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A Computationally Tratable Multivariate RandomE�ets Model for Clustered Binary DataBrent A. Coull, E. Andres Houseman and Rebea A. BetenskyDepartment of BiostatistisHarvard Shool of Publi Health655 Huntington AvenueBoston, Massahusetts 02115, U. S. A.boull�hsph.harvard.edu, ahousema�hsph.harvard.edu,betensky�sda.harvard.eduSUMMARYWe onsider a multivariate random e�ets model for lustered binary data thatis useful when interest fouses on the assoiation struture among lustered obser-vations. Based on a vetor of gamma random e�ets and a omplementary log-loglink funtion, the model yields a likelihood that has losed form, making a frequentistapproah to model �tting straightforward. This losed form yields several advan-tages over existing methods, inluding easy inspetion of model identi�ability andstraightforward adjustment for nonrandom asertainment of subjets, suh as thatwhih ours in family studies of disease aggregation. We use the proposed model toanalyse two di�erent binary datasets onerning disease outome data from a familialaggregation study of breast and ovarian aner in women and loss of heterozygosityoutomes from a brain tumour study.Some key words: Binary time series; Complementary log-log link; Generalised linearmixed model; Multivariate gamma. 1
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1 IntrodutionUse of generalised linear mixed models (Breslow & Clayton, 1993) has beome apopular approah to modelling orrelated disrete data, with the help of ommerialsoftware pakages suh as SAS, Stata and S-Plus/R. The models aount for orrela-tion among lustered observations by inluding random e�ets in the linear preditoromponent of the model.In some sienti� settings interest fouses primarily on the assoiation strutureamong lustered observations. Examples inlude studies fousing on serially orre-lated observations (Fitzmaurie & Lipsitz, 1995; Aitkin & Alfo, 1998), familial ag-gregation of disease (Betensky & Whittemore, 1996; Hudson et al., 2001), and loss ofheterozygosity analysis of brain tumours (Cairnross et al., 1998). A disadvantage ofstandard generalised linear mixed models in these instanes is their inability to handlerelatively omplex dependene strutures among lustered responses. Several authorshave proposed adding additional random e�ets to model exibly more ompliatedassoiation strutures (Aithison & Ho, 1989; Diggle et al., 2002, x11.4.2; Agresti,1997; Coull & Agresti, 2000). However, these more ompliated strutures add alayer of omplexity in model �tting. For instane, Aithison & Ho (1989) and Coull& Agresti (2000) noted that Gaussian quadrature methods are only feasible whenthe dimension of the random e�ets is at most four. Diggle et al. (2002) resorted toMarkov hain Monte Carlo sampling to �t a logisti regression model with seriallyorrelated random e�ets.We onsider for lustered binary data a multivariate random e�ets extension ofthe model with omplementary log-log link and log-gamma random interepts pro-posed by Conaway (1990). Henderson & Shimakura (2003) and Henderson et al.(2003) proposed the use of multivariate gamma random e�ets in log-linear mod-els for serially orrelated ounts and spatial models for survival data, respetively.The �rst set of authors noted that this random e�ets assumption yields losed-formexpressions for joint distributions of bivariate sets of ounts, but showed that the al-ulation of joint distributions for higher dimensions is omputationally prohibitive.We highlight the fat that use of this random e�ets distribution in onjuntionwith the omplementary log-log link leads to omputationally simple expressions for2
