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Abstract

Case-cohort designs are increasingly commonly used in large epidemiological
cohort studies. Nan, Yu, and Kalbeisch (2004) provided the asymptotic results
for censored linear regression models in case-cohort studies. In this article, we
consider computational aspects of their proposed rank based estimating methods.
We show that the rank based discontinuous estimating functions for case-cohort
studies are monotone, a property established for cohort data in the literature, when
generalized Gehan type of weights are used. Though the estimating problem can
be formulated to a linear programming problem as that for cohort data, due to
its easily uncontrollable large scale even for a moderate sample size, we instead
propose a Newton-type iterated method to search for an approximate root for the
discontinuous monotone estimating function. Simulation results provide a good
demonstration of the proposed method.
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1 Introduction

Case-cohort designs have attracted much attention in statistics since they were proposed by

Prentice (1986) and their applications are increasingly common in the medical literature.

This type of designs are especially desirable for large epidemiological cohort studies with

few observed failures in which enormous resources may be required to ascertain some impor-

tant covariates. In case-cohort studies, data collection for censored individuals is reduced

dramatically by only measuring expensive covariates for a small sub-sample of the censored

individuals in addition to failures.

Methods of analyzing case-cohort data mainly are modifications of the standard Cox

regression approach (see e.g. Prentice, 1986; Self and Prentice, 1988; Barlow, et al., 1999).

Recently, Nan et al. (2004) proposed a semiparametric censored linear regression approach

to analyze case-cohort data and provided asymptotic results. The estimating procedure is

an extension of the rank-based analysis for full cohort data (see e.g. Tsiatis, 1990). The

linear model is desirable because its interpretation is much more straightforward than hazard

regression models. Due to the non-smoothness of the estimating equations, however, solving

those estimating equations tends to be much more challenging than searching for a root

of a smooth function (or a system of smooth functions). For full cohort data, Lin and

Geyer (1992) proposed a simulated annealing method to estimate the regression parameter.

Fygenson and Ritov (1994) established the monotonicity of the weighted estimating function

when Gehan weights are used. Lin et al. (1998) then noticed that solving the Gehan

weighted estimating equation is equivalent to an optimization problem formulated by linear

programming, and thus solvable by the simplex algorithm. Jin et al. (2003) considered using

linear programming in solving estimating functions with Gehan and other type of weights.

In this article, we investigate the global behavior of the estimating function proposed by

Nan et al. (2004) for case-cohort studies. In particular, we prove componentwise monotonic-

ity of the weighted estimating function with Gehan-type weights. As a result, we are able to

provide a linear programming formulation for the estimation of regression parameters. We

find, however, that the solvability of the linear programming problem for the estimation of

regression parameters depends largely on the capacity of a computer since the numbers of

unknown variables and of linear constraints are in the order of square of the sample size.

Usually the regression parameter has much lower dimension comparing to the sample size.
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We thus propose a Newton-type iterated method by approximating the slope in each itera-

tion and adjusting iteration rules based on the knowledge of monotonicity and discontinuity.

We call it a hybrid Newton-type method. The rest of the paper is organized as follows. In

Section 2, we introduce the rank based estimating function for the linear regression param-

eter in case-cohort studies. In Section 3, we introduce generalized Gehan-type weights and

show monotonicity of the corresponding weighted estimating function. We discuss the linear

programming formulation in Section 4, and propose the hybrid Newton-type method in Sec-

tion 5. We illustrate numerical implementations in Section 6 followed by a brief discussion

section where we discuss similar extensions to arbitrary weights as in Jin et al. (2003).

2 Estimating Functions for Linear Models

Let T be the monotonically transformed failure time with a known transformation, C be the

transformed censoring time with the same transformation. The log transformation is often

used in practice and the corresponding model is called the accelerated failure time model,

see e.g. Kalbfleisch and Prentice (2002). For subject i in the cohort, we only observe the

minimum of Ti and Ci, denoted as Xi ≡ Ti ∧ Ci, and the failure indicator ∆i ≡ I{Ti ≤ Ci}.
Let Zi be the d-dimensional covariate. The model of interest is:

Ti = β′0Zi + ei, i = 1, . . . , n, (2.1)

where n is the total number of individuals in the cohort. We assume that ei’s are independent

and identically distributed with an unknown distribution, and ei is independent of (Zi, Ci)

for all i.

