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Removing inter-subject technical variability in
magnetic resonance imaging studies

Jean-Philippe Fortin, Elizabeth M. Sweeney, John Muschelli, Ciprian M.
Crainiceanu, Russell T. Shinohara, and Alzheimer’s Disease Neuroimaging

Initiative

Abstract

Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units,
making scans non-comparable across sites and between subjects. Intensity nor-
malization is a first step for the improvement of comparability of the images across
subjects. However, we show that unwanted inter-scan variability associated with
imaging site, scanner effect and other technical artifacts is still present after stan-
dard intensity normalization in large multi-site neuroimaging studies. We propose
RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to re-
move residual technical variability after intensity normalization. As proposed by
SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012],
two batch effect correction tools largely used in genomics, we decompose the
voxel intensities of images registered to a template into a biological component
and an unwanted variation component. The unwanted variation component is es-
timated from a control region obtained from the cerebrospinal fluid (CSF), where
intensities are known to be unassociated with disease status and other clinical co-
variates. We perform a singular value decomposition (SVD) of the control voxels
to estimate factors of unwanted variation. We then estimate the unwanted fac-
tors using linear regression for every voxel of the brain and take the residuals as
the RAVEL-corrected intensities. We assess the performance of RAVEL using
T1-weighted (T1-w) images from more than 900 subjects with Alzheimer’s dis-
ease (AD) and mild cognitive impairment (MCI), as well as healthy controls from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We compare
RAVEL to intensity-normalization-only methods, histogram matching, and White
Stripe. We show that RAVEL performs best at improving the replicability of the
brain regions that are empirically found to be most associated with AD, and that



these regions are significantly more present in structures impacted by AD (hip-
pocampus, amygdala, parahippocampal gyrus, enthorinal area and fornix stria
terminals). In addition, we show that the RAVEL-corrected intensities have the
best performance in distinguishing between MCI subjects and healthy subjects
by using the mean hippocampal intensity (AUC=67%), a marked improvement
compared to results from intensity normalization alone (AUC=63% and 59% for
histogram matching and White Stripe, respectively). RAVEL is generalizable to
many imaging modalities, and shows promise for longitudinal studies. Addition-
ally, because the choice of the control region is left to the user, RAVEL can be
applied in studies of many brain disorders.
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Abstract

Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable
across sites and between subjects. Intensity normalization is a first step for the improvement of compa-
rability of the images across subjects. However, we show that unwanted inter-scan variability associated
with imaging site, scanner effect and other technical artifacts is still present after standard intensity nor-
malization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel
Effect by Linear regression), a tool to remove residual technical variability after intensity normalization.
As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch
effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to
a template into a biological component and an unwanted variation component. The unwanted variation
component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensi-
ties are known to be unassociated with disease status and other clinical covariates. We perform a singular
value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then es-
timate the unwanted factors using linear regression for every voxel of the brain and take the residuals as
the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images
from more than 900 subjects with Alzheimer’s disease (AD) and mild cognitive impairment (MCI), as well
as healthy controls from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We compare
RAVEL to intensity-normalization-only methods, histogram matching, and White Stripe. We show that
RAVEL performs best at improving the replicability of the brain regions that are empirically found to be
most associated with AD, and that these regions are significantly more present in structures impacted
by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area and fornix stria terminals). In
addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing be-
tween MCI subjects and healthy subjects by using the mean hippocampal intensity (AUC=67%), a marked
improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram
matching and White Stripe, respectively). RAVEL is generalizable to many imaging modalities, and shows
promise for longitudinal studies. Additionally, because the choice of the control region is left to the user,
RAVEL can be applied in studies of many brain disorders.
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at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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1 Introduction

In recent years, there has been an increase in the number of multi-site neuroimaging studies, including the
Human Connectome Project (HCP), the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Aus-
tralian Imaging, Biomarkers and Lifestyle Flagship Study of Aging (AIBL). In structural magnetic resonance
imaging (MRI) studies, larger samples of subjects yield more power to detect structural variations in differ-
ent subgroups, for example changes in the hippocampal volume associated with Alzheimer’s disease (AD)
and mild cognitive impairment (MCI). However, because MRI intensities are acquired in arbitrary units, it
has often been found that the differences in MRI intensities between scanning parameters and studies are
larger than the biological differences observed in these images. For instance, Shinohara et al. [2014] shows
that in the ADNI and AIBL studies, which have highly standardized protocols, striking differences in the
raw intensities are observed between imaging sites.

As MRI are acquired in arbitrary units, scans are non-comparable across sites and between subjects. There-
fore, intensity normalization is paramount before performing any between-subject comparisons or population-
level modeling. The challenge of intensity normalization has been largely addressed in the literature [Nyúl
and Udupa, 1999, Nyúl et al., 2000, Weisenfeld and Warfield, 2004, Jager et al., 2006, Madabhushi et al.,
2006, Leung et al., 2010, Shinohara et al., 2011, 2014], with several methods reviewed in [Shah et al., 2011].
Recently, a novel intensity normalization method, called White Stripe [Shinohara et al., 2014], was devel-
oped to bring raw image intensities to a biologically interpretable intensity scale. The method applies
a z-score transformation to the whole brain using parameters estimated from a latent subdistribution of
normal-appearing white matter (NAWM). The use of NAWM for normalization makes the method suitable
for many studies of brain abnormalities, as in the case of multiple sclerosis (MS) lesions. While the method
has been shown to make the white matter (WM) comparable across subjects, it was noted that residual
across-subject variability was still present in the grey matter (GM).

