University of Pennsylvania
UPenn Biostatistics Working Papers

Year 2016 Paper 45

Maximum Likelihood Based Analysis of
Equally Spaced Longitudinal Count Data with
Specified Marginal Means, First-order
Antedependence, and Linear Conditional
Expectations

Victoria Gamerman™ Matthew Guerra'

Justine Shults?

*Division of Biostatistics, University of Pennsylvania Perelman School of Medicine;
Boehringer-Ingelheim Pharmaceuticals, Inc., vica@mail.med.upenn.edu

TDivision of Biometrics III, OB, OTS, CDER, FDA, matthew.guerra@fda.hhs.gov

iDivision of Biostatistics, University of Pennsylvania Perelman School of Medicine,
jshults @mail.med.upenn.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/upennbiostat/art45
Copyright (©)2016 by the authors.



Maximum Likelihood Based Analysis of
Equally Spaced Longitudinal Count Data with
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Antedependence, and Linear Conditional
Expectations
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Abstract

This manuscript implements a maximum likelihood based approach that is ap-
propriate for equally spaced longitudinal count data with over-dispersion, so that
the variance of the outcome variable is larger than expected for the assumed Pois-
son distribution. We implement the proposed method in the analysis of two data
sets and make comparisons with the semi-parametric generalized estimating equa-
tions (GEE) approach that incorrectly ignores the over-dispersion. The simula-
tions demonstrate that the proposed method has better small sample efficiency
than GEE. We also provide code in R that can be used to recreate the analysis
results that we provide in this manuscript.
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1. Introduction

Longitudinal count data are often encountered in scientific studies. For
example, Thall and Vail (1990) analyzed repeated seizure counts on sub-
jects in a clinical trial. Common features of serial count data include intra-
subject correlation, due to similarity between the repeated measurements
on each participant, and over-dispersion, which occurs when the variance is
larger than expected for the assumed distribution of the outcome variable
(Efron, 1992). Poisson regression is often applied for analysis of count data,
but is usually not appropriate for longitudinal studies because it ignores
intra-subject correlations and over-dispersion. Generalized Poisson regres-
sion (Consul and Famoye, 1992) allows for both over- and under- dispersion,
but assumes independence of measurements.

In this paper we implement a maximum-likelihood based method for the
analysis of longitudinal count data with over-dispersion induced by the serial
correlation of measurements. Key assumptions of the approach include the
first-order Markov property and linearity of the expectations for the con-
ditional distributions, which are assumed to be Poisson. In addition, we
assume that the correlation between adjacent measurements on a subject is
constant.

The assumptions of the first-order Markov property, linearity in the con-
ditional expectations, and constant adjacent correlations have been shown
to induce a first-order autoregressive AR(1) correlation structure for the re-
peated outcomes on each subject (Guerra and Shults, 2014). The AR(1)
structure forces a decline in the intra-subject correlations with increasing
separation in time. Our method is therefore most appropriate for analysis of
equally spaced longitudinal count data with over-dispersion.

Other approaches for analysis of over-dispersed longitudinal count data
include semi-parametric approaches such as generalized estimating equations
(GEE) (Liang and Zeger, 1986). GEE is widely used because it does not
require specification of the full likelihood that can be quite complex for lon-
gitudinal discrete data. However, GEE does not account for over-dispersion.
In addition, the relative ease of application of GEE for discrete data can
also be a potential limitation for the approach. When only the first two mo-
ments of the distribution of the outcome variable are estimated, as they are
for GEE, it is possible to obtain estimates that are not compatible with any
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valid parent distribution. As cautioned by Molenberghs and Kenward (2010),
“the parent provides a natural description of the framework into which the
semi-parametrically specified parameters fit. The implication is that such
semi-parametric methods as GEE1, GEE2, ALR, etc. can always be applied
because there is always a valid parent, and hence a probabilistic basis.”

We make comparisons with GEE because GEE is widely used for analysis
of longitudinal discrete data. We also use GEE to obtain starting values for
estimation. However, we confirm that the GEE based starting values satisfy
constraints that are sufficient to ensure the existence of a valid parent distri-
bution. We conduct simulations for moderately sized samples to demonstrate
that when the likelihood is correctly specified, we have improved efficiency
in estimation of the regression and correlation parameters for our approach
relative to GEE.

Another model for longitudinal count data is the class of generalized linear
mixed-effects models that incorporate random effects in the linear predictor.
However, the implementation of likelihood based methods that involve ran-
dom effects can be computationally challenging (p. 75, Fitzmaurice et al.
2008). In addition, in contrast to GEE, for mixed models it is not straight-
forward to specify a particular working correlation structure for the repeated
measurements on subjects. For example, the AR(1) correlation structure
is not among the covariance models that were suggested by Thall and Vail
(1990). Mixed-effects models are typically employed when the goal is to
estimate effects that are subject specific, because the analysis results are
conditional on the random effects (Gardiner, Lou, and Roman, 2009).

In general, likelihood based approaches like the one we implement in this
paper enjoy several general advantages. Unlike semi-parametric approaches,
they yield an estimated likelihood that can be used to conduct likelihood
ratio tests and to compare the fit of nested models using criteria such as the
Akaike information criterion (AIC) (Akaike, 1974) and Bayesian information
criterion (BIC) (Schwarz, 1978). Maximum likelihood estimators are also
most (asymptotically) efficient among a wide class of estimators (Serfling,
2011) when the distribution is correctly specified. Our method in particular,
allows for specification of the usual model for the marginal mean for Poisson
data, while also accounting for over-dispersion and serial correlation in the
data via the induced AR(1) correlation structure.