When (Zi, Xi, ∆i) are observable for the entire cohort, Tsiatis (1990) introduced the

following estimating function for β0:

Sn(β,Wn) =
n∑

i=1

∫
Wn(u, β){Zi − Z̄(u, β)} dNi(u + β′Zi) (2.2)

where Ni(u + β′Zi) = I(Xi − β′Zi ≤ u, ∆i = 1) is the failure counting process for subject i

and

Z̄(u, β) ≡
∑n

j=1 ZjYj(u + β′Zj)∑n
j=1 Yj(u + β′Zj)

with Yj(u+β′Zj) = I(Xj−β′Zj ≥ u). The stochastic function Wn(u,β) is a weight process.

Apparently estimating function (2.2) is based on ranks of residuals Xi − β′Zi, i = 1, · · · , n,
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it is thus a step function of β in contrast to a nicely continuous estimating function in the

Cox model. When d = 1, the solution β̂ to equation Sn(β,Wn) = 0 is usually defined as a

zero crossing where Sn(β,Wn) changes sign.

Tsiatis (1990) showed that Sn(β,Wn) is asymptotically linear in a n−1/2-neighborhood of

the true value β0. Then the proof of asymptotic normality of β̂, the (approximate) root of

Sn(β,Wn), became straightforward. Ritov (1990) and Ying (1993) also studied the theory for

the same problem from different angles. The fact that Sn(β,Wn) is neither continuous nor

componentwise monotone in β in general, however, makes it difficult to solve Sn(β,Wn) = 0

numerically, especially when d > 1. The variance estimation is also difficult as its asymptotic

form involves the derivative of the hazard function of the error e in (2.1).

Fygenson and Ritov (1994) proved that if Wn(u,β) is taken to be the Gehan weight, i.e.,

Wn(u, β) =
∑n

i=1 Yi(u + β′Zi)/n, then

Sn(β) =
1
n

n∑
i=1

n∑
j=1

∆i(Zi − Zj)I(Xi − β′Zi ≤ Xj − β′Zj)

is monotone in each component of β. Notice that we dropped the argument Wn of Sn in the

above equation for the Gehan weight. It turns out that the above Sn(β) enables a linear

programming formulation (See e.g. Lin et al., 1998; Jin et al., 2003), thus makes the root

searching problem a standard optimization problem.

In a case-cohort study, we only observe complete data (Zi, Xi, ∆i) when subject i is

either a failure or a member of the subcohort that is a sub-sample of the entire cohort. Let

D denote the set of failures observed during the study period, and C denote the subcohort.

Note that the intersection of these two sets may not be empty. The subcohort C can be either

a simple random sub-sample or a stratified sub-sample of the entire cohort, corresponding

to a classical case-cohort design or a stratified case-cohort design discussed in Nan et al.

(2004). For either case, the proposed estimating function for β0 has the following form that

has a similar structure as the estimating functions proposed by Self and Prentice (1988) and

by Borgan et al. (2000) for hazard regression models:

S̃n(β,Wn) =
n∑

i=1

∫
Wn(u,β){Zi − Z̃(u, β)}dNi(u + β′Zi), (2.3)
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where

Z̃(u, β) =

∑n
j=1 ρjZjYj(u + β′Zj)∑n

j=1 ρjYj(u + β′Zj)

and ρj is a weight function for subject j. Let ηj be the subcohort membership indicator

variable for subject j, i.e. ηj ≡ I(j ∈ C). In the case that C is a simple random sub-sample,

ρj = n/n1 where n1 is the subcohort size. In the case that C is a stratified sub-sample

ρj = ηj/π(Z∗j), where P (ηj = 1) = π(Z∗j) is the probability of being selected into the

subcohort for subject j and Z∗ is a set of auxiliary variables available for all subjects in the

cohort. We assume that π(Z∗j) ≥ α > 0 for some small quantity α. Other types of weights

may also be considered, see e.g. Borgan et al. (2000). But we will focus on the above two

types of weights in this article. Apparently ρj ≡ 1 for all j yields an identical estimating

function in both (2.2) and (2.3).

Nan et al. (2004) proved that under certain regularity conditions, S̃n(β,Wn) is asymp-

totically linear in a n−1/2-neighborhood of the true value β0, and the estimator β̂ is asymp-

totically normal. The variance of β̂ can be estimated using the idea of Huang (2002).