In this work, we investigate between-scan technical variability that is left uncorrected by intensity nor-
malization. We show that while common intensity normalization methods successfully correct for global
intensity shifts associated with scanner site, substantial between-scan technical variation remains. This
technical variation can be due to scanning parameters, scanner manufacturers, scanner field strength, and
other factors. We refer to any post-normalization inter-scan variation that is not biological in nature as a
“scan effect”.

To correct for scan effects, we propose Removal of Artificial Voxel Effect by Linear regression (RAVEL).
RAVEL is a tool for removing unwanted variation present after intensity normalization. RAVEL is inspired
by the batch effect correction tools SVA [Leek and Storey, 2007, 2008] and RUV [Gagnon-Bartsch and Speed,
2012] used broadly in genomics. In the analysis of gene expression and other genomic data, residual noise
after intensity normalization is referred to as batch effects, because experiments are often performed in
batches run on different dates. If not accounted for, batch effects have been shown to lead to spurious
associations [Leek et al., 2010]. To make a parallel with brain imaging studies, the problem of batch effect
correction is comparable to the problem of scan effect correction, where a single scan plays the role of a
batch.

We use the linear model introduced in [Leek and Storey, 2007] to decompose the variation of the normal-
ized intensities into a biological component of interest (variation associated with clinical covariates) and an
unknown, unwanted variation component to be estimated from the data. The unwanted variation compo-
nent encapsulates both technical variation and biological variation that is not of interest in the study. We
register the different scans to a common template to allow the use of voxel-wise linear models, and esti-
mate the unwanted variation component from regions of the brain that are not expected to be associated
with the clinical covariates of interest. This follows the methodology of the RUV batch effect correction tool
[Gagnon-Bartsch and Speed, 2012] which was later discussed in [Leek, 2014] for RNA sequencing. Unlike
intensity-normalization methods, RAVEL utilizes all images in the study to leverage information about un-
wanted variability. Here, we use voxels that are consistently labelled as cerebrospinal fluid (CSF) across
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subjects as a control region; these voxels are not expected to be associated with disease [Luoma et al., 1993].

We evaluate the performance of RAVEL using a large subset of the ADNI database consisting of more than
900 subjects. We demonstrate our method by using the T1-weighted (T1-w) images from subjects with
AD and MCI, as well as healthy controls. We follow the work of Fortin et al. [2014] to benchmark RAVEL
against two intensity normalization procedures without any scan effect correction: the popular histogram
matching algorithm and White Stripe. We focus on showing that RAVEL improves the replicability of the
biological findings. Critically, we show that a reduction of technical variation does not result in removing
biological variability. Namely, making intensity densities more similar does not necessarily improve sen-
sitivity to biological changes; on the contrary, overmatching of distributions can result in the removal of
biologically relevant signal. To show improvement in terms of biological findings, we first demonstrate
that the top voxels associated with AD in the RAVEL-corrected dataset are more replicable across inde-
pendent subsets of subjects. We measure the replicability of the results by randomly splitting the ADNI
dataset into discovery and validation cohorts multiple times. Then, we show that the top voxels associ-
ated with AD after RAVEL correction are more enriched for brain regions known to undergo structural
changes in AD. Finally, we show that the average hippocampal intensity after RAVEL correction performs
better than intensity-normalized-only images in discriminating between AD patients and healthy controls,
and between MCI patients and healthy controls. This shows that RAVEL-corrected T1-w intensities are
more biologically meaningful than intensity-normalized-only images for group comparisons, and therefore
potentially promising for the development of biomarkers.

Although we apply RAVEL in the context of T1-w MRI of the brain, our method is generalizable to many
imaging modalities. In addition, the flexibility in the choice of the control voxels makes RAVEL applicable
to any disease or pathology.

2 Materials and methods

2.1 Study population

Our dataset consists of a subset of 917 subjects downloaded from the ADNI database (adni.loni.usc.
edu). For each subject, we selected a study visit at random. We obtained 506, 184 and 227 subjects from the
ADNI, ADNI-2 and ADNI-GO phases, respectively. We present summary statistics of the study population
in Table 1. The selected scans were acquired at 83 different imaging sites, with a median number of 10
patients per site. The scans were also well-balanced for disease status across sites.

Healthy MCI AD

n 261 439 217
% Female 48 36 47

Median Age [Q1,Q3] 76 [72-79] 75 [70-80] 76 [71-81]

Manufacturer % GE 42 45 47
% Philips 11 10 14

% Siemens 47 45 39

Field Strength % 1.5T 85 88 88
% 3T 15 12 12

Table 1. Summary statistics of the ADNI dataset
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2.2 Imaging sequences and preprocessing

We considered T1-w imaging acquired on 1.5 and 3 T scanners according to the ADNI standardized pro-
tocol [Jack et al., 2008]. All analysis was performed in R [R Core Team, 2014], using the packages oro.nifti
[Whitcher et al., 2011], fslr [Muschelli et al., 2015], ANTsR [Avants et al., 2015] and WhiteStripe [Shinohara
and Muschelli, 2015].