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the joint distribution of a multivariate binary response. As a result, model �ttingvia maximum likelihood is omputationally simple, allowing for the likelihood-basedanalysis of moderately large datasets. Humphreys (1998) applied a speial ase ofthe model based on the additive formulation of the multivariate gamma distributionto some marketing data, but did not onsider theoretial identi�ability or parameterinterpretation for the general model.The model is attrative when interest fouses on the full joint probability distri-bution for the multivariate response. For instane, in studies of familial aggregation,interest fouses on measures of risk that are onditional on other family members, andthe relevant onditional likelihood is derived from the full joint distribution. Thus,the model a�ords straightforward adjustment for nonrandom subjet asertainment,whih is ommon in family studies of disease. Another example is the setting inwhih interest fouses on the union probability related to having at least one event(Lipsitz et al. 1995, 1996). The models are also useful for predition, sine under thisformulation the empirial Bayes preditions of the random e�ets also have losedform expressions. The fat that the proposed approah is likelihood-based allowsfor deviane-based hypothesis testing and goodness-of-�t. Finally, it an be diÆultto establish identi�ability of all model parameters in existing multivariate randome�ets models. A losed-form likelihood allows the user to diagnose model identi�a-bility relatively easily by evaluating the properties of the Fisher information matrixfor parameter regions of interest.A useful speial ase of the omplementary log-log { multivariate gamma model isan autoregressive version for binary time series analysis. Cox (1981) lassi�ed time-series models for serially-orrelated data into two lasses, namely observation-drivenand parameter-driven models. Observation-driven models speify the onditionaldistribution of a response at time t as a funtion of past responses, and are typiallystraightforward to �t (Diggle et al., 2002). In ontrast, parameter-driven modelsspeify an underlying serially orrelated latent proess and are typially muh morediÆult to �t. Existing approahes to �tting this lass of models inlude Monte CarloEM (Chan & Ledolter, 1995) and a fully Bayesian Markov hain Monte Carlo analysis(Diggle et al., 2002). Suh Monte Carlo methods introdue a new set of omputationalissues requiring areful attention, suh as prior eliitation and onvergene properties3
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of the Markov hains.2 A Multivariate Random E�ets Model for Bi-nary DataWe formulate the model using a vetor of multivariate gamma random e�ets, asde�ned by Henderson & Shimakura (2003). Let W1; : : : ;Wq be independent p-variateGaussian with standard marginals and ommon p � p orrelation matrix C. WriteWj = (Wj1; : : : ;Wjp)0 and let Zk = Pqj=1W 2jk=q, for k = 1; : : : ; p. Then the vetorZ = (Z1; : : : ; Zp)0 is said to be multivariate gamma with marginal Ga (q=2; q=2)distributions and Laplae transformL = E fexp (�u0Z)g = jI + 2Cdiag(u)=qj�q=2 ; (2.1)for u 2 Rn and C = (jk).A large literature exists on the properties of the distribution de�ned by (2.1).Bapat (1989) showed that, for suitable hoies of C, (2.1) de�nes a proper probabilitydistribution more generally for noninteger values of q. He showed that, if there existssome diagonal matrix M having elements equal to 1 or -1 on the diagonal suh that(MCM)�1 has nonpositive o�-diagonal elements andMCM has positive entries, then(2.1) de�nes an in�nitely divisible distribution for any q > 0. If we let � = 2=q, theresulting multivariate distribution with Laplae transformationL = E fexp (�u0Z)g = jI + �Cdiag(u)j�1=�de�nes a proper multivariate distribution for all � > 0. Marginally, Zj � Ga(1=�; 1=�),j = 1; : : : ; n, with orrelation matrix desribing the assoiation among gamma vari-ables equal to R with elements rjk = 2jk. We denote this multivariate distribution byZ �MG(�; C).Let Yij denote binary response j, j = 1; : : : ; ni, in luster i, i = 1; : : : ; N . Let�ij = log (Zij) be a random e�et orresponding to Yij, and onsider the generalisedlinear mixed model log [�log fE (YijjZi)g℄ = �ij + x0ij�; (2.2)4