In Section 2 we discuss the notation, model assumptions, the likelihood
and likelihood equations. In Section 3 we discuss an application of the meth-
ods followed by simulation studies in Section 4. We conclude with a discus-
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sion in Section 5.

2. Methods

2.1. Notation and Model Assumptions

The data comprise realizations y;; of ordered discrete random variables Y;;
that are measured on subject ¢ at time ¢;; (1 = 1,...,mand j =1,...,n;).
Associated with each y;; is a vector of explanatory variables (covariates)
xij = (i1, . .. ,x,;jp)'. The expected value of measurement Y;; on subject ¢ is
given by

E(Yy) = i = Aij, (1)

and the variance by var(Yy;) = o7,

We assume that observations on different subjects are independent. Fur-
ther, the measurements within subjects are correlated with a structure that
depends on parameter «. Let cov(Yj;,Yis) represent the covariance and
corr(Y;;, Yi) represent the correlation between Y;; and Y.

We make three assumptions. First, we assume first-order antedependence,
such that each Y;;, given the immediate antecedent Y;;_;, is independent of
all further preceding variables (Gabriel, 1962). The joint probability mass
function of Y;,...,Y),, can then be expressed as

P(Y;l = yz‘hYb =Yi2,--- ,Y;ni = yml) =

2
P(Yil = yz’l)P(Ym = yi2|Yil = yil) e 'P(Ymi = Yin; ( )

Yin-1 = ym—l)-

First-order antedependence is also referred to as the first-order Markov prop-
erty in the literature (Feller, 1968, p. 419).

Second, we assume that the correlation between adjacent measurements
on a subject is constant, implying that

corr(Y;;, Yij—1) = «

where e =1...,m and j = 2,...,n;. Third, we assume that the conditional
expectation of Y;; given Yj;_; is a linear function of Y;;_;, such that

E(Y, | Yij—1) = a;; + b;; Y51,

fori=1...,mand j=2,...,n;.
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These three assumptions imply the following results. From Theorem 2.1
of Guerra and Shults (2014), the conditional expectation is given by

E (Yij|Yij-1) = pij + aoij/oij1 (Yij1 — pij-1), (3)
where p;; = E(Yy;), a = corr(Yi;-1,Y;;), 02 = var(Y;;), and
1
oy = T Bvar(Yy [ Yi-1)), (4)
o
where i =1,...,mand j =2,...,n;.

Next, from Theorem 2.2 of Guerra and Shults (2014), the correlation
corr(Y;;, Yijyt) between Y;; and Y;; 1, for £ > 0 can be expressed as

corr(Yyy, Yijpe) =[] corr(Vy, Vi)

= .

The induced correlation structure for (Y, ...,Y;,,) is therefore an AR(1)
structure.

This AR(1) structure is plausible for longitudinal data because it requires
the correlation between measurements on a subject to decline with increasing
separation in time. For example, if @ = 0.5, then the correlation between
the 1st and 2nd measurements is 0.5, while the correlation between 1st and
3rd measurements is (0.5)? = 0.25.

2.2. Poisson Likelihood
We assume Poisson distributions for the marginal and conditional dis-

tributions in Equation 2. For each ¢ = 1,...,m, the distribution of Yj; is
Poisson with ;1 = A1 = exp (¢/,3) and ;12 = \;1, where 3 is a p x 1 vector
of regression parameters. Then, for j = 2,...,n;, the conditional distribution

of Y;; given Y;;_; is Poisson with conditional mean E (Y;;|Y;;_1) = ;" given
by Equation 3, with

Hij = Aij = €xp (95;]-5) ) (5)
and
o> = Nij/ (1 —a?), (6)
5
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for j=2,...,n;and ¢ =1,...,m. The Y;; are over-dispersed relatlve to the
Poisson distribution if j > 2 and a # 0, because in this case 0,2 = ¢ij\ij,
where ¢;; > 1.

The likelihood can then be expressed as

L(B,a) = ﬁP(Yh = yi)P(Yie = yuo|Yir = wir) - - - P(Yin, = Yin; |Yin—1 = Yin—1)
_ ﬁ exp(—)\il‘)/\ily“ ﬁ exp(—)\ij*)'()\ij*)y”
i1 Yi1- i Yij-
= ﬁ exp (yaln(Ni1) — Nin — In(ya!)) ﬁ exp (yiIn(Ai;™) — A" — In(yy,!)) -
=1 j=2
Taking the natural logarithm then yields the log-likelihood,
In (L Zm: (Y0 — exp(0i) — In(ya!)) + Z Yij0i;" — exp(6i;7) — In(y;;!))
i=1

where ;1 = In(\;1) =z}, 8 and 0;;° = In(\;;").

The following constraints must be satisfied in order for the constructed
likelihood to be valid: (1) A;; >0 (7 =1,....n;); (2) -1 <a <1 (j=
2,...,m;), in order to achieve a positive-definite correlation matrix; and (3)
Nij — a0y /0ii—1(Nij—1) >0 (j = 2,...,n;) (Guerra and Shults, 2014).

2.3. Likelihood Equations

To obtain maximum likelihood estimates of S and «, we need to obtain
simultaneous solutions to the following estimating equations for § and «,
respectively:

Oln (L(ﬂ, Oz)) it e - 8921 U . aem*
BY >y - (yin — exp(fi1) +Z Yi; —exp(0;;7)) 93 (7)
=
and
dn (L(B,a)) _ = i 00,;*
fa = 2l eweln) 5 + 2 (s~ xp(0y7) 5, 6)
DR
6
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The derivatives are provided in Appendix A. We maximized the likelihood
using an adaptive barrier algorithm as implemented in the constrOptim
function in R (R Core Team, 2014). We applied the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization method by Broyden (1970), Feltcher
(1970), Goldfarb (1970), and Shanno (1970a, 1970b), which is implemented
in constrOptim when the gradient is provided.