We applied the N4 inhomogeneity correction algorithm [Tustison et al., 2010] to each image. We nonlinearly
registered all T1-w images to a high-resolution T1-w image atlas [Oishi et al., 2010], using the symmetric
diffeomorphic image registration algorithm [Avants et al., 2008] implemented in the ANTs suite. We use
non-linear registration in order to define a brain control region aligned across subjects and to find spatially
coherent nuisance patterns for removal. To remove extra-cerebral tissue from each scan, we first created
a brain mask on the template using the skull-stripping algorithm FSL BET [Smith, 2002] using the fslr
package and subsequently applied this resulting brain mask to all N4-corrected and registered images. The
preprocessing pipeline is summarized at the top of Figure 1.

In addition to the template brain segmentation, we performed a 3-class tissue segmentation by running the
FSL FAST segmentation algorithm [Zhang et al., 2001] on the N4-corrected, registered and skull-stripped
images for each subject separately.

2.3 RAVEL methodology

The RAVEL correction procedure adapts the linear model introduced in SVA [Leek and Storey, 2007, 2008] to
intensity-normalized MRI images. The goal is to remove remaining unwanted variation in the normalized
intensities by modeling the residual unwanted variation across subjects. For the optimal performance of
RAVEL, we use intensities normalized with White Stripe (see Supplementary Figure S1a). We model the
m× n matrix VWS of registered and White Stripe-normalized voxel intensities, for m voxels and n subjects,
as a decomposition of a biological component of interest and an unwanted component as follows:

VWS = α1T + βXT + γZT + R. (1)

where α1T represents the average scan in the sample, βXT accounts for the known clinical covariates of
interest, and γZT accounts for unknown, unwanted factors. We refer to VWS as the m× n matrix of intensi-
ties, α as the m× 1 vector of baseline intensities, X as the n× p matrix of clinical covariates, β as the m× p
coefficient matrix associated with X, Z as the n× b matrix of unwanted factors, γ as the m× b coefficient
matrix associated with Z, and R as the m× n matrix of residuals. In this model, α, β, γ and Z are unknown
parameters that need to be estimated from the data. In the case the unwanted factors Z are known, the
problem is reduced to simple linear regression models fit at each voxel separately.

As in RUV [Gagnon-Bartsch and Speed, 2012], we use a subset of the voxels not associated with disease
to estimate the unwanted factors ZT . We refer to such voxels as “control voxels”. An association between
CSF intensities and disease status is highly unlikely [Luoma et al., 1993], and therefore CSF voxels are
good candidates for inferring the unwanted component in the data. We perform a subject-specific tissue
segmentation of the T1-w image and choose control voxels as voxels classified as CSF for all subjects in the
study. We denote by VWS

c the subset of the matrix of White Stripe-normalized intensities VWS confined to
the control voxels. For the control voxels, Equation 1 simplifies to

VWS
c = αc1T + γcZT + Rc. (2)
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because of the absence of association between the control voxels and X. To estimate the unwanted factors
ZT , we perform a singular value decomposition (SVD) of VWS

C as follows

VWS
c = UDWT . (3)

and define ẐT to be the first b right-singular vectors {w1, w2, . . . , wb} of W. The choice of b is discussed
in the next section. Note that for b = 1, the estimator ẐT will closely estimate the average CSF intensity
for each subject. We obtain the estimates γ̂i in Equation 1 by performing a linear regression at each voxel
separately, using our estimate of ZT in the equation. We define the RAVEL-corrected voxel i for subject j as

vRAVEL
ij = vWS

ij − γ̂iẐT

where vWS
ij is the White Stripe-normalized intensity for the i-th voxel and for the j-th subject. In summary,

RAVEL aims to identify patterns of variation in the control voxels across subjects, and then assess the
degree to which this variation explains the brain-wide intensity distributions. In practice, this works well
if the space spanned by the unwanted factors estimated from the control voxels also spans the unwanted
variation space for all voxels. A schematic of the RAVEL method is presented in Figure 1.

2.4 Estimation of the number of unwanted factors

We select the optimal number of unwanted factors b to include in Equation 1 by maximizing the discovery-
validation replication rate described in section 2.7. Normalized intensities for which the top voxels asso-
ciated with disease have better replication between independent experiments are more robust to technical
artifacts, like site effect and differences in protocol.

Other approaches have been proposed to select b. Among others, Gagnon-Bartsch and Speed [2012] use
voxels that are known to be associated with a clinical outcome to optimize b. They perform a sensitivity
analysis for the parameter b, and b is chosen to optimize the number of positive control voxels that fall into
the top voxels associated with the outcome. The downside of using this approach is that positive controls
must be identified in advance, which is not possible for discovery studies.

Alternatively, the estimation of b could be done in an unsupervised manner by thresholding the percentage
of variance explained by the first b singular vectors. This approach, which is agnostic of the outcome, can
potentially provide additional safeguards against over-fitting, but could also decrease the performance of
RAVEL by adding noise.