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where xij is a k � 1 vetor of ovariates assoiated with response j in luster i, � isa k � 1 vetor of �xed e�ets, and Zi � MG(�; Ci), independently over i, with Cian ni � ni assoiation matrix for subjet i. In this framework, � is an overdispersionparameter, the interpretation of whih we address in detail in x 4. Interest typiallyfouses on both the �xed e�ets � and the orrelation matrix Ci parameterised as aknown funtion of an r � 1 vetor of variane omponents �.Under the generalised linear mixed model (2.2), the marginal probability of aresponse is pr(Yij = 1) = Z pr(Yij = 1jZ)f(Z)dZ:Although there exists no losed-form for f(Z), note thatpr(Yij = 1) = Z exp ��exp ��ij + x0ij��	 f(Z)dZ= Z exp ��u0i;jZ� f(Z)dZ= jI + �Cidiag(ui;j)j�1=� ;for vetor ui;j having exp(x0ij�) in position j and 0 elsewhere. Thus, an expression forthe marginal, averaged over the random e�ets, probability of an event for a singleobservation exists in losed form under this model.In order to derive the joint probability �i;y � �i;(y1:::yni) = pr(Yi1 = y1; Yi2 =y2; : : : ; Yini = yni), we use the method of Conaway (1990) that �rst omputes marginalprobabilities in the 2ni table formed by ross-lassifying the binary responses in a givenluster, and subsequently transforms these marginal probabilities bak to the jointprobabilities of interest. Let T be a subset of the indies f1; 2; : : : ; nig. We de�ne��i;T = Z Yj2T pr(Yij = 1jZ)f(Z)dZ:For example, for n = 3, ��i;f1;2;3g = pr(Yi1 = 1; Yi2 = 1; Yi3 = 1), ��i;f1;2g = pr(Yi1 =1; Yi2 = 1) and ��i;f1g = pr(Yi1 = 1). By the same arguments as above, these proba-
5
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bilities also have losed form:��i;T = Z exp(�Xj2T Zijexp �x0ij��) f(Z)dZ= jI + �Cidiag(ui;T )j�1=� ;where now the jth element of ui;T equals exp(x0ij�) if j 2 T and is 0 otherwise.Thus, only hanges in the elements of ui;T are neessary to reet di�erenes amongspei� ��i;T . If ��i = ���i;f1:::ng; ��i;f2:::ng; ��i;f1;3;::: ;ng; : : : ; ��i;f;g�0 is the olletion of allsuh marginal probabilities ��i;T , then the vetor of joint probabilities �i is a knownlinear transformation of ��i . For instane, for lusters of size n = 3 with �� =���i;f1;2;3g; ��i;f2;3g; ��i;f1;3g; ��i;f3g; ��i;f1;2g; ��i;f2g , ��i;f1g; ��i;f;g�0, the probabilities �� satisfy�� = A�, where
A = 0BBBBBBBBBB�

1 0 0 0 0 0 0 01 1 0 0 0 0 0 01 0 1 0 0 0 0 01 1 1 1 0 0 0 01 0 0 0 1 0 0 01 1 0 0 1 1 0 01 0 1 0 1 0 1 01 1 1 1 1 1 1 1
1CCCCCCCCCCAand �i = ��i;(111); �i;(011); �i;(101); �i;(001); �i;(110); �i;(010); �i;(100); �i;(000)�0. Thus, �i =A�1��i . The maximum likelihood estimates �b� 0; b�0; b�� are those values of the parame-ters that maximise the loglikelihood l =PNi=1 li, where li is the log of the element of �iorresponding to the observed response pattern for luster i. We maximise this loglike-lihood using numerial optimisation methods as implemented in the optim funtion inthe R software pakage (R Development Core Team, 2003), and base inferene on theinverse Hessian matrix for (� 0; �0; �), evaluated at the maximum likelihood estimates.R programs for implementing the models and assoiated doumentation are availablefrom the web at http://www.biostat.harvard.edu/�ahousema/software/mvg.htm.3 PreditionIn some instanes, interest fouses on predition of the random e�ets (Robinson,1991). Standard pratie in generalised linear mixed modelling uses the empirial6
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Bayes preditions of Zi for predition. These quantities are estimators of the posteriormean, E (ZijYi), of the random e�ets Zi given the observed data Yi. In addition toa losed-form for the likelihood, the proposed omplementary log-log multivariategamma formulation has the advantage that it yields losed-form expressions for thesepreditions.For a �xed luster i, let Yni = fy : y = (y1; : : : ; yni) ; yj 2 (0; 1) ; j = 1; : : : ; nig,and let ey be the 2ni�1 vetor suh that �i;(y1;::: ;yni) = e0y�i = e0yA�1��i . Furthermore,let �i;yjZ = pr (Yi = yjZi) and let �ijZ be the vetor of all suh probabilities rangingover Yni, ordered as in �i. For subset T, let ��i;T jZ =Qj2T pr (Yij = 1jZi), and let ��ijZbe