Specifically, decompose the variance matrix of n−1/2S̃n(β,Wn) at β = β̂ (denoted by Σ(β̂) )

as Σ(β̂) = CCT , where C = (c1, . . . , cd); Then solve equations n−1/2S̃n(β̃j,Wn) = cj for β̃j,

j = 1, . . . , d. Let D = (β̃1 − β̂, . . . , β̃d − β̂). Then nDDT is a consistent variance estimator

of n1/2(β̂ − β0). Hence to obtain both β̂ and its variance estimator, we need to solve the

equation S̃n(β,Wn) = b many times for different constant vector b. Developing an efficient

and reliable numerical algorithm becomes crucial. To achieve the goal, we first show in the

following section that S̃n(β,Wn) is componentwise monotone in β if generalized Gehan-type

weights are used.

3 Generalized Gehan-type Weights and Monotonicity

Without loss of generality, we work on the case of one-dimensional covariate in this section.

Considering the two types of weights ρj introduced in the previous section, we can rewrite

S̃n(β, Wn) as

n∑
i=1

∆iW
β
n,i

{
Zi −

∑
j∈C ρjZjI(Xj − βZj ≥ Xi − βZi)∑

j∈C ρjI(Xj − βZj ≥ Xi − βZi)

}
,
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where we explicitly write W β
n,i to emphasize that Wn,i for subject i depends on β. Note

that the above statistic as a function of β depends on ranks of residuals Xi − βZi only for

i ∈ C ∪ D, the set of observations with complete data. Hence when β varies to β+, the

statistic changes whenever there is a change of ranks of residuals Xi − β+Zi comparing to

that of Xi − βZi, i ∈ C ∪ D.

Let us denote the id index for the ith order statistic of residuals Xi − βZi, i ∈ C ∪ D,

as (i)β, and the corresponding observed time, failure indicator, covariate, and subcohort

membership indicator as Xβ
(i), ∆β

(i), Zβ
(i), and ηβ

(i). Let R̃β
(i) be the risk set corresponding to

(i)β in the subcohort C. Then S̃n(β,Wn) can be written as

S̃n(β,Wn) =
∑

i∈C∪D
∆β

(i)W
β
n,(i)

{
Zβ

(i) − Z̃(i)(β)
}

, (3.1)

where W β
n,(i) = Wn(Xβ

(i) − βZβ
(i), β), and

Z̃(i)(β) =

∑
j∈C ρjZjI(Xj − βZj ≥ Xβ

(i) − βZβ
(i))∑

j∈C ρjI(Xj − βZj ≥ Xβ
(i) − βZβ

(i))
=

∑
j∈R̃β

(i)
ρjZj

∑
j∈R̃β

(i)
ρj

.

Note that under β, the ordered ids are {(1)β, · · · , (nC∪D)β}; and under β+, the ordered

ids are {(1)β+
, · · · , (nC∪D)β+}, where nC∪D is the size of C ∪ D. They may change as β moves

to β+. Suppose that for a small change in β, an interchange in ranks occurs only between

two neighboring order statistics of the residuals Xi−βZi, i ∈ C ∪D. Specifically, if (k)β and

(k + 1)β are interchanged, then we have

(j)β+
= (j)β, for j 6∈ {k, k + 1}, (3.2)

and

(k + 1)β+
= (k)β, (k)β+

= (k + 1)β. (3.3)

Since Xβ
(k+1) − βZβ

(k+1) ≥ Xβ
(k) − βZβ

(k), by (3.2) and (3.3) we have

Xβ
(k) − β+Zβ

(k) = Xβ+

(k+1) − β+Zβ+

(k+1) ≥ Xβ+

(k) − β+Zβ+

(k) = Xβ
(k+1) − β+Zβ

(k+1),

which imply that for this specific δ = β+ − β and the corresponding k,

δ(Zβ
(k+1) − Zβ

(k)) ≥ 0. (3.4)
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Now we consider the generalized Gehan-type weights,

W β
n,(i) = Gβ

n,(i) ≡
∑

j∈R̃β
(i)

ρj

∑n
j=1 ρj

=

∑
j∈R̃β

(i)
ρj

∑
j∈C∪D ρj

. (3.5)

The last equality holds since we must have ρj = 0 for all j 6∈ C ∪ D for a case-cohort study.