2.5 Comparison to intensity normalization methods

We compare RAVEL to two intensity normalization procedures without scan effect correction: White Stripe,
as implemented in Shinohara and Muschelli [2015], and the popular histogram matching method pro-
posed by [Nyúl and Udupa, 1999] and further refined in [Shah et al., 2011]. The histogram matching
method matches the histograms of each subject to a reference population histogram using a piecewise
linear transformation. We implemented the algorithm in R and we made the code available at https:
//github.com/Jfortin1/RAVEL/blob/master/R/hm.R. For better performance, we removed the
background voxels before running the histogram matching algorithm. We used healthy subjects to form a
reference population histogram distribution, as described in Shinohara et al. [2014].

5
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Figure 1. Schematic showing the RAVEL pipeline. The steps shown in the blue region are standard
preprocessing steps that can be run in parallel. The green region shows the RAVEL algorithm.
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2.6 Identification of voxels associated with clinical covariates

Here we describe how we perform the voxel-wise analysis of the intensity distributions. For a clinical
covariate x, (e.g. disease status, age, gender), we perform a simple linear regression at each voxel of the T1-
w voxel intensity v on the clinical covariate x, and consider the usual t-statistic as a measure of the strength
of association. We obtain a t-statistic for each of the m voxels, that is a list {t1, t2, . . . , tm}, and we rank the
t-statistics in a decreasing order to get a list of rank indices {r1, r2, . . . , rm} where rj is such that trj = t(m−j),
the latter being (m− j)-th order statistic. For a chosen threshold q, we call the top q ranked voxels the “top
voxels associated with x”.

2.7 Evaluating the replicability of the top voxels associated with AD

To evaluate the replicability of the biological findings, that is the chance that an independent experiment
will produce consistent results [Leek and Peng, 2015], we devised a discovery-validation cohorts scheme in-
spired by [Fortin et al., 2014]. The goal of the scheme is to measure replicability of the top voxels associated
with the outcome of interest. If not specified otherwise, we use the disease status (AD or healthy) as the
outcome of interest; we include the patients with MCI for the biomarker study described in Section 3.4 only.
The discovery-validation scheme is as follows: we randomly split the full dataset into two equally sized
subsets that we call discovery and validation cohorts, assigning AD and healthy patients equally between
the two cohorts.

For each of the two cohorts separately, we perform a differential analysis as described in Section 2.6 to
obtain two lists of ranked voxels using the differential t-statistics: rDis = {rDis

1 , rDis
2 , . . . , rDis

p } and rVal =

{rVal
1 , rVal

2 , . . . , rVal
p }, for the discovery and validation cohorts respectively. The agreement between the two

lists rDis and rVal serves as a measure of replicability. More specifically, we are interested in the agreement
of the top-ranked voxels since those are likely more relevant and more representative of a true biological
signal. For a given integer k, we look at the proportion of overlap, denoted O(k), of the top k voxels from
each list by

O(k) =
|{rDis

1 , rDis
2 , . . . , rDis

k } ∩ {r
Val
1 , rVal

2 , . . . , rVal
k }|

k

A concordance at the top (CAT) plot [Irizarry et al., 2005] is a plot showing O(k) for several values of k.
To quantify uncertainty of the overlap measure O(k), we repeat the random discovery-validation cohort
splitting one hundred times, and present the mean curve along with a 95% confidence band.

2.8 Pseudo-ROC curves and enrichment curves

In this section, we review the methodology behind pseudo-ROC curves [Bourgon, 2006] and enrichment
curves. We use these curves to evaluate the performance of the different normalization and scan effect
removal methods by using prior information about structural changes associated with AD. In several neu-
roimaging studies, prior information about a specific disease allows us to expect a set of voxels to be asso-
ciated with disease. For instance, a large proportion of the hippocampus and parahippocampal voxels are
known to be associated with AD and MCI. In the absence of a gold standard, these voxels can play the role
of a proxy for a gold standard. We refer to these voxels as a silver standard, that is a gold standard with
some contamination.

In the context of genomics, silver standards have been previously used to compare the performance of
different classification methods [Bourgon, 2006] and normalization methods [Schmid et al., 2010, Fortin
et al., 2014]. Bourgon [2006] show that receiver operating characteristic (ROC) curves based on a silver
standard, called “pseudo-ROC curves”, preserve the relative ranking of different classification methods
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with respect to ROC curves based on a gold standard. A sufficient condition for the validity of the pseudo-
ROC curves ranking is that the contamination of the silver standard, with respect to the gold standard,
occurs independently of the misclassification errors of the different methods compared. In the Results
section, we use the t-statistics measuring the association of the voxel intensities with AD to classify voxels as
either associated with AD or not. To estimate the sensitivity and specificity of each normalization method,
we use voxels from 5 regions known to be associated with AD from an extensive search of the literature
(see Table 2) as a silver standard.

Brain region References

Hippocampus Fox et al. [1996], Mori et al. [1997], Jack et al. [1999]
Visser et al. [1999], Jack et al. [2000], Xu et al. [2000]
Callen et al. [2001], Du et al. [2001], Bottino et al. [2002]
Chételat et al. [2002], Pennanen et al. [2004], Wolf et al. [2004]
Chételat et al. [2005], Ridha et al. [2006], Farrow et al. [2007]
Whitwell et al. [2007], Poulin et al. [2011]

Amygdala Scott et al. [1991, 1992], Vereecken et al. [1994]
Mori et al. [1997], Callen et al. [2001], Bottino et al. [2002]
Horı́nek et al. [2006], Farrow et al. [2007], Whitwell et al. [2007]
Poulin et al. [2011], Miller et al. [2015]

Parahippocampal gyrus Mori et al. [1997], Visser et al. [1999], Callen et al. [2001]
Bottino et al. [2002], Chételat et al. [2005], Khan et al. [2014]

Enthorinal region Gómez-Isla et al. [1996], Xu et al. [2000], Du et al. [2001]
Pennanen et al. [2004], Whitwell et al. [2007]
Braak and Del Tredici [2012], Khan et al. [2014]

Fornix and S. Terminalis Callen et al. [2001], Mielke et al. [2009], Liu et al. [2011]

Table 2. Brain regions previously reported to undergo a structural change in the progression of AD.