the vetor ontaining all suh probabilities in the order analogous to ��. As shownin the Appendix, the empirial Bayes predition for Zij isE (ZijjYi = y) = ��1i;y e0yA�1 _L�ij;where _L�i is the 2ni � 1 vetor with elements_L�ij;T = ��tjL(t)����t=ui;T= jI + �Cidiag(ui;T )j�1=�tr �fI + �Cidiag(ui;T )g�1CiEj� ;for t 2 Rn and Ej = diag (�t=�tj). We have inorporated these preditions into oursoftware that implements the model.4 Parameter Interpretation and Identi�ability4.1 Interpretation of model parametersIndividually, the variane omponents (�0; �) do not have straightforward interpreta-tions, as they jointly parameterise the assoiation struture of Yi. However, primarysienti� interest typially fouses on the overall struture of the within-luster asso-iations, and not the individual omponents that parameterise this struture. Thus,this joint parameterisation does not hinder the utility of the model. Sine the modelyields losed forms for the estimated joint probability distribution for a given luster,we obtain losed-form expressions for the assoiation struture in a familiar parame-terisation suh as log odds ratios, with these log odds ratios values spei� to a given7
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pattern of the ovariates in the model. We employ this strategy to obtain �tted logodds ratios for omplex assoiation strutures in xx 5.1 and 5.2.Compared to a standard logisti model having log odds ratios as regression oeÆ-ients, interpretation of � in model (2.2) is also nonstandard. In the omplementarylog-log formulation, a positive value of a regression oeÆient indiates a negative as-soiation between the orresponding ovariate and the probability of response. Again,this is not a problem for interpretative purposes, as one an investigate the e�et of apartiular ovariate on the joint distribution of Yi in this model formulation. This ad-vantage of the model allows the user to report estimates of the e�et expressed eitheronditionally on the random e�ets or marginally in terms of the joint probabilitydistribution of Yi.4.2 Parameter identi�abilityFor onreteness, we fous on the �rst order-autoregressive orrelation struture ik =�jti�tkj, although similar reasoning applies for other orrelation strutures suh as theompound symmetri struture ik = �. We fous on the interept-only modellogf�log (�ij)g = �0 + �ij: (4.1)As pointed out by a referee, it is instrutive to onsider the latent response formulationfor models with the omplementary log-log link (Agresti, 2002, x6.6.4). The modelfor an underlying ontinuous response Y �ij an be written asY �ij = �0 + �ij + �ij; (4.2)where ��ij has a Gumbel distribution with sale parameter 1, whih yields varianeof �2=6, and the observed response Yij is 1 if Y �ij > 0. Sine �0 parameterises themean of the Y �ij, the variane omponents � and � an only be identi�ed through theorrelation struture for Y �i = �Y �i1; : : : ; Y �ini�0, if we assume that higher-order mo-ments provide neglible information. When � = 0, the variane of �ij, or equivalently�, is not well identi�ed beause this variane does not relate to the orrelations ofY �ij. In ontrast, the speial ase of the model with � = 1:0 orresponds to a univari-ate random interept model. In this ase, � represents the variane omponent forthe random interepts in the model, and is learly identi�able. Thus, identi�ability8
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of the model parameters depends on the strength of the serial assoiation amonglustered responses, with the model being weakly identi�able, in the sense of highorrelations between some pairs of parameters, for a wide range of � values withinthe two extremes.More rigorously, we investigate the asymptoti identi�ability of all model param-eters in model (4.1). We do this by examining the Fisher information ontained inone luster for this model. For known values of �0, � and �, we an easily alulatethe values of eah element in the Fisher information matrix, the ondition numberof the matrix and the asymptoti orrelations among parameter estimates obtainedfrom data generated from the model. Figure 1 shows the ondition number of theFisher information matrix over a wide range of � values, for the �xed value of � = 2:0.Analogous results exist for di�erent values of �, as an be seen if one plots the surfaeformed by this ondition number as a funtion of � and �, not shown, and di�erentvalues of �0. The plot shows that the model that results from leaving � free to beestimated is well onditioned as long as � is greater than approximately 0:75, butthat the ondition number grows without bound as � ! 