same level of fixation as two-way RILs.)

The distribution of the total number of segments (with segments defined as the regions

between breakpoints on the RIL chromosomes) is displayed in Fig. 6C. Two-way RILs by

selfing have an average of 53 segments; two- and eight-way RILs by sibling mating have

an average of 85 and 134 segments, respectively.

The marginal distribution of the lengths of the segments is displayed in Fig. 6D. It

should be no surprise that eight-way RILs have shorter segments. The spikes in the right

tails in Fig. 6D are whole chromosomes that were inherited intact. The higher spike at

80 cM corresponds to chromosomes 11 and 13, which had identical lengths (see Table 6).

Another unusually high spike occurs at 96.5 cM and corresponds to the X chromosome
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(which, as was seen in Sections 2 and 3, behaves differently than autosomes). Two-way

RILs have a good chance of inheriting an intact chromosome, while for eight-way RILs

this is relatively rare. The median segment length for two-way RILs by selfing is 25.6 cM;

the median segment length for two- and eight-way RILs by sibling mating is 12.9 and

8.5 cM, respectively. The chance that a two-way RIL by selfing will have at least one

intact chromosome is approximately 99%; the average number of intact chromosomes is

3.8. For two-way RILs by sibling mating, the chance of at least one intact chromosome is

79%, and the average number of intact chromosomes is 1.5. For eight-way RILs by sibling

mating, the chance of at least one intact chromosome is 12%, and the chance of two intact

chromosomes is just 0.5%.

The high frequency of small segments seen in Fig. 6D raises the question: how small

is the smallest segment? The distribution of the smallest segment in the genome of an RIL

is displayed Fig. 6E. For eight-way RILs by sibling mating, there is generally at least one

extremely small segment, which suggests that an extremely high density of genetic markers

will be required in order to identify all segments in a panel of eight-way RILs. The 95th

percentile of the length of the smallest segment in two-way RILs by selfing was 2.2 cM,

while for two- and eight-way RILs by sibling mating, it was 0.58 and 0.27 cM, respectively.

That is, 95% of the time, an eight-way RIL will have at least one segment that is less than

1/4 cM long.

Finally, the distribution of the number of small segments (that is, segments< 1 cM

in length) is displayed in Fig. 6F. The average number of such small segments is just 1.4

for two-way RILs by selfing, but is 5.2 and 11.2 for two- and eight-way RILs by sibling

mating, respectively.
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Figure 6: Results of 10,000 simulations of two-way RILs by selfing (black), two-way RILs by
sibling mating (blue), and eight-way RILs by sibling mating (red), with a mouse-like genome of
length 1665 cM and exhibiting strong crossover interference. A. Distribution of the number of
generations of breeding to achieve 99% fixation. B. Distribution of the number of generations
of breeding to achieve complete, genome-wide fixation. C. Distribution of the total number of
segments, genome-wide. D. Distribution of the lengths of segments. E. Distribution of the length of
the smallest segment, genome-wide. F. Distribution of the number of segments< 1 cM in length.
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5 Discussion

Our aim in this work was to characterize the genomes of multiple-strain recombinant

inbred lines. We were particularly interested in the case of eight-way RILs by sibling

mating, as the development of a large panel of such RILs has been proposed for the mouse

(Threadgill et al. 2002, Williams et al. 2002). We have extended the never-ceasing-to-

astonish work of Haldane and Waddington (1931) on two-way RILs to the case of four-

and eight-way RILs. While our own work may not so astonish the reader, we are confident

that the two years of computer time required for the calculation of the two blue curves in

Fig. 3D will make a firm impression.

Our key result is the equationR = 7r/(1 + 6r), connecting the recombination fraction

at meiosis to the analogous quantity for the autosome of an eight-way RIL derived by

sibling mating, which indicates a7× map expansion in the RIL. (Compare this to the

2× map expansion in two-way RILs by selfing and the4× map expansion in two-way

RILs by sibling mating). Perhaps more important is the two-point transition matrix, which

will be critical for the analysis of eight-way RILs. An essential component of the use of

RILs for genetic mapping is the reconstruction of the parental origin of DNA on the RIL

chromosomes (the haplotypes), on the basis of less-than-fully-informative genotype data.

Such RILs, if developed, will likely be genotyped at a dense set of diallelic markers, such

as single nucleotide polymorphisms (SNPs). Application of the standard hidden Markov

model (HMM) technology for the haplotype reconstruction will make critical use of this

transition matrix.