A second approach for the benchmarking of different normalization/scan effect correction methods is to
count the number of candidate voxels that fall into the list of the top k voxels associated with disease. We
refer to the curve that depicts the counts for different values of k as the “enrichment curve”.

3 Results

We compared RAVEL to three normalization strategies: raw image intensities (no normalization), White
Stripe [Shinohara et al., 2014], and histogram matching [Shah et al., 2011]. We recall that RAVEL correction
was performed on the White Stripe-normalized intensities for better performance. (see Supplementary
Figure S1a).

3.1 RAVEL reduces inter-subject variability

We used a subset of the CSF intensities as control voxels to estimate factors of unwanted variation in the
RAVEL model. We obtained 9869 CSF control voxels; we recall that a voxel is qualified as a CSF control if it
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is classified as CSF for all subjects. As expected, the CSF control voxels were located primarily in the center
of the ventricles (Figure 2a). Maximizing the discovery-validation replication rate explained in the Methods
section, we only kept the first singular vector as the unwanted factor term Z in Equation 1, corresponding
to b = 1 (see Supplementary Figure S1b). Unsurprisingly, the singular vector is highly correlated with the
mean CSF intensity for each subject (correlation of 95.7%).

Figure 2. Estimation of technical variability using CSF control voxels. (a) The voxels selected in the
RAVEL model as control voxels for CSF are shown in blue overlaid on the template; the control voxels
were selected as voxels classified as CSF for every subject. (b) Heatmap of the RAVEL coefficient γ̂ from
Equation 1 depicted on the template, using b = 1 in Equation 1. The coefficient depends on the brain
tissue, with a high coefficient for voxels in CSF (yellow regions), a moderate coefficient in GM (orange and
lighter red) and a low coefficient for WM (darker red).

In Figure 2b, we depict the coefficient γ̂ at each voxel. We notice that the distribution of γ̂ varies across
brain tissues, for instance darker red in WM and yellow in CSF. This shows that the method allows an
unsupervised tissue-specific normalization. This prevents over-normalization in situations where the tech-
nical variation of the CSF intensities is not representative of the variation of other tissues.

In Figure 3, we show the histograms of intensities before and after RAVEL correction. The first row shows
the unnormalized image histograms and the second row shows the histograms for the images normalized
with White Stripe. The last row depicts the histograms for the White Stripe-normalized images with RAVEL
correction. In accordance with the findings of Shinohara et al. [2014], the White Stripe-normalized images
show good comparability of the WM across subjects. This can be seen by the similar WM densities centered
around zero (Figure 3 second row, third column). For GM, the White Stripe densities are less clustered
and show more variability, which is even more exaggerated for the CSF intensities. This shows that scaling
and centering using a NAWM stripe is not enough to make GM and CSF intensities comparable across
subjects. This can be explained by differential WM to GM and WM to CSF contrast ratios across images
and protocols. In the third row, one can see that RAVEL substantially corrects for the extra variability in
CSF and GM intensities that is not accounted for by intensity normalization. RAVEL also preserves the
comparability of the WM intensities. The histograms for each tissue class cluster together well and show
similar characteristics (mean, scale and range).

The main source of variation in the unnormalized images is from scanning site; on average, 67.8% of the
variation in the intensities is explained by scanning site (R2 averaged across voxels). Interestingly, we
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Figure 3. Effect of RAVEL on the histograms of intensities. Rows correspond to different preprocessing
steps, and columns to different brain tissues. Each curve represents the corresponding histogram of
intensities for one subject.

observed much less variation explained by scanning site for both intensity-normalized datasets (18% for
both White Stripe and histogram matching) and for RAVEL (18%). We randomly permuted the scanning
site variable 100 times and obtained a null distribution of the average R2 with range of [16.1%, 16.5%].
This implies that after intensity normalization alone, the variability between different sites is close to the
within-site variability. However, as shown in Figure 3, RAVEL removes additional technical variability in
comparison to intensity normalization alone.

3.2 RAVEL improves replicability of large MRI studies

We and others have shown in the study of large epigenetic data that the ability to reduce technical vari-
ation does not necessarily lead to a better detection of features associated with the outcome of interest
[Fortin et al., 2014, Dedeurwaerder et al., 2014]. A good normalization method should both reduce tech-
nical variability and enhance the replicability and robustness of biological findings. Here, we evaluate the
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performance of RAVEL in terms of estimating brain regions associated with AD.

We randomly split the ADNI dataset into discovery and validation cohorts one hundred times, and we
present in Figure 4b the mean CAT curves with 95% confidence bands. As expected, the unnormalized
data, that is the raw images intensities, show very poor replication of the results (maximum of 0.17), while
RAVEL improves replication of the findings substantially (up to 0.65 overlap in the top findings) upon
intensity normalization methods alone.