0. Figure 1 also shows theondition number for the Fisher information matrix for model (4.1) as a funtionof � when � is not treated as an unknown parameter. The �gure shows that thisonstrained formulation results in a well-onditioned model for all values of �. Theresults of this exat alulation on�rm the heuristi arguments suggested by latentresponse model (4.2): all model parameters are identi�able for some regions of theparameter spae, and, for regions for whih they are not, �xing � to a prespei�edvalue results in an identi�ed model. Although we demonstrate this strategy in theontext of a spei� autoregressive model, one an use it to investigate the theoretialidenti�ability of a model with any suh struture for C.Of ourse, the asymptoti arguments above do not ensure that the multivariaterandom e�ets model will be identi�able for a given �nite sample. To address ases ofweak identi�ability in a given appliation, we propose �rst �tting the unonstrainedmodel to the data and performing a battery of identi�ability diagnostis on the result-ing model �t, inluding inspetion of the orrelations among the parameter estimatesand the ondition number of the assoiated variane ovariane matrix. The theoret-ial arguments above and our pratial experiene suggest that, in instanes of strong9
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lustering, the resulting model �t is well onditioned. In ases in whih the model isweakly identi�ed, we propose re�tting the model �xing the overdispersion parameter� at some value larger than the maximum likelihood estimate b� obtained from theunonstrained �t. This ensures that we do not arti�ially onstrain the magnitude ofthe within-luster assoiations from above. This approah of �xing some parametersto arrive at a fully identi�ed model is a standard approah in other latent responsesettings, suh as the probit model (Agresti, 2002, x6.6) and the multivariate logisti-normal model (Rabe-Hesketh & Skrondal, 2001). In general, the �xed e�et estimateb� will depend on the hosen value of �. However, this is not really a drawbak for tworeasons. First, for larger estimates, the orresponding standard error is also larger,so that onlusions onerning the strength of assoiation between a response and aovariate are relatively invariant to the hoie of �. Seondly, beause the �tted jointprobability distribution is easily alulated, one an express these assoiations usingmarginal odds ratios alulated from the joint probability distribution of Yi. Sinethe �tted values are insensitive to hoie of � when it is empirially unidenti�ed, soare the estimates of the marginal e�ets of interest.We stress that the above identi�ability onsiderations are not unique to the om-plementary log-log multivariate gamma model onsidered here, but also apply toother multivariate random e�ets models with analogous ovariane strutures forthe random e�ets. Diggle et al. (2002) onsidered a fully Bayesian analysis of theanalogous logisti-normal autoregressive model, but, presumably to produe identi-�able model parameters, plaed a relatively sharp prior distribution of IG(2; 2) onthe random e�ets standard deviation. This Bayesian strategy of speifying sharppriors for weakly identi�ed parameters has been proposed in other settings (Aitkin& Stansopolis, 1989). We view the fat that the omplementary log-log model yieldsstraightforward evaluation of model identi�ability as a strength of the model as om-pared to existing multivariate random e�ets formulations for lustered binary data.