The following algorithm summarizes our estimation procedure for a par-
ticular model:

1. Choose initial estimates (starting values) of a and /. Starting values
can be obtained using GEE to fit a Poisson model with an AR(1) cor-
relation structure; however, we should check that the starting values
satisfy the constraints (Section 2.2). If the estimates violate the con-
straints, change the starting values by choosing a value for a that is
closer to zero or by applying Poisson regression, which is equivalent to
assuming that a = 0.

2. Obtain solutions to the likelihood equations 7 and 8 using the adaptive
barrier algorithm that is implemented in the R package constrOptim.
R code for the log likelihood function and for the gradient function,
both of which are implemented in the Application, are provided in
Appendix B.

2.4. Asymptotic Distribution of the Estimators

If the model is correctly satisfied and standard regularity conditions are
satisfied, the ML approach described here will yield estimates that are consis-
tent and asymptotically normal. Let § = (3, a)” and the maximum likelihood
estimators 6 = (B ,&)T. We estimated the asymptotic covariance matrix of
0 with the observed information (i(d))~' that we estimated using the in-
verse of the negative Hessian matrix, which is defined in Appendix A and
implemented in Appendix B.

3. Application

3.1. Doctor visits data

Here we consider an analysis of a subset of data from the German Socio-
Economic Panel data (Winkelmann, 2004) that we obtained within Stata
(http://www.stata-press.com/data/r14/drvisits) and then exported for
analysis in R (StataCorp, 2013). Here we compare the results of an analysis
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using the proposed ML approach with the results obtained using Poisson
regression and GEE.

The goal of the analysis was to assess the impact of the 1997 health re-
form on the reduction of government expenditures. A sample of 1518 women
who were employed full time in the year before or after the reform was im-
plemented were evaluated. The outcome we considered was the self-reported
number of doctor visits in the three months prior to the interview. The
main covariate of interest was an indicator variable that took value 1 if the
interview took place after the reform was implemented (or took value 0 other-
wwise). Additional covariate information was available on each participant’s
age, education, marital status, self-reported health status, and the logarithm
of household income. Of the 1518 women in the dataset, 709 were inter-
viewed both before and after the reform was implemented; 391 were only
interviewed before; and 418 were only interviewed after the reform went into
effect. This resulted in a total of 2227 observations available for the analysis.

We assumed Equation 5 with the following linear predictor:

xij = Bo + Bi1i; + Bawoij + B3xzi; + BaTaij + Bsxsij + Beeij

where z;;; was the indicator variable for health care reform (1 if after im-
plementation; 0 if before), z;;o was age in years, z;;3 was education in years,
x;;4 was marital status (1 if married; 0 if not married), z;;5 was self-reported
health status (1 if bad; 0 if not bad), and z;;s was the logarithm of household
income.

We first fit the above model using Poisson regression as implemented in
the glm function in R; the results are provided in Table 1. Among women
with the same household income, marital status, self-reported health, and
education, there was a reduction in the log count of doctor visits of 0.140
after health care reform was implemented (p < 0.0001).

Next, we used the geeglm function in R to implement GEE with an
assumed AR(1) working correlation structure; the results are shown in Ta-
ble 1. As for Poisson regression, there was a significant reduction in the log
count of doctor visits (Bl = —0.123,p = 0.0202). The estimated correlation
parameter was 0.213.

When we fit the GEE model we assumed that the scalar parameters ¢;; =
¢ =1V i, 5. After fitting GEE, we assessed the adequacy of this assumption
by obtaining an estimate of ¢ based on the final GEE estimates of :
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1 <~ Zi(B)' Z:(B)
Ezz: n; ’

=1

b =

where Zl(,@) is the n; x 1 vector of Pearson residuals Zzy(:@) with z;; (B) =

% The estimated ¢ was ngS = 4.33, which is much greater than 1 and was
therefore suggestive of over-dispersion in the data.

Lastly, we fit the proposed ML approach using the algorithm for estima-
tion described in Section 2.3. We obtained starting values for our approach
using GEE, after first confirming that & satisfied the necessary constraint to
guarantee a valid parent distribution, which in this case was & < 0.4494.

Table 1 shows the results for the ML approach. The estimated correlation
parameter was 0.313 with a 95% confidence interval of (0.272, 0.354). Al-
though not customary for longitudinal data, a likelihood ratio test of the
null hypothesis @ = 0 resulted in a p-value < 0.0001. After adjusting
for the correlation among the counts of doctors visits, for over-dispersion,
and for the other covariates, we again found that there was a significant
impact of initiation of health care reform on the number of doctor visits
(B; = —0.113,p < 0.0001).

Overall, the parameter estimates were similar for the proposed ML ap-
proach, GEE, and the Poisson regression. While the impact of age was
similar across the approaches, it was significant in both the ML and Poisson
approaches but not significant in the GEE model (ML p = 0.0005, GEE
p = 0.1182, and Poisson p = 0.0008). Similarly, the logarithm of household
income was significant in both the ML and Poisson approaches but not sig-
nificant in the GEE model (ML p < 0.0001, GEE p = 0.0809, and Poisson
p < 0.0001).