The replicated voxels fall into regions that are known to be associated with AD. In Figure 4a, we show
voxels associated with AD that were replicated among the top 50,000 voxels for all random splittings. No
normalization led to zero voxels replicated across splittings. This is not surprising since raw image inten-
sities are expressed in arbitrary units. White Stripe replicated 1541 voxels, while histogram matching and
RAVEL replicated 3758 and 4897 voxels respectively (Figure 4c). In addition, RAVEL is the most power-
ful method for finding replicated voxels in the hippocampus and amygdala, two structures known to be
associated with AD. The number of replicated voxels for the hippocampus are the following: 0 for no nor-
malization, 396 for White Stripe, 1693 for histogram matching and 2405 for RAVEL. For the amygdala, we
obtained the following counts: 0 for no normalization, 323 for White Stripe, 368 for histogram matching
and 518 for RAVEL. The validity of those regions is discussed in the next section.

In summary, White Stripe and histogram matching, by correcting for inter-subject variability in the white
matter, substantially increased the number of replicated voxels associated with AD in comparison to no
normalization. RAVEL led to a 3-fold increase in the number of replicated voxels with respect to White
Stripe. This was achieved by additionally modeling brain-wide unwanted variability using a CSF control
region. This is consistent with the idea that while CSF is not interesting on its own with respect to disease,
it can be used powerfully to distinguish signal from noise in the entire brain.

3.3 RAVEL uncovers known regions associated with AD

The discovery-validation scheme discussed above allowed us to evaluate the replicability of the top voxels
associated with AD. In the current section, we aim to evaluate the validity of the results by comparing
the top voxels to brain regions known to undergo a structural change in the progression of AD. Those
structural changes include, among others, GM and WM atrophy, neuronal loss, amyloid senile plaques,
loss of fiber tract integrity and tau lesions. In the context of AD, these changes have been described in the
hippocampal formation and several parahippocampal structures. The list includes, but is not limited to, the
hippocampus, the amygdala, the enthorinal cortex, the fornix, the stria terminalis and the parahippocampal
gyrus. Table 2 lists several studies that have reported structural changes in these regions.

Using the template parcellation map [Oishi et al., 2010], we considered 67,983 voxels that are part of the
regions listed in Table 2. These voxels represent 3.5% of the template and are potential candidates for as-
sociation with AD. We use these voxels as a silver standard to evaluate the performance of the different
normalization methods and RAVEL. For different values of k, we count the number of the top k voxels
associated with AD that are in the silver standard, which are said to be enriched for the truth. The enrich-
ment curves, depicted in Figure 5a (solid lines), show the number of enriched voxels for different values of
k, for each normalization method. The dotted line at the bottom represents the number of voxels expected
by chance only (y = 0.035k). To account for variability in the enrichment curves, we nonparametrically
bootstrapped with replacement by subject to recalculate the top voxels associated with AD and recompute
the curves. The shaded regions of Figure 5 represent bootstrapped 95% confidence bands. We observe that
RAVEL discovers significantly more voxels that are truly associated with AD than the competing methods.
The top voxels associated with RAVEL are also more stable than other methods, as measured by the width
of the 95% confidence bands. Notably, RAVEL offers a substantial improvement with respect to intensity
normalization with White Stripe alone.

Next, we obtained pseudo-ROC curves to measure the specificity and sensitivity of RAVEL for detecting

11

Hosted by The Berkeley Electronic Press



Figure 4. RAVEL improves replicability of voxels associated with AD (a) In template space, we depict in
yellow the voxels that are replicated across all random splittings, from the list of the top 50,000 associated
with AD. (b) Mean CAT curves for association with AD with 95% confidence bands. (c) Number of voxels
replicated for each method in (a). RAVEL shows excellent performance at replicating the discovery of
regions of the brain associated with AD.
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Figure 5. The top voxels associated with AD are enriched for the hippocampus and parahippocampal
regions (a) For the top k voxels associated with AD (x-axis), the solid lines display the number of voxels
out of the k voxels falling into five structures known to be associated with the progression of AD: the
hippocampus, amygdala, enthorinal cortex, fornix and stria terminalis and parahippocampal gyrus. The
dotted line represents the number of voxels expected by chance only. The shaded areas represent 95%
confidence bands computed using 100 bootstrapped samples. (b) From the t-statistics measuring the
association of the voxel intensities with AD, we present the pseudo-ROC curves for classifying a voxel as a
member of the five regions described in (a). RAVEL shows significantly better sensitivity and specificity
than the other methods for detecting hippocampus and parahippocampal changes associated with AD.
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a true association between voxel intensities and AD. In Figure 5b, we present the pseudo-ROC curves for
classifying voxels as associated with AD or not, using the differential analysis (voxel-wise) t-statistics as a
measure of association. The voxels from the regions listed in Table 2 are used as a silver standard. As with
the enrichment curves, we present bootstrapped 95% confidence bands. RAVEL outperforms histogram
matching, White Stripe and raw image intensities for the full range of specificity.

In Supplementary Figure S2, we show in template space the negative log p-value at each voxel for associa-
tion between the intensities and AD status.