10
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5 Appliations5.1 Example 1: Familial aggregationThis example demonstrates the ease with whih one an use the model to ondi-tion on the response of a proband in ase-ontrol family studies, and thus adjust fornonrandom asertainment. In familial aggregation studies, interest fouses on theassoiation struture among disease indiators from members within the same family.A popular existing approah is the quadrati exponential model of Zhao & Prentie(1990). However, interpretation of parameters from this model is diÆult when theluster sizes vary, whih is invariably the ase in family studies (Betensky & Whit-temore, 1996). In ontrast, random e�et models work well when the luster sizesvary.A seond ommon ompliation in familial aggregation studies is the use of non-random sampling shemes, suh as in a ase-ontrol design. This design samples indi-viduals, known as probands, based on their disease status and subsequently obtainsdata on the family members of eah proband in the study. The proper likelihood on-tribution from eah family is the onditional distribution of that family's responses,onditional on the disease status of the proband. As a result, for orret inferene werequire the marginal probability of the proband's response. If the proband is identi-�ed as subjet 1 in eah family, the required marginal probability for this onditionalprobability is ��f1g, whih is easily obtained under model (2.2). The resulting like-lihood ontribution for family i is Li=����f1g�yi1 �1� ��f1g�(1�yi1)�, where Li is thelikelihood based on the full joint distribution for luster i.Here, we analyze data on the familial aggregation of the ombined disease outomeof breast or ovarian aner in women (Betensky & Whittemore, 1996). We �t themodel that adjusts for nonrandom asertainment to data from 5756 families, witheah family onsisting of a proband, the proband's mother, and the proband's sisters.The families range in size from two, just proband and mother, to six, made up ofproband, mother and four sisters, with 384 `ase' families, with proband's diseasestatus = 1, and 5372 `ontrol' families, with proband's disease status = 0.One question of interest is whether or not the assoiation among disease indiatorsfrom di�erent family members depends on the relationship between the subjets. For11
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instane, in simple geneti settings, both a parent and hild as well as two siblingsshare 50% of their genes on average, suggesting a simple ompound symmetri stru-ture (Andersen, 2004). For more omplex diseases, it may be that parent-hild pairsexhibit stronger dependene than do siblings. We �t the proposed omplementarylog-log model to evaluate the assoiation struture among disease statuses of di�erentfamily members. We onsider the model with the family-spei� ovariate `rae' asa �xed e�et and a ovariane matrix Ci that spei�es a orrelation of �SS for sister-sister pairs and �1=2SS �MS for mother-daughter pairs. This multipliative form for themother-daughter assoiation satis�es the onditions on Ci neessary to ensure that(2.1) yields a proper probability distribution for all 0 � �MS; �SS � 1. We fous onthe estimates of assoiation from this model, and whether or not there is evideneagainst the speial ase with �MS = �1=2SS , whih orresponds to the simpler ompoundsymmetri ovariane struture. Preliminary �ts show that the models with � left tobe freely estimated are weakly identi�ed, with ondition number of the estimatedvariane-ovariane matrix being equal to 11658.0 and the estimated orrelation be-tween b�0 and � equal to 0.99. Thus, we �t the full model onstraining � = 1:0, whihyields a ondition number of 16.9. The model �t yields b�MS = 1:0, with standarderror 0.12, and b�SS = 0:50, with standard error 0.09, whih for the estimated in-terept orresponds to log odds ratios of 1.99 for mother-daughter assoiations and1.32 for sibling assoiations. These estimates are almost idential to those from theunonstrained model, whih are 2.01 and 1.29, respetively. The di�erene betweenthe deviane of this two-orrelation model with � = 1 and that from the simpler om-pound symmetri model, also �tted under the onstraint � = 1:0, is 9.54, providingstrong evidene that these two familial assoiations di�er for breast/ovarian aner.These results are qualitatively similar to those obtained by Betensky & Whittemore(1996), who showed that these familial assoiations di�ered when one onsideredbreast and ovarian aner individually.To assess the impat of properly aounting for the study design in the analysis,we re-�t the model without onditioning on the proband's observed response in eahfamily. This inorret analysis, also �tted onstraining � = 1:0, estimates the familialaggregation log odds ratios to be 1.13 for sister-sister pairs and 1.52 for mother-daughter pairs. Thus, one we orretly ondition on the proband's response to12