In advance (and in a grant application), we had hypothesized that the two-point tran-

sition matrix would have a complex structure, with theA andB alleles found together

more often than theA andH alleles. And so we were surprised to see that all off-diagonal

elements in the transition matrix are the same. We discovered this initially by computer

simulation. Indeed, the fundamental equation,R = 7r/(1 + 6r), was derived from our

simulations: we hypothesized the formR = ar/(1 + br) and used non-linear regression to

identify a andb. Non-linear regression was rather dissatisfying, especially in comparison
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to the work of H&W, and so we pursued symbolic and numeric approaches and eventu-

ally the intense computation of three-point probabilities. The key breakthrough was the

observation that an understanding of four-way RILs is sufficient for an understanding for

eight-way RILs.

The three-point coincidence function is especially interesting. That it generally exceeds

1 indicates a clustering of breakpoints on RIL chromosomes. Such clustering is often seen

in illustrations of RIL chromosomes (e.g., see Silver 1995, Fig. 9.4), but the cause of such

clustering was not immediately obvious. Our explanation is the following: closely spaced

breakpoints had their origin in different generations, but breakpoints in later generations

can occur only in regions that have not yet been fixed. Thus, regions that are not fixed early

have a tendency to become saturated with breakpoints late.

The three-point coincidence function does not tell the full story regarding multiple-

strain RIL chromosomes. That the coincidence is near 1 indicates that the locations of

breakpoints follow something like a Poisson process. However, the three-point probabili-

ties clearly indicate that the alleles along an RIL chromosome do not follow Markov chain.

Nevertheless, an RIL chromosome is more like a Markov chain than is the product of a

single meiosis, and so one may be confident in the successful use of the HMM technology

for haplotype reconstruction in eight-way RILs.

The symmetry in the two-point transition matrix for eight-way RILs implies that the

genealogy of an RIL (the order of the eight parental lines in the initial crosses) will not

generally need to be considered in the effort to reconstruct haplotypes from genotype data,

even though the three-point probabilities indicate clear (and interesting) lack of symmetry.

Nevertheless, in the analysis of the X chromosome, such genealogy information will be

important, as the transition matrix for the X chromosome has considerable structure.

It should be emphasized that H&W considered sex-specific recombination fractions in

their analysis of two-way RILs and showed that the two-point probabilities for the RIL

depended only on the sex-averaged recombination fraction. We neglected such niceties

in our analysis of higher-order RILs. The effect of sex- and genome-specific variation in

recombination on the structure of RIL chromosomes is perhaps worthy of further study,
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though the complexity of such analysis is forbidding.

That our results assume no mutation and no selection is even more worthy of empha-

sis. Selection against particular alleles or combinations of alleles during the process of

inbreeding will clearly have important influences on the structure and content of the RILs

that survive the process. However, the study of the effects of selection by the analytic means

we have pursued here would be extremely difficult, and our results ignoring selection will

no doubt be of considerable value, just as the work of H&W, who also ignored selection,

was of great value. Exploration of the effects of selection on the products of inbreeding,

likely by computer simulation, may be of practical importance.

While we considered only the case of multiple-strain RILs obtained via a “funnel”, in

which no more inter-crossing is used than is required to bring all of the alleles together, one

might consider the addition of extra generations of outbreeding prior to the start of inbreed-

ing. The haplotype patterns in the multiple-strain RILs derived through such an experiment

can be deduced from our results using the same technique as we used to determine the re-

sults for four-way RILs by selfing from those for two-way RILs by selfing. Similarly, the

extension of this work to any2k-way RIL is straightforward.

The software that was written to accomplish this work will be distributed at the au-

thor’s web site (www.biostat.jhsph.edu/˜kbroman/software ) as an add-on

package, R/ricalc, for the freely-available statistical software, R (Ihaka and Gentleman

1996). The most intensive computations, of the three-point probabilities for four-way RILs

derived by sibling mating, were performed via a pair of Perl programs; these programs will

be distributed within the R/ricalc package, though they have no connection to R. In addi-

tion, the package will include a set of Mathematica notebooks that document much of the

algebraic details for the simpler results.

The author is grateful to David Levin and Dan Naiman for valuable advice, and to the Depart-

ment of Biostatistics, Johns Hopkins University, for putting up with his intense use of the Depart-

ment’s computing resources for this work.
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