With estimates of the log-likelihood for Poisson regression and the pro-
posed ML approach, it was possible to calculate the AIC and BIC criteria as
measures of the relative quality of the models for this set of data. Both BIC
and AIC incorporate a penalty term for the number of parameters used in
the model because it is possible to increase the numerical value of the like-
lihood solely by including additional parameters in the model, which may
result in over-fitting the model to the data. This penalty term is larger in
the BIC as compared to the AIC. For the Poisson regression model, the AIC
and BIC values were 11899 and 11939, which were both greater than the
AIC and BIC values for the ML approach (AIC = 11707 and BIC = 11746),
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which indicates that the ML approach had improved model fit over Poisson
regression.

3.2. Epilepsy seizure data

Here we implement the proposed ML method and GEE for analysis of the
epilepsy seizure data (Thall and Vail, 1990; Farewell and Farewell, 2013).
We do not demonstrate the application of Poisson regression as we did in
the previous section. However, results for Poisson regression confirmed the
selection of the more general model that we obtained for the proposed ML
approach.

We assumed Equation 5 with the following linear predictor:

5[;2]5 = 50 —+ 61xij1 —+ ﬁQZL‘ijQ + 531’,']‘3 + 541'1‘]‘47 (9)

where z;;; represents an indicator for treatment, x;j» represents baseline
seizure count (number of seizures in the 3 month time period prior to the
start of the study), x;;3 represents subject age in years, and x;;4 represents
two-week time period (coded as 1,2,3,4). We initially included a time period
by treatment interaction term, but the interaction term was not significant
for the proposed approach or for GEE (both p-values > 0.05); we therefore
initially focused on the simpler model 9 for this demonstration.

Table 2 shows the sample mean and variance of seizure counts at baseline
and the four subsequent two-week periods (denoted as Y1 through Y4) for
the placebo and drug groups for the seizure counts; it also displays the sample
mean and variance of age at baseline. From the table, the sample variance
for the outcome variables, Y1 through Y4, were greater than their respective
means, which suggested that there was over-dispersion in the seizure counts.

Table 3 shows the results of the analysis. The estimates were similar for
the proposed ML method and GEE. The estimate of treatment was negative
for both approaches, which suggested that the number of seizures was lower
for subjects in the treatment group. However, treatment only differed sig-
nificantly from 0 for the proposed ML approach (p = 0.0127 for ML versus
p = 0.3014 for GEE). In addition, time period only differed significantly from
0 for the proposed ML approach (p = 0.0031 for ML versus p = 0.0580 for
GEE).

The likelihood ratio test of the hypothesis that the regression parameter
for time period is 0 also suggested that time period should be retained in the
model for the proposed ML approach (p = 0.0030.) However, since the GEE

10
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analysis suggested that time period might not be important, we removed
time period from the model for both GEE and the proposed ML approach.
As shown in Table 4, treatment differed significantly from 0 for the proposed
ML approach, but was not significant for GEE (p = 0.0121 for ML versus
p = 0.2977 for GEE).

We next compared the AIC and BIC for the models that included and
excluded time period. As shown in the Tables, both the AIC and BIC values
were smaller for the larger model that included time period. The respective
AIC and BIC values were 1566 and 1579 for the larger model, versus 1573
and 1583 for the smaller model. The AIC and BIC values indicated that the
fit was superior for the larger model, which lent additional support for the
larger model with its significant treatment and time period effects.

4. Simulation Studies

In the previous section we identified significant treatment effects for the
proposed ML approach that were not observed for GEE. Since the results de-
pended on choice of approach, it was of interest to compare the performance
of the methods for finite samples. We therefore performed simulations to as-
sess the properties of the estimators of o and 3 for the proposed ML approach
and GEE.

4.1. Set-up
We compared the performance of the ML and GEE estimators for

xi; B = Bo + Prvijy + Batije + Batijs, (10)

where the z;;; were defined in the previous section.

The results shown here are based on R = 1000 simulation runs, equal
group sizes m/2, f = (0.4467,—0.1659,0.0232,0.0258)" (based on GEE es-
timates), and n; = 4 measurements per subject. For this scenario, the cor-
relation must satisfy the constraint a < 0.707 (see Section 2.2) to ensure
the existence of a valid parent distribution. We specified values of a €
{0.2,0.4,0.6,0.7}.

Covariates were simulated based on the observed epilepsy seizure data in
the previous section. Treatment was specified as present (equal to 1) for one
group and as absent (equal to 0) for the other group. Baseline seizure count
was simulated from a Poisson distribution with a random seed and mean

11
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= 31.22 based on the mean baseline age from the epilepsy data. Similarly,
age was simulated from a normal distribution based on the epilepsy data
for which the minimum age was 18, the mean was 28.3, and the standard
deviation was 6.261. Simulated age values below 18 were discarded and the
next simulated age value was assigned. Age was then rounded to a whole
number, as it was recorded in the epilepsy data.

The approach proposed by Guerra and Shults (2014) was used to simulate
the correlated Poisson seizure counts with specified means, over-dispersion,
and AR(1) correlation structure.

4.2. Assessments

We wrote code in R to evaluate mean square error (MSE), percent bias,
small sample efficiency, and 95% coverage probabilities using the observed
information matrix. The mean square error (MSE) for estimator 6 is defined

as
1 ER: R
— (6 — 02-)2,
R =1

where 6 is the true value. The percent bias for estimator 0 is defined as

1 & A
{EZ(H - ei)/e} % 100.

i=1

Lastly, to evaluate the coverage probabilities, a 95% confidence interval was
computed for each parameter estimate within each simulation run. The cov-
erage probabilities represent the proportion of the R simulation runs in which
the true parameter fell within the 95% confidence bounds. GEE coverage
probabilities were computed similarly using the naive variance estimates ob-
tained from geeglm in R.