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aount for nonrandom sampling, the analysis suggests stronger familial aggregationof breast/ovarian disease status for both types of familial relationship.5.2 Example 2: Brain tumour genetisThis is a ase in whih interest fouses on omplex orrelation strutures for a rela-tively high-dimensional multivariate outome. Loss of heterozygosity of hromosomalregions of tumours, a binary outome, is of interest as it is suggestive of the preseneof a tumour suppressor gene. Alleli losses on hromosome 1p have been frequentlyfound in oligodendrogliomas, a ommon variant of brain tumour. Furthermore, loss ofheterozygosity on hromosome 1p is of prognosti interest, as it has been shown to behighly assoiated with response to hemotherapy and long survival in patients withertain malignant brain tumours (Cairnross et al., 1998; Ino et al., 2001). Previousanalyses of loss of heterozygosity in oligodendroglioma used three CA-repeat poly-morphism markers to assess loss of heterozygosity of the whole hromosome arm. Anentire hromosome arm was assumed to be lost if loss of heterozygosity was observedat all informative markers on that arm. Reently, a `medium throughput' quantitativemethod for assessing loss of heterozygosity at 19 non-distal, approximately equally-spaed markers on two hromosomes has been developed. The markers onsist of 15markers from hromosome 1p, �ve of whih are from the `tip' of hromosome 1p, and4 from hromosome 19q. The measurements were reorded on N = 85 brain tumours.One question of interest is whether segments of these hromosome arms, and not theentire arms, may be lost in some ases; that is, is there heterogeneity in the binaryloss of heterozygosity outomes aross the two hromosomes, and, in partiular, doesthis assoiation among loss of heterozygosity outomes vary aording to loation onhromosome 1p, or aording to hromosome?Sine interest fouses on the strength of assoiation as a funtion of the loationsof two loss of heterozygosity outomes, we onsider an interept-only omplementarylog-log multivariate gamma model with a orrelation struture that spei�es uniqueorrelation parameters for both the intra- and inter-hromosomal assoiations. Werefer to the tip of hromosome 1p as hromosome 1A and the remaining markers ashromosome 1B. Not all markers are informative for all tumours; these missing dataare missing ompletely at random. Thus, let Yij denote the loss of heterozygosity13
Hosted by The Berkeley Electronic Press



outome at loation j, j = 1; : : : ; ni, on tumour i, i = 1; : : : ; 85. The model islog [�logfE (YijjZi)g℄ = �0 + �ij; (5.1)where �i = (�i1; : : : ; �ini)0 � MG (�; Ci), independently for eah i. Although onemight presume that loss of heterozygosity in 1p and 19q are independent, it is wellknown that the outome is highly assoiated aross these two hromosomes. Thus,we assume orrelation struture Cfull = (jk), suh thatjk = �1A for j; k 2 hromosome 1Ajk = �1B for j; k 2 hromosome 1B,jk = �19 for j; k 2 hromosome 19jk = (�1A�1B)1=2 �1A;1B for j 2 hromosome 1A, k 2 hromosome 1Bjk = (�1A�19)1=2 �1A;19 for j 2 hromosome 1A, k 2 hromosome 19jk = (�1B�19)1=2 �1B;19 for j 2 hromosome 1B, k 2 hromosome 19,for eah luster.As in the �rst two examples, diagnostis for preliminary �ts indiate that �, es-timated as b� = 2:3, is weakly identi�ed in the presene of �0, with the onditionnumber of the orresponding variane matrix being 15682.9 and the estimated or-relation between the two estimates being 0.60. Table 1 shows the results of �ttingthe model to the data from the 19 markers, with � �xed at 2.5. This onstrainedmodel has a ondition number of 1262.5. The �rst two olumns of the table reportthe parameter estimates and assoiated standard errors for the orrelation parame-ters. The third olumn reports the odds ratios implied by the above multipliativeorrelation struture for eah type of assoiation. These estimates also hold for theunonstrained model. We see that the odds ratios implied by the orrelation pa-rameters range from 3.84 for the 1A and 19 assoiation up to 9.89 for two markerson hromosome 1B. The results indiate that the within- and between-hromosomeassoiations in loss of heterozygosity are strong. Interest fouses on whether this fullmodel is neessary, or whether we an model the assoiation struture among the19 markers with a ompound symmetri struture. The simpler ompound symme-try model is a speial ase of the full model, holding when �1A = �1B = �19 � �and �1A;1B = �1A;19 = �1B;19 = �2. Thus we an assess whether or not the moreompliated model provides a signi�antly better �t via likelihood ratio testing. Thelikelihood ratio statisti is 14.44 on 5 degrees of freedom, yielding strong evidene14