When ρj ≡ 1 for all j = 1, . . . , n, which implies that the subcohort C is actually the entire

cohort, they reduce to the Gehan weights. To simplify the notation, we omit the second

argument in the estimating function S̃n when the above Gehan-type weights are used, i.e.,

S̃n(β, Gn) ≡ S̃n(β). It is easily seen that S̃n(β) has a simpler form, and we can prove that

S̃n(β+)− S̃n(β) =
(
Zβ

(k+1) − Zβ
(k)

) (
∆β

(k+1)η
β
(k)ρ

β
(k) + ∆β

(k)η
β
(k+1)ρ

β
(k+1)

) / ∑
j∈C∪D

ρj . (3.6)

The detailed derivation is in the Appendix.

When δ = β+ − β > 0, i.e., β increases to β+, from (3.4) we know that

Zβ
(k+1) − Zβ

(k) ≥ 0.

Then from (3.6) we have S̃n(β+)− S̃n(β) ≥ 0. We thus conclude that, with the generalized

Gehan-type weights defined in (3.5), the estimating function S̃n(β) is always a non-decreasing

function of β.

4 Linear Programming

With the generalized Gehen’s weights defined in (3.5), from (3.1) we can write S̃n(β) as

S̃n(β)
∑

j∈C∪D
ρj =

∑
i∈C∪D

∆β
(i)

( ∑

j∈R̃β
(i)

ρjZ
β
(i) −

∑

j∈R̃β
(i)

ρjZj

)

=
∑

i∈C∪D
∆β

(i)

( ∑
j∈C∪D

ρjηjI
(
Xj − β′Zj ≥ Xβ

(i) − β′Zβ
(i)

)(
Zβ

(i) − Zj

)
)

=
∑

i∈C∪D

∑
j∈C∪D

∆iρjηjI
(
Xj − β′Zj ≥ Xi − β′Zi

)(
Zi − Zj

)
. (4.1)

We can see that the right hand side of equation (4.1) is the gradient of function

∑
i∈C∪D

∑
j∈C∪D

∆iρjηj

{
(Xj − β′Zj)− (Xi − β′Zi)

}+
,

6
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where {a}+ = max(a, 0). Since
∑

j∈C∪D ρj is a constant and S̃n(β) is non-decreasing in each

component of β, the above function is convex and can thus be minimized. Similar to Lin

et al. (1998) for cohort data, a minimizer of this function is a solution (or an approximate

solution) to S̃n(β) = 0, and can be achieved by solving the following linear programming

problem with unknown variables γij and β:

min
∑

i∈C∪D

∑
j∈C∪D

∆iρjηjγij, subject to

γij ≥ 0,

γij ≥ (Xj − β′Zj)− (Xi − β′Zi),

for all i, j ∈ C ∪ D. Again when C becomes the entire cohort, we have ρj = ηj = 1 for all

j = 1, . . . n, and the above optimization problem reduces to that for cohort data in Lin et

al. (1998), see also Kalbfleisch and Prentice (2002), Section 7.4.3.

Linear programming is a classical optimization problem with well developed algorithm

available, e.g. simplex method. But apparently the above linear programming problem

has n2
C∪D + d unknown variables γij and β = (β1, . . . , βd)′, and n2

C∪D linear constrains (not

including those non-negative constrains for γij). Even for a moderate sample size nC∪D, the

scale of the optimization problem can easily go beyond tens or hundreds of thousands. Thus

whether the problem is numerically solvable will largely depend on what computing facility

is available. For the time being, it is not feasible to use a regular PC to solve such a linear

programming problem with a sample size in the range of hundreds that is commonly seen in

practice.

Since the dimension of equation S̃n(β) = 0 is usually much lower than the sample size,

the linear programming creates too many unknown variables and thus does not seem to be

an efficient way of formulating the problem, though such a formulation is mathematically

beautiful. Considering the sparse coefficient matrix of the constrains, it may be possible to

develop an more computationally efficient algorithm for the above linear programming prob-

lem. We do not pursue along this line here. Instead, we propose a Newton-type algorithm

to solve S̃n(β) = 0 directly using the monotone property of the step function S̃n(β).

7
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5 The Hybrid Newton-Type Method

In this section, we propose a fast algorithm in obtaining a root of the estimating function for

a multiple censored regression model. We only consider the generalized Gehan-type weights.

Arbitrary weights will be discussed later in Section 7.