4.3. Results

Table 5 displays the MSE and Table 6 displays the percent bias for the
simulations. For the ML method, the MSE for B and & and the percent bias
for & decreased as m increased.

As compared to GEE, the ML approach had lower MSE and percent
bias for all sample sizes for a. For B, the percent bias was similar for ML
and GEE; however, the MSE was slightly smaller for ML than for GEE. For
scenarios with high correlation (v = 0.6 or 0.7), the intercept and treatment

12
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estimates, BO and Bl, had smaller MSE and percent bias for the proposed
ML approach than for GEE, for all samples sizes.

Table 7 then displays the estimated coverage probabilities. With respect
to [, the coverage probabilities were similar for the ML and GEE approach
and were close to the nominal 95% level. With respect to &, the ML approach
model-based coverage probabilities were close to the nominal 95%, which
outperformed the GEE approach, whose model-based coverage probabilities
were below the nominal 95% level. Coverage probabilities for o were better
for the ML based approach than GEE across all sample sizes and correlations
(a=10.2,0.4,0.6,0.7).

5. Discussion

We proposed an ML approach for analysis of equally spaced longitudinal
count data that accounts for intra-subject correlation of measurements and
over-dispersion. Our application of the ML approach and GEE demonstrated
that the results of the analysis differed between approaches, with significant
treatment differences observed for some models for the ML approach, but not
for GEE. The availability of the AIC and BIC criteria for the ML approach
was useful for selecting between nested models. The interested reader can
replicate our analyses using code in R that we provided in Appendix B.

Our simulations demonstrated that the ML approach was similar to or
slightly outperformed GEE with respect to MSE, bias, and coverage proba-
bilities, especially for higher values of the correlation (for B) That the ML
approach outperformed GEE for larger values of the correlation was not sur-
prising. We assumed over-dispersion that was induced by a and that was
greater for larger values of a. For a = 0 the assumed models for the marginal
means and correlations would have been identical for the ML approach and
GEE. That the differences between the two approaches were greatest for
larger values for the correlation was therefore to be expected.

However, there are some limitations to the proposed ML approach that
should be acknowledged. First, we assumed that the adjacent correlations on
subjects are constant, which may not be plausible for data that are unequally
spaced in time. In addition, although the proposed approach accounts for
over-dispersion in the distribution of Yj; for j = 2,...,n;, it assumes that Yj;
is distributed as Poisson. The proposed approach therefore does not account
for over-dispersion in the first measurements on each subject.

13
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Table 1: Estimated parameters from the ML, GEE, and Poisson models in the analysis of

the doctor visits data.

ML Approach (AIC = 11707; BIC = 11750)

Coefficients:
Parameter  Estimate Std.err Wald Pr(> |W])
(Intercept) -0.461 0.2811 2.69 0.1008
Reform -0.113  0.0241 21.99 < 0.0001
Age 0.005 0.0014 12.22 0.0005
Education -0.008  0.0064 1.54 0.2153
Marital Status 0.026  0.0294 0.75 0.3855
Health Status 1.100  0.0313 1238.28 < 0.0001
Log Income 0.150 0.0376 15.83 < 0.0001
Correlation Parameters:
Parameter  Estimate Std.err
alpha 0.313  0.0208
GEE Approach
Coefficients:
Parameter  Estimate Std.err Wald Pr(> |W])
(Intercept) -0.381  0.5766 0.44 0.5083
Reform -0.123  0.0529 5.40 0.0202
Age 0.005 0.0033 2.44 0.1182
Education -0.009 0.0118 0.61 0.4349
Marital Status 0.038 0.0698 0.30 0.5822
Health Status 1.105 0.0873  160.23 < 0.0001
Log Income 0.139 0.0798 3.05 0.0809
Correlation Parameters:
Parameter Estimate Std.err
alpha 0.213 0.0238
Poisson Regression (AIC = 11899; BIC' = 11942)
Coefficients:
Parameter  Estimate Std.err z value Pr(> |z|)
(Intercept) -0.414 0.2691 -1.54 0.1242
Reform -0.140  0.0265 -5.28 < 0.0001
Age 0.004  0.00¥3 3.35 0.0008
Education -0.011  0.0060 -1.78 0.0743
Marital Status 0.041 0.0278 1.49 0.1375
Health Status 1.133  0.0303 37.40 < 0.0001
Log Income 0.149  0.0360 4.14 < 0.0001
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Table 2: Mean and variance for the placebo and treatment groups.

Variable Placebo! Drug' Total

(n=28) (n=31) (n=59)
Y1 9.86 (102.8) 8.58 (332.7) 8.95 (220.2)
Y2 8.29 ( 66.6) 8.42 (140.7) 8.36 (103.8)
Y3 8.79 (215.2) 8.13 (192.9) 8.44 (200.2)
Y4 7.96 ( 58.2) 6.71 (126.8) 7.31 (193.1)
Baseline 30.79 (681.2) 31.61 (782.9) 31.22 (722.5)
Age 29.00 ( 36.0) 27.74 ( 43.6) 28.34 (1 39.7)

T Values in the table represent the mean (variance).
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Table 3: Estimated parameters from the GEE and ML approaches for analysis of the
epilepsy data when Period is included in the models.