3.4 RAVEL-corrected intensities improve prediction of AD and MCI

We investigated the potential use of T1-w RAVEL-corrected intensities as biomarkers for disease identifi-
cation and progression. We first compared the average hippocampal intensity between AD patients and
healthy controls. We used the template parcellation map to identify the 9847 voxels labelled as hippocam-
pus. Using the mean intensity of the hippocampus as a score, we classified each subject as either having
AD or being healthy, thresholding the scores at different levels. The corresponding ROC curves are pre-
sented in Figure 6a. We obtained an area under the curve (AUC) of 81.7% for RAVEL (95% CI [77.6, 85.4]),
as opposed to 74.9% for histogram matching ([70.4, 79.2]), 64.4% for White Stripe ([58.9, 69.0]), and 57.0%
for no normalization ([52.1, 62.0]). We obtained the 95% confidence intervals by bootstrapping the samples
with replacement 1000 times. Similarly, we used the average hippocampal intensity to distinguish between
MCI patients and healthy controls; the corresponding ROC curves are presented in Figure 6b. We obtained
an AUC of 67.3% for RAVEL (95% CI [63.1, 71.3]), as opposed to 63.4% for histogram matching ([59.6,
67.7]), 59.0% for White Stripe ([54.8, 63.4]), and 52.9% for no normalization ([48.4, 57.3]). This shows that
RAVEL-corrected intensities are more representative of true biological variation than intensity-normalized
intensities alone, indicating that the development of biomarkers using MRI studies in many neurological
and psychiatric disorders could benefit from the RAVEL scan effect correction tool.

4 Discussion

In this work, we have presented the scan effect correction tool RAVEL, to correct for inter-scan unwanted
variability in MRI studies that is present after intensity normalization. We have shown that RAVEL, ap-
plied after normalizing the intensities with White Stripe [Shinohara et al., 2014], substantially improves the
replicability of the regions of the brain found to be the most associated with AD. RAVEL, inspired by the
batch effect correction tools SVA and RUV Leek and Storey [2007, 2008], Gagnon-Bartsch and Speed [2012],
infers the unwanted variation in the images by using regions of the brain that are not associated with dis-
ease. After registering all images to a common template, we used voxels that were labelled as CSF for all
images as control voxels. We used a linear regression model at each voxel to regress out the variation in
the intensities explained by variation in the control CSF voxels intensities. We used an SVD to reduce the
dimensionality of the control voxels, and selected the number of components to include in the regression
models by maximizing the replication rate of biological findings between independent subsets of the data.

We have shown that while common intensity normalizations remove a large part of the unwanted site
effects for T1-w imaging, significant unwanted variation remains uncorrected. We encapsulated this post-
normalization residual variability using the term scan effect. We have shown that the scan effect correction
tool RAVEL successfully improves the comparability of the images in a large subset of the ADNI database
by removing this extra variability. We measured the performance of RAVEL and other methods by esti-
mating the replicability of the top voxels associated with AD in independent subsets of the ADNI dataset.
To do so, we randomly divided the ADNI dataset into discovery and validation cohorts several times, and
computed the top-replicated voxels for each random split. We have also shown that the top voxels asso-
ciated with AD in our analysis and replicated in the discovery-validation division are more enriched for

14

http://biostats.bepress.com/upennbiostat/art43



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

No normalization
WhiteStripe
Histogram Matching
RAVEL

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

No normalization
WhiteStripe
Histogram Matching
RAVEL

(b)

Figure 6. RAVEL improves the prediction of AD and MCI. (a) The mean hippocampus intensity was
used to predict AD. The AUC is 81.7 % for RAVEL, 74.9% for histogram matching, 64.4% for White Stripe
and 57.0% for no normalization, with 95% CIs [77.6, 85.4], [70.4, 79.2], [58.9, 69.0] and [52.1, 62.0]
respectively. (b) The mean hippocampus intensity was used to predict MCI. The AUC is 67.3% for RAVEL,
63.4% for histogram matching, 59.0% for White Stripe and 52.9% for no normalization with 95% CIs [63.1,
71.3], [59.6, 67.7], [54.8, 63.4] and [48.4, 57.3] respectively.
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brain regions known to be associated with AD than those found using intensity-normalized data only. This
shows that RAVEL is a potent method for improving the discovery of brain regions associated with disease.
Finally, we have also shown that the RAVEL correction improves the prediction of AD and MCI compared
to healthy controls, using the mean hippocampal intensity as a predictor. This suggests that RAVEL is a
promising method that may facilitate the development of biomarkers using MRI intensities. Furthermore,
with the recent emphasis on multivariate pattern analysis for biomarker development [Davatzikos et al.,
2005, De Martino et al., 2008, Vemuri et al., 2008, Craddock et al., 2009, Davatzikos et al., 2011, Gaonkar and
Davatzikos, 2013], RAVEL promises to produce more generalizable biomarkers that are less susceptible to
biases associated with scanner and site imbalances.