To illustrate the idea, we work with one-dimensional covariate first. For any give β, we

want to find out the two closest points around β, β− and β+ satisfying β− < β < β+, at

which the estimating function S̃n jumps. We know that as β varies, S̃n(β) may change only

if an interchange (or more interchanges) in ranks occurs between neighboring order statistics

of the residuals Xi − βZi, i = 1, · · · , n. We only need to consider neighboring interchanges

in ranks to obtain either β− or β+. Let β+ = β + δ+ and β− = β + δ−. Then δ+ is obtained

by

δ+ = min
k

{
εβ

(k+1) − εβ
(k)

Zβ
(k+1) − Zβ

(k)

: εβ
(k+1) > εβ

(k), Zβ
(k+1) > Zβ

(k),

∆β
(k+1)η

β
(k)ρ

β
(k) + ∆β

(k)η
β
(k+1)ρ

β
(k+1) 6= 0

}

=
εβ

(kδ++1)
− εβ

(kδ+)

Zβ

(kδ++1)
− Zβ

(kδ+ )

. (5.1)

Here we denote the corresponding k at which the minimizing is achieved by kδ+
. The last

two constrains are determined by equation (3.6), and the first constraint avoids the value of

β at which S̃n(β) jumps. Similarly δ− is obtained by

δ− = max
k

{
εβ

(k+1) − εβ
(k)

Zβ
(k+1) − Zβ

(k)

: εβ
(k+1) > εβ

(k), Zβ
(k+1) < Zβ

(k),

∆β
(k+1)η

β
(k)ρ

β
(k) + ∆β

(k)η
β
(k+1)ρ

β
(k+1) 6= 0

}

=
εβ

(kδ−+1)
− εβ

(kδ− )

Zβ

(kδ−+1)
− Zβ

(kδ− )

. (5.2)

Here we denote the corresponding k at which the maximizing is achieved by kδ− . Note that

δ+ > 0 and δ− < 0.

8
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From (3.6) we know that

S̃n(β + δ+)

= S̃n(β) +
(
Zβ

(kδ++1)
− Zβ

(kδ+)

)(
∆β

(kδ++1)
ηβ

(kδ+)
ρβ

(kδ+)
+ ∆β

(kδ+ )
ηβ

(kδ++1)
ρβ

(kδ++1)

) / ∑
j∈C∪D

ρj

= S̃n(β) + d+, (5.3)

and

S̃n(β + δ−)

= S̃n(β) +
(
Zβ

(kδ−+1)
− Zβ

(kδ− )

)(
∆β

(kδ−+1)
ηβ

(kδ− )
ρβ

(kδ− )
+ ∆β

(kδ− )
ηβ

(kδ−+1)
ρβ

(kδ−+1)

) / ∑
j∈C∪D

ρj

= S̃n(β) + d−. (5.4)

By (5.1) and (5.2) we have d+ > 0 and d− < 0.

Then we use the slope of the line formed by (β +δ−, S̃n(β +δ−)) and (β +δ+, S̃n(β +δ+))

as an approximation of the slope of S̃n at β. The updated β at (m+ 1)-th iteration can then

be expressed as

β(m+1) = β(m) − δ+(m) − δ−(m)

d+(m) − d−(m)
S̃n

(
β(m)

)
. (5.5)

Figure 1 illustrates the above iteration that is similar to the discretized Newton method.

From (5.1) - (5.5) we know that the slope is always positive. Hence we have that if βm)

is a point such that S̃n(β(m)) > 0, then β(m+1) < β(m), and vice versa. In a situation that

δ+(m) − δ−(m) is much bigger than d+(m) − d−(m), i.e. a very flat slope, the iteration may

end up with divergence. But we can well control this situation based on the monotonicity

of S̃n(β). Starting from the second iteration after choosing an initial value of β, β(0), if

β(m+1) obtained from (5.5) satisfies |S̃n(β(m+1))| ≥ max{|S̃n(β(m))|, |S̃n(β(m−1))|}, m ≥ 1,

then instead we update β by

β(m+1) =





β(m) + δ−(m)I(S̃n(β(m)) > 0) + δ+(m)I(S̃n(β(m)) < 0)
or

β(m) − S̃n(β(m))
(5.6)

whichever yields smaller |S̃n(β(m+1))|, or the first if both yields the same |S̃n(β(m+1))|. Here

the first option is to move the next β to the far end of the interval in which S̃n is a constant,

while the second option corresponds to the parallel-chord method with constant slope 1, see
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e.g. Ortega and Rheinboldt (1970). This is why we name the proposed method as the hybrid

Newton-type method. The initial value β(0) can be chosen from a parametric model. In the

analysis conducted in the next section, we choose lognormal error distribution for the linear

model (2.1). Sometimes the initial value can be far right or left, then either δ+ or δ− does

not exist by its definition in either (5.1) or (5.2). We then use the first option in (5.6) to

update β. We always use the order of index set of observed data to break ties in ranks if

they happen to appear.