ML Approach (AIC = 1566; BIC = 1579)

Coefficients:
Parameter  Estimate Std.err Wald  Pr(> |W))
(Intercept) 0.6569  0.1958 11.26 0.0008
Treatment -0.1668  0.0667 6.26 0.0124
Baseline 0.0232 0.0007 1111.24 < 0.0001
Age 0.0238  0.0056 17.94 < 0.0001
Period -0.0634  0.0215 8.72 0.0032

Correlation Parameters:
Parameter Estimate Std.err
alpha 0.416 0.0334
GEE Approach

Coefficients:
Parameter  Estimate Std.err Wald  Pr(> |W])
(Intercept) 0.5855  0.3491 2.81 0.0936
Treatment -0.1642  0.1589 1.07 0.3014
Baseline 0.0232 0.0012  350.97 < 0.0001
Age 0.0263 0.0118 4.95 0.0261
Period -0.0644  0.0340 3.59 0.0580

Correlation Parameters:
Parameter Estimate Std.err

alpha 0.551  0.0656
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Table 4: Estimated parameters from the GEE and ML approaches for analysis of the
epilepsy data when Period is not included in the models.

ML Approach (AIC = 1573; BIC = 1583)

Coefficients:
Parameter  Estimate Std.err Wald  Pr(> |W))
(Intercept) 05072 0.1804  7.17 0.0074
Treatment -0.1673  0.0667 6.30 0.0121
Baseline 0.0232  0.0007 1113.57 < .0001
Age 0.0238  0.0056 17.99 < .0001

Correlation Parameters:
Parameter Estimate Std.err

alpha 0.423 0.0342
GEE Approach

Coefficients:
Parameter  Estimate Std.err Wald  Pr(> |W])
(Intercept) 0.4467  0.3621 1.52 0.2174
Treatment -0.1659  0.1593 1.09 0.2977
Baseline 0.0232 0.0012  353.32 < .0001
Age 0.0258 0.0117 4.86 0.0275

Correlation Parameters:
Parameter Estimate Std.err

alpha 0.544 0.0639
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Table 5: Small sample efficiencies for evaluating the AR(1) correlation structure for varying
values of a and sample size per group.

Mean squared error using ML

I S ol
60 0.2 1000 | 0.056 0.355 0.297 0.291 0.609
0.4 1000 | 0.088 0.503 0.427 0.445 0.505
0.6 1000 | 0.127 0.803 0.642 0.619 0.308
0.7 998 1 0.132 0.908 0.716 0.656 0.171
120 0.2 1000 | 0.029 0.176 0.138 0.137 0.305
0.4 1000 | 0.040 0.254 0.203 0.194 0.236
0.6 1000 | 0.054 0.381 0.291 0.294 0.124
0.7 1000 | 0.067 0.489 0.349 0.325 0.067
300 0.2 1000 | 0.010 0.071 0.057 0.054 0.111
0.4 1000 | 0.016 0.101 0.084 0.078 0.080
0.6 1000 | 0.025 0.153 0.121 0.118 0.047
0.7 1000 | 0.029 0.174 0.144 0.140 0.023

Mean squared error using GEE

P N L Al
60 0.2 1000 | 0.057 0.355 0.300 0.290 0.668
0.4 1000 | 0.089 0.516 0.427 0.450 0.701
0.6 1000 | 0.137 0.852 0.703 0.653 0.571
0.7 1000 | 0.160 1.133 0.883 0.795 0.424
120 0.2 1000 | 0.029 0.176 0.139 0.138 0.340
0.4 1000 | 0.040 0.260 0.204 0.198 0.334
0.6 1000 | 0.062 0.415 0.327 0.325 0.240
0.7 1000 | 0.083 0.595 0.435 0.402 0.178
300 0.2 1000 | 0.010 0.072 0.058 0.054 0.128
0.4 1000 | 0.017 0.103 0.085 0.079 0.124
0.6 1000 | 0.027 0.162 0.132 0.129 0.093
0.7 1000 | 0.036 0.211 0.182 0.176 0.066

Note: The true correlation structure is AR(1).
There are equal sample sizes of % per group and

0 OB O IARRNIGS . Bae)’ :£ 4467, —0.1659, 0.0232, 0.0258)’;
[1]True value by a factor of 10%; [2]True value by a factor of 10%;
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Table 6: Percent bias for evaluating the AR(1) correlation structure for varying values of
«a and sample size per group.

Percent bias using ML

m o R* Bo B B2 B3 &
60 0.2 1000 | 2.57 0.53 -0.61 -0.53 9.41
0.4 1000 | 6.33 -0.42 -1.15 -2.31 5.15
0.6 1000 | 1.95 0.05 -095 0.27 2.65
0.7 998 | -221 271 0.72 1.21 0.69
120 0.2 1000 | -0.04 0.14 0.07 0.20 5.30
0.4 1000 | 2.25 -0.52 -0.57 -0.65 2.74
0.6 1000 | 0.43 -0.79 0.08 -0.13 1.39
0.7 1000 | 2.00 0.15 -0.01 -1.04 0.17
300 0.2 1000 | 0.68 -0.18 -0.57 0.22 2.83
0.4 1000 | 0.85 -0.29 -0.16 -0.25 1.31
0.6 1000 | 1.91 -0.38 -0.30 -0.75 0.53
0.7 1000 | 1.47 -0.29 -0.14 -0.63 -0.03
Percent bias using GEE
m a R* Bo B B2 B3 Q
60 0.2 1000 | 2.48 0.54 -0.60 -0.49 10.94
0.4 1000 | 6.26 -0.34 -1.10 -2.29 6.06
0.6 1000 | 1.88 0.64 -0.90 0.45 4.86
0.7 1000 | 0.60 1.87 -0.28 0.84 4.60
120 0.2 1000 | -0.22 0.07 0.13 0.24 6.19
0.4 1000 | 1.95 -0.51 -0.40 -0.64 2.89
0.6 1000 | 0.16 -1.05 0.34 -0.21 2.18
0.7 1000 | 1.74 -0.22 0.14 -0.83 2.55
300 0.2 1000 | 0.65 -0.23 -0.57 0.23 2.87
0.4 1000 | 0.72 -0.32 -0.15 -0.18 0.98
0.6 1000 | 2.03 -0.33 -0.23 -0.88 0.86
0.7 1000 | 2.83 -0.20 -0.58 -0.91 1.64

Note: The true correlation structure is AR(1).
There are equal sample sizes of 3 per group and

B o (50) 6d7‘uga Bbaselineu Bage)/ = §944677 _01659) 002327 00258)/7
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Table 7: Coverage probabilities for the ML and GEE approaches with the AR(1) correla-
tion structure for varying values of « and sample size per group.