The idea of using a control region of the brain which is not associated with disease is not new. In [Pujol
et al., 1992, Bakshi et al., 2002, Tjoa et al., 2005, Brass et al., 2006, Neema et al., 2009], the regions of interest
were divided by the mean signal intensity of a CSF region to correct for potential inter-subject variation.
Shinohara et al. [2014] used a NAWM stripe to estimate a scaling and shifting parameter in their z-score
normalization method. In Mejia et al. [2015], in the context of estimating quantitative T1 maps (qT1) from
conventional MRI, the authors proposed an adaptation of the z-score normalization method by using a
combination of NAWM and cerebellar gray matter (CBGM), where the NAWM was used for the scaling pa-
rameter and the CBGM was used for the shifting parameter. In [Ghassemi et al., 2015], the authors used the
median GM intensity for the shifting parameter, and the difference between the median intraconal orbital
fat intensity and the median GM intensity for the scaling parameter. In [Sweeney et al., 2013], the authors
use the whole brain to estimate the two parameters. We note that the different versions of the z-score trans-
formation used in [Shinohara et al., 2014, Sweeney et al., 2013, Mejia et al., 2015, Ghassemi et al., 2015] only
leave room for the choice of two control regions at maximum, corresponding to the mean and scale param-
eters. While this improves comparability between subjects in comparison to the unnormalized intensities,
as shown in Figure 4b, we have shown that RAVEL improves dramatically upon a z-score transformation
only.

There are several limitations to our method. If control regions are misspecified, i.e. the region does not
carry any information about the technical variability across subjects, or worse yet, if the control regions are
inadvertently associated with the outcome of interest, the RAVEL correction may remove biological signals
of interest. In both cases, however, cross-validation using the concordance curves from the discovery-
validation scheme introduced in Section 2.7, allows the user to estimate directly the performance of RAVEL
on their dataset.

Another limitation is the use of nonlinear registration to align voxels across subjects. The registration step
is necessary to apply the voxel-wise linear models from Equation 1. Because patients with AD and MCI
have different volumes of WM, GM and CSF in comparison with healthy controls, misregistration error
might be associated with the outcome of interest. However, this is a problem inherent to any cross-subject
voxel analysis, and remains an active subject of research in image analysis. While voxels that are associated
with disease can be a consequence of differential misregistration, this does not change the results of the
present work, as misregistered voxels should be detected by intensity normalization method, after scan
effect correction. It may also be possible to approximate RAVEL corrections using mean values in reference
regions; indeed, in the ADNI the mean T1-w intensity in CSF after White Stripe correction was highly
correlated with the first RAVEL factor. Thus, in the case of the well-controlled ADNI protocol, adjusting
by regression on the mean in CSF would yield similar results. In cases where there is more heterogeneity
in acquisitions, and in imaging modalities that are more difficult to calibrate, additional RAVEL factors are
likely and using the mean in the reference region may not perform well.

A first extension of the presented methodology is to precede the RAVEL correction tool by a variant of
the White Stripe intensity normalization method. For instance, as used in [Sweeney et al., 2013], a whole-
brain z-transformation might be used instead, where the mean and scaling parameters are estimating using
all brain intensities. Subsequently, the RAVEL correction model can be applied using additional control
regions, and mask erosion could be performed to improve the homogeneity of the selected control regions.
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Although we have shown the performance of RAVEL in the context of T1-w MRI of the brain, RAVEL is
a promising scan effect correction tool for many imaging modalities, such as quantitative images, maps
derived from diffusion tensor imaging (DTI), functional imaging and many other modalities. Furthermore,
the choice of the control regions, left to the user, makes the method applicable to virtually any disease and
pathology. The RAVEL software can be found at https://github.com/Jfortin1/RAVEL.
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Drug Administration (FDA), private pharmaceutical companies and non-profit organizations, as a $60mil-
lion, 5-year public private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and University of
California San Francisco. ADNI is the result of the efforts of many co-investigators from a broad range of
academic institutions and private corporations, and subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed
by ADNI-GO and ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90,
to participate in the research, consisting of cognitively normal older individuals, people with early or late
MCI, and people with early AD. The follow-up duration of each group is specified in the protocols for
ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to
be followed in ADNI-2. For up-to-date information, see www.adni-info.org.
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Supplementary Figure S1. CAT plots (a) Like Figure 4b, but distinguish between RAVEL run on
intensities normalized by White Stripe (default) and RAVEL run on intensities normalized by histogram
matching. (b) Like Figure 4b, but for different numbers of unwanted factors in the RAVEL model. The
pink line is for RAVEL with 2 factors, and the grey lines represent RAVEL with 3 to 15 factors. We can
observe that the choice of 1 or 2 factors in the RAVEL model optimizes the replication of the voxels
associated with AD.
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Supplementary Figure S2. Voxel-level p-value maps from AD vs. healthy patient differential analysis
At each voxel, we computed a t-statistic for testing a difference in intensities between AD and healthy
patients. For each normalization method, we report the negative log p-values from the t-test. We include
at the top of the figure the template for anatomical reference.

25

Hosted by The Berkeley Electronic Press


	text.pdf.1446066932.titlepage.pdf.xs7Ul
	Introduction
	Materials and methods
	Study population
	Imaging sequences and preprocessing
	RAVEL methodology
	Estimation of the number of unwanted factors
	Comparison to intensity normalization methods
	Identification of voxels associated with clinical covariates
	Evaluating the replicability of the top voxels associated with AD
	Pseudo-ROC curves and enrichment curves

	Results
	RAVEL reduces inter-subject variability
	RAVEL improves replicability of large MRI studies
	RAVEL uncovers known regions associated with AD
	RAVEL-corrected intensities improve prediction of AD and MCI

	Discussion