For the multivariate case, we propose using a diagonal matrix with diagonal elements

determined by (5.5) to replace the Jacobian matrix in the Newton-Raphson method. Suppose

β = (β1, · · · , βd)′ ∈ Rd. Let

S̃n(β) = (S̃n1(β), · · · , S̃nd(β))′,

where the `th term in S̃n(β) is

S̃n`(β) ≡
n∑

i=1

∫
Gn(u, β){Zi` − Z̃·`(u,β)}dNi(u + β′Zi) (5.7)

with

Z̃·`(u,β) =

∑n
j=1 ρjZj`Yj(u + β′Zj)∑n

j=1 ρjYj(u + β′Zj)

For a given β, the slope of the `-th component S̃n`(β) to β` at β can be calculated as follows:

Let Xi` = Xi − β1Zi1 · · · − β`−1Zi,`−1 − β`+1Zi,`+1 · · · − βdZid and treat it as the Xi in the

univariate case. Then compute the slope as in (5.5) by

α` =
d+

` − d−`
δ+
` − δ−`

with d+
` , d−` , δ+

` and δ−` defined as in (5.1) - (5.4) for (β`, S̃n`(β)).

Note that with the Jacobian replaced by such a diagonal matrix, simultaneous updating

β in an iteration is equivalent to updating β1 through βd one at a time. A modification can

thus be imposed for divergence control by (5.6). The algorithm stops when the change in

each component of β is less than a pre-specified quantity (e.g., 10−5). To reduce the number

of unnecessary iterations, we also declare convergence when n−1/2S̃n`(β
(m)) is less than a

small quantity (e.g., 10−4) for all `. The method works well in our numerical examples.
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6 Numerical Examples

6.1 Simulations

We report on simulations for multivariate regressions to evaluate the algorithm and the finite

sample performance of the proposed estimator. Two different sample size of n = 500 and

n = 5000 are considered. The simulation settings are: Z1 ∼ N(0, 1), Z2 ∼ Bernoulli(p2),

error term ε follows the exponential distribution with mean 1, failure time T is from the

model T = β1Z1 + β2Z2 + ε, and censoring time C follows exp(C) ∼ Exponential(λ) where λ

is chosen so that the number of failures is about 100 under either n = 500 or n = 5000. We

choose p2 = 0.2, β1 = 1, and β2 = −1. In addition, we define the distribution of a surrogate

Z∗
2 of Z2 using η = P (Z∗

2 = 1|Z2 = 1) and ν = P (Z∗
2 = 0|Z2 = 0). We chose (η, ν) : (η, ν) ∈

{(0.7, 0.7), (0.9, 0.9)}. Thus Z∗ ∼ Bernoulli((1− ν)(1− pZ) + ηpZ). The subcohort is either

a simple random sample of the cohort or a stratified sample selected by the independent

Bernoulli sampling with selection probability π(Z∗
2) such that approximately equal numbers

of subjects are selected from the two strata: {Z∗
2 = 1} and {Z∗

2 = 0}. Due to the fact

that Z1 and Z2 are uncorrelated, we expect similar distribution of Z1 among the strata

{Z∗
2 = 1} and {Z∗

2 = 0}. Simulation results that compare the case-cohort studies and the

full cohort study are given in Table 1. The 90% quantile and range of the number of iterations

needed for convergence are also listed in the table. In all cases, the bias of the estimator

for β is negligible and the variance estimator performs well. Coverages are also satisfactory.

Stratification provides better efficiency, and higher correlation between the surrogate Z∗
2 and

Z2 leads to slightly higher efficiency. The program is written in R language. For n = 500,

The convergence criterion is either |β(m)| < 0.00001 or |n−1/2S̃n(β(m))| < 0.0001 where | · |
is the maximum norm. For n = 5000, The convergence criterion is either |β(m)| < 0.000001

or |n−1/2S̃n(β(m))| < 0.00001. More stringent criteria for convergence seems to have little

effect on results except number of iterations to converge.