Coverage Probability

m «  Method R Bo Ioht Bo B3 Qa
60 0.2 ML 1000 | 94.7 95.2 95.5 95.5 93.8
GEE 1000 | 944 95.0 948 95.1 91.1

0.4 ML 1000 | 93.8 94.6 95.9 93.0 94.6
GEE 1000 | 93.2 94.3 95.5 92.7 86.1

0.6 ML 1000 | 93.8 93.9 94.3 94.0 93.4
GEE 1000 | 94.1 93.6 95.1 93.1 83.2

0.7 ML 998 | 95.4 953 954 95.5 92.3
GEE 1000 | 95.0 94.9 94.0 95.7 84.6

120 0.2 ML 1000 | 94.7 95.2 952 94.8 92.9
GEE 1000 | 94.2 95.1 949 945 91.3

0.4 ML 1000 | 95.1 96.1 95.6 94.7 95.1
GEE 1000 | 95.2 96.0 95.5 94.5 85.4

0.6 ML 1000 { 95.9 94.5 95.3 94.9 95.5
GEE 1000 | 95.5 95.5 95.5 94.9 84.5

0.7 ML 1000 | 95.3 94.2 94.7 96.2 92.9
GEE 1000 | 95.3 94.2 95.0 95.9 87.2

300 0.2 ML 1000 | 95.2 95.0 94.7 94.7 94.5
GEE 1000 | 95.6 95.3 94.8 94.6 91.5

0.4 ML 1000 | 93.5 954 94.2 93.9 96.5
GEE 1000 | 93.7 96.0 94.9 94.3 86.2

0.6 ML 1000 | 93.2 954 94.9 94.0 95.2
GEE 1000 | 93.8 95.6 94.6 94.9 85.9

0.7 ML 1000 | 94.5 95.1 94.1 944 92.4
GEE 1000 | 94.8 959 94.6 94.8 88.0

Note: The true correlation structure is AR(1).

There are equal sample sizes of & per group and

B = (Bo, Burug: Brasetine: Bage)’ = (0.4467, —0.1659, 0.0232, 0.0258)’
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Appendix A. Derivatives
The partial derivative with respect to 8 (Equation 7) is given by

75 ﬂ, Z Yi1Ti1 — A1 Ti1

o Ve [ ya
+ <l’i2>\i2 + Si—a 9 ( bW (Ti2 — Ti1) — V' Ni1 (242 +x11))>

)\z
X (%‘2( i2 + m 2 yzl )

n;
: a2 [ v
+ xij)\ij+ 2 » K xzy Lij— 1 \/ 17—1 177] +'I1,] 1
i v Aij—1

/ \ij
X (yij <)\ij+a SV 1(%; 1— Aij—1) )
ij

The partial derivative with respect to o (Equation 8) is given by

67 Z ( —8/2 izl (yzl - )‘ ))
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(Appendix A.2)

(Appendix A.1)

The elements of the matrix of second-order partial derivatives of the log
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likelihood, called the Hessian matrix, are given by,
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and
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Appendix B. R Code
Appendixz B.1. R code for the Doctor Visits data

# Application of methods described in "Maximum Likelihood Based

# Analysis of Equally Spaced Longitudinal Count Data with Specified
# Marginal Means, First-order Antedependence, and Linear Conditional
# Expectations

# Data: Doctor visits data

B s s s s s s s s
The following appendix contains additional information to
reproduce the analysis in the Application Section for the

doctor visits data, which is a subset of data from the German
Socio-Economic Panel data (Winkelmann, 2004) that we obtained
within Stata (StataCorp, 2013). A sample of 1518 women who were
employed full time in the year before or in the year after the
1997 health reform to reduce government expenditures was used

to assess the impact on the number of doctor visits. The outcome
was the self-reported number of doctor visits in the most recent
three months prior to the interview. Covariate include the
indicator of whether the interview was before the reform or
after the reform women’s age, education, marital status, self-
reported health status, and the logarithm of the household
income.

H OH H H HHHEHHEHHEHHEH

Here we compare the results of an analysis using the proposed #
ML approach with the results obtained using Poisson regression #
and GEE. #
B L g s s s s

H o HF OH H H H HHHHHHEHHHHH

B g g G e
#

Table of Contents

1. Supporting functions (run these FIRST)

2. Functions for ML (run these SECOND)

2.1 Log likelihood

2.2 Gradient

3. Load the data

4. Poisson approach

5. GEE approach

6. ML approach

H oH HF O HH HH R HH

#
HAHHH AR B R R R R R
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HERHHHHHHHH R R R R R R R R

# #
HIFHH R R R Options ####HHHHHHHHHEH R RS
# #

HERHHHHHHH R R R R R R R

# Clear workspace
1s0)
rm(list=1s())
1s0O

# Optional code for more decimal places
options(digits=10)

HEHHH AR R R R

# #
########H 1. Supporting functions for ML Approach #################H#
# #

HAHHHAHHH B H B H R RS H B H RS H B H R R R

# Getting Info from the Data

# This function will remain all the subjects

# This function will not help order the subjects
# This function was written by Matt Guerra

cluster.size<- function(id){

clid<- unique(id)

m<- length(unique(id))

n<- rep(0,m)

autotime<- rep(0,0)

for(i in 1:m){
n[il<- length(which(id==clid[i]))
autotime<- c(autotime,1:n[i])