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that the full model is neessary. Thus, the pairwise assoiations among loss of het-erozygosity markers vary aording to loation on hromosomes 1p and 19q.6 DisussionThe multivariate gamma formulation used here is related to those used to representmultivariate frailties in orrelated lifetime models (Hougaard, 2000, Ch. 10). Thatapproah is useful in that it an yield spei� forms for the orrelation matrix C,but is somewhat less exible than the diret orrelation spei�ation outlined heresine ertain orrelation strutures are not possible using simple sums. Henderson &Shimakura (2003) noted that the joint distributions based on the diret and additiveorrelation strutures have the same marginal and assoiation properties. Theseauthors also noted that the di�erenes between the joint distributions represented bythese two onstrutions are generally small exept in the tails. Thus, we antiipatedi�erenes in inferenes obtained from latent variable models using these distributionsalso to be small.A potential disadvantage of the model is the fat that the multivariate gamma dis-tribution does not aommodate negative orrelations. This is not a severe limitation,however, sine suh orrelation strutures an often be handled with relatively low-dimensional fator-analyti models (Skrondal & Rabe-Hesketh, 2004, Ch. 9), wherebya single latent variable is multiplied by �xed e�ets. When some of these parame-ters, or `fator loadings', are negative, the latent variable indues negative orrelationsamong some of the responses within the same luster. Sine suh models often ontainone or two latent variables, they an often be �tted easily using numerial integra-tion, for example by PROC NLMIXED in SAS or gllamm in STATA. In ontrast, ourapproah is appropriate when omputation and the establishment of identi�ability isdiÆult beause of the dimension of the random e�ets.Although it is omputationally feasible to �t the model to the large majority oflongitudinal or otherwise lustered datasets, there are omputational limits sine theomputations are linear in 2ni. Thus, in situations with very large `lusters', suh aslong binary time series or intervention trials performed at the shool or ommunitylevel, these methods are less appliable. For long binary time series, we have used a15
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pseudolikelihood approah to estimation based on the omplementary log-log { mul-tivariate gamma formulation. This approah, also used by Henderson & Shimakura(2003) for �tting other multivariate gamma models, bases inferene on a set of esti-mating equations, where subsets of lusters of more manageable size are treated asnew pseudo-lusters. Our R software implements these pseudolikelihood routines aswell. Our model may also be useful in spatial settings and mixed-model formulationsof regression splines for binary responses.ACKNOWLEDGEMENTThis researh was supported in part by grants from the U. S. National Institute ofEnvironmental Health Sienes and National Caner Institute. The authors thankO. Bogler, J.G. Cairnross and D.N. Louis for use of the loss of heterozygosity dataand for helpful feedbak, and three referees for insightful omments that signi�antlyimproved the manusript. APPENDIXDerivation of the Empirial Bayes preditions of the random e�etsFor �xed luster i, let �i;yjZ = pr (Yi = yjZi) and let �ijZ be the vetor of allsuh probabilities, ordered as in �i. Let ��ijZ be the orresponding vetor ontainingelements ��i;T jZ = Qj2T pr (Yij = 1jZi). Finally, following the notation in x 3, let eybe the 2ni � 1 vetor suh that �i;y = e0y�i = e0yA�1��i . Note thatE �Zij�i;yjZ� = E �Zije0y�ijZ� = E �Zije0yA�1��ijZ�= E �e0yA�1��ijZZij�= e0yA�1E ���ijZZij� :Here, E ���ijZZij� an be obtained by di�erentiating the Laplae transform L(t).Sine ��i;T jZ = exp(�Z 0iui;T ) andZij exp(�Z 0iui;T ) = ��tj exp(�Z 0it)����t=ui;T ;assuming interhangeability of the di�erential and integral operators, we haveE ���ijZZij� = E fZij exp(�Z 0iui;T )g = ��tjL(tj)����t=ui;T :16
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Table 1: Maximum likelihood estimates b� and assoiated standard errors from themodel applied to the brain tumour data. The third olumn presents theorresponding odds ratios for eah type of assoiation based on the orrelationmodel Cfull for the data.Correlation Parameter Estimate Std. Err. Corresponding Pairwise Odds Ratio�1A 0.92 0.03 5.25�1B 0.98 0.01 9.89�19 0.94 0.04 6.36�1A;1B 0.99 0.01 6.83�1A;19 0.93 0.04 3.84�1B;19 0.97 0.02 5.99Std. Err., standard error
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