6.2 Illustration of a Real Data Analysis

The specific data we consider in this article are from the prostate cancer study conducted by

investigators at the University of Michigan. The patients had carcinoma of the prostate and

were treated with radiation therapy between year 1987 and 2000. The endpoint of interest

is clinical recurrence (local recurrence or distant metastasis). For patients who received
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hormonal therapy as a salvage therapy, we also treat them as failures. Patients who were

free of clinical recurrence are considered to be censored at the last date of contact or at the

time of death from other causes. There are total 427 patients with 110 failures based on

the above definition. The median follow-up time was 47.5 months (ranged from 0.7 month

to 144.5 months). Among patients who experienced tumor recurrence, the median time to

event was 30 months (ranged from 0.7 months to 102 months).

The baseline covariates included in the model are the baseline prostate specific antigen

(PSA) value, Tumor stage, and Gleason score. The baseline PSA (bPSA) values have a

median value of 7.9 (ranged from 0.4 to 228.5). We transform bPSA by log(1+bPSA).

Tumor stage is a categorical variable with 3 levels: T1, T2, and T3-T4. There are 107

patients with T1, 262 with T2, and 58 with T3-T4. Gleason score ranged from 2 to 10 and

is treated as a continuous variable.

A censored linear regression model is fitted using this data and the results are tabulated

in Table 2. The full cohort method uses all subjects’ information while the simple random

sample (SRS) method takes a subcohort of size around 100 and the stratification (Strat)

method takes about equal number of subjects from T1, T2 and T3-T4 groups. The algorithm

takes 22 iterations for the full cohort analysis to converge, and 34 for SRS and 27 for Strat

to converge. All methods yield the same conclusion and their point estimates are similar to

each other. All covariates have significant effects on the time to tumor recurrence.

7 Discussion

For arbitrary weight function W β
n , a similar idea to Jin, Lin, Wei, and Ying (2003) applies.

Define a weighted estimating function for β by

∑
i∈C∪D

[
∆β

(i)

W β̃
n,(i)

Gβ̃
n,(i)

Gβ
n,(i)

{
Zβ

(i) − Z̃β
(i)

}]
,

where β̃ can be the generalized Gehan-type estimator. Again, it can be proved that the above

estimating function is componentwise monotone non-decreasing. Thus the corresponding

estimator of β can be obtained by the proposed hybrid Newton-type method.

12
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Appendix

Proof of (3.6)

To evaluate the difference between S̃n(β, Wn) and S̃n(β+, Wn), it helps to see how R̃β+

(i)

changes when β changes to β+. To simplify notation, we replace nC∪D by n and still keep

its meaning as the number of completely observed subjects.

Apparently,

R̃β+

(j) = R̃β
(j), for j 6∈ {k, k + 1}, (7.1)

R̃β+

(k) =
{
ηβ+

(k), η
β+

(k+1), η
β+

(k+2), · · · , ηβ+

(n)

}

=
{
ηβ

(k+1), η
β
(k), η

β
(k+2), · · · , ηβ

(n)

}

= R̃β
(k) = {R̃β

(k+2), η
β
(k), η

β
(k+1)},

R̃β+

(k+1) =
{
ηβ+

(k+1), η
β+

(k+2), · · · , ηβ+

(n)

}
= {R̃β

(k+2), η
β
(k)}, (7.2)

where

R̃β
(k+2) =

{
ηβ

(k+2), · · · , ηβ
(n)

}
.

To simplify the calculation, we use

Wn = Gn ·
n∑

j=1

ρj =
∑

j∈R̃β
(k)

ρj ,

which will not affect the conclusion since
∑n

j=1 ρj is a constant.

Now write S̃n(β,Wn) and S̃n(β+,Wn) as

S̃n(β, Wn) =
n∑

i=1

∆β
(i)

{ ∑

j∈R̃β
(i)

ρjZ
β
(i) −

∑

j∈R̃β
(i)

ρjZj

}
(7.3)

and

S̃n(β+,Wn) =
n∑

i=1

∆β+

(i)

{ ∑

j∈R̃β+

(i)

ρjZ
β+

(i) −
∑

j∈R̃β+

(i)

ρjZj

}
. (7.4)

Denote

C =
∑

i6∈{k,k+1}
∆β

(i)

{ ∑

j∈R̃β
(i)

ρjZ
β
(i) −

∑

j∈R̃β
(i)

ρjZj

}
(7.5)
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Then by utilizing the changes in risk sets and labels as listed in (3.2) - (3.3) and (7.1) - (7.2),

we can write S̃n(β,Wn) as

S̃n(β, Wn) = C + ∆β
(k)

{ ∑

j∈R̃β
(k+2)

ρj(Z
β
(k) − Zj) + ηβ

(k+1)ρ
β
(k+1)

(
Zβ

(k) − Zβ
(k+1)

) }

+ ∆β
(k+1)

∑

j∈R̃β
(k+2)

ρj

(
Zβ

(k+1) − Zj

)
. (7.6)

Similarly,

S̃n(β+,Wn) = C + ∆β+

(k)

{ ∑

j∈R̃β+

(k+2)

ρj(Z
β+

(k) − Zj) + ηβ+

(k+1)ρ
β+

(k+1)

(
Zβ+

(k) − Zβ+

(k+1)

) }

+ ∆β+

(k+1)

∑

j∈R̃β+

(k+2)

ρj

(
Zβ+

(k+1) − Zj

)

= C + ∆β
(k+1)

{ ∑

j∈R̃β
(k+2)

ρj(Z
β
(k+1) − Zj) + ηβ

(k)ρ
β
(k)

(
Zβ

(k+1) − Zβ
(k)

) }

+ ∆β
(k)

∑

j∈R̃β
(k+2)

ρj

(
Zβ

(k) − Zj

)
. (7.7)

Hence subtract (7.6) from (7.7), we obtain

S̃n(β+,Wn)− S̃n(β,Wn)

= ∆β
(k+1)η

β
(k)ρ

β
(k)

(
Zβ

(k+1) − Zβ
(k)

)
−∆β

(k)η
β
(k+1)ρ

β
(k+1)

(
Zβ

(k) − Zβ
(k+1)

)

=
(
Zβ

(k+1) − Zβ
(k)

)(
∆β

(k+1)η
β
(k)ρ

β
(k) + ∆β

(k)η
β
(k+1)ρ

β
(k+1)

)
.
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Table 1: Simulation Results Based on 200 Data Sets under the Model log T = β1Z1 +β2Z2 +ε
(β1 = 1, β2 = −1, pZ = 0.2)

Full SRS Strat1† Strat2‡

Sample size = 500, Failure≈ 100, Subcohort=100

Mean of β̂ (1.002, -0.996) (1.002, -1.020) (1.015, -0.997) (1.018, -0.993)

SE of β̂ (0.063, 0.118 ) (0.091, 0.212 ) (0.107, 0.185 ) (0.116, 0.181 )

Mean. (ŝe(β̂1), ŝe(β̂2)) (0.065, 0.118 ) (0.101, 0.218 ) (0.112, 0.192 ) (0.117, 0.183 )

95% CI cover β1. 95.5% 91% 96.5% 95.5%

95% CI cover β2. 93.5% 92% 95 % 94 %

iterations§ 14(2-25) 39(3-51) 14(3-22) 16(4-22)

Sample size = 5000, Failure≈ 100, Subcohort=250

Mean of β̂ (1.007, -1.004) (1.018, -1.004) (1.012, -0.983) (1.021, -0.999)

SE of β̂ (0.039, 0.058) (0.088, 0.130) (0.085, 0.147) (0.089, 0.129)

Mean. (ŝe(β̂1), ŝe(β̂2)) (0.040, 0.056) (0.090, 0.162) (0.088, 0.154) (0.103, 0.131)

95% CI cover β1. 96% 92.5% 94.5% 95%

95% CI cover β2. 94% 94.5% 93.5% 94.5%

iterations§ 18(3-25) 70(2 - 120) 21(5 - 34) 25(6-87)

§ 90% quantile and range of required iterations for convergence;
† Strat1 is stratified with η = ν = 0.7;
‡ Strat2 is stratified with η = ν = 0.9;

Table 2: Results for the prostate cancer study.

Parameter estimates (S.E.) under different sampling
Stage I Stage II log(1+bPSA) Gleason Score

Full 1.420 0.945 -0.579 -0.285
(0.254) (0.207) (0.127) (0.068)

SRS† 1.395 0.920 -0.663 -0.347
(0.354) (0.306) (0.193) (0.084)

Strat‡ 1.736 1.090 -0.511 -0.238
(0.160) (0.230) (0.295) (0.135)

† SRS with 100 subjects in subcohort;
‡ Strat is stratified with 43 subjects in the Tumor stage 1 group, 29 subjects in the Tumor
stage 2 group, and 29 in the Tumor stage 3 or 4 group.
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Figure 1: Numerical approximation of the slope used in the hybrid Newton method

(β     , (m) ~
S(β    ) )(m)

β(m+1)

~
S(β    )(m)

~S(β    )+d
−(m)

~
S(β    )+d
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β   + δ−(m) β + δ+(m)
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