}

id<- rep(l:m,n)

return(list(m=m,n=n,id=id,autotime=autotime))

+*

Data Process: This function will delete subjects with less or
equal to #=del.n observations
# This function was written by Matt Guerra

+*

28

http://biostats.bepress.com/upennbiostat/art45



data.proc<- function(data,formula,time=NULL,id,del.n){

dat<- data.frame(data)
col.name<- names(dat)

cluster<- cluster.size(id)
m<- cluster$m
n<- cluster$n
id<- cluster$id
if (length(time)==0){
time<- cluster$autotime
}
autotime<- cluster$autotime
index<- order(id,time)
if (ncol(dat)==1){
dat<- dat[index,]
Yelsed{
dat<- dat[index,]
}
dat<- data.frame(dat)
names (dat)<- col.name

del<- which(n<=del.n)

if (length(del)>0){
n<- n[-dell
m<- length(n)
mtch<- match(id,del)
del.id<- which(mtch!="NA")
dat<- dat[-del.id,]
dat<- data.frame(dat)
names (dat)<- col.name
row.names (dat)<- 1:nrow(dat)
time<- time[-del.id]
autotime<- autotime[-del.id]
id<- rep(l:m,n)

3

formula<- as.formula(formula)
fml<- as.formula(paste("™",formula[3],"+",formulal[2],sep=""))
dat<- model.matrix(fml,data=dat)

return(list(data=dat,time=time,autotime=autotime,id=id,m=m,n=n))
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HERHHHHHHHH R R R R R R R R

# #
HESHHHHHH R R 2. Functions for ML #############HHHHHHHRH RIS
# #

HERHHHHHHH R R R R R R R

HAFHHB R B R R R R

# #
HERHHHHHE AR 2.1 Log likelihood ##############HHHHHHBHARAH
# #

HAHHHAFHH B HHBHFHHASH BB HRASHBEEHH B H RS HBSHH RS H R RS H RS H RS R RS

# Log Likelihood function
# This function was written by Victoria Gamerman

drv.logl <- function(start.values){
alpha <- start.values[1]
beta <- start.values[2:length(start.values)]

#to be updated by user:
formula <- numvisit ~
id <- drvisits$id
time <- drvisits$visit
d <- dim(drvisits)

k <- length(all.vars(formula))-1
dt.fm<- data.frame(drvisits)

reform + age + educ + married + badh + loginc

dataset<- data.proc(data=dt.fm,formula=formula,time=time,id=id,del.n=0)
m<- dataset$m
n<- dataset$n
id<- dataset$id
time<- dataset$time

1_beta_a <- 0

1_beta_b <- 0

1_beta_c <= 0

for (i in 1:m){
data_i <- matrix(NA, nrow=n[i], ncol=dim(dataset$data) [2])
data_i[1:n[i],1:dim(dataset$data) [2]] <- dataset$datal[which(id==1i),]
data.end<- ncol(data_i)
x_i <- matrix(NA, nrow=n[i], ncol=k+1)
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x_i[1:n[i],1:(k+1)] <- data_i[,-data.end]
y_i<- data_i[,data.end]
n_i <- nrow(data_i)

for (j in 1:n_i){
if (5 == DA
lam_ij <- exp(t(beta)*hx_il[j,1)
lam_ij <- lam_ij[1]
l_beta_a <- l_beta_a + y_i[jl*log(lam_ij) - exp(log(lam_ij))
- log(factorial(y_i[jl))

}
if (G == 2){
lam_ij <- exp(t(beta)*hx_il[j,1)
lam_ij <- lam_ij[1]
lam_ij_1 <- exp(t(beta)*¥%x_i[j-1,]1)
lam_ij_1 <- lam_ij_1[1]
lamdot_i2 <- lam_ij + (alpha / sqrt(l-alpha”2))*sqrt(lam_ij
/ lam_ij_1)*(y_i[j-1] - lam_ij_1)
#constraint
constr <- sqrt(lam_ij / (lam_ij_1 + lam_ij))
#print (constr)
if(is.finite(constr) == FALSE){ constr <- 0.2}
if(is.finite(lamdot_i2) == FALSE){ lamdot_i2 <- 0.5*constr}
if (lamdot_i2 < 0){lamdot_i2 <- 0.5*constr}
1l_beta_b <- 1l_beta_b + y_i[jl*log(lamdot_i2)
- exp(log(lamdot_i2)) - log(factorial(y_i[jl))
}
if (G > 2){
lam_ij <- exp(t(beta)*hx_il[j,1)
lam_ij <- lam_ij[1]
lam_ij_1 <- exp(t(beta)*¥%x_i[j-1,]1)
lam_ij_1 <- lam_ij_1[1]
lamdot_ij <- lam_ij + alpha *sqrt(lam_ij / lam_ij_1)
*(y_il[j-1] - lam_ij_1)
constr <- sqrt(lam_ij / lam_ij_1)
#print (constr)
if(is.finite(constr) == FALSE){ constr <- 0.2}
if(is.finite(lamdot_ij) == FALSE){ lamdot_ij <- 0.b5*constr}
if (lamdot_ij < 0){lamdot_ij <- 0.5*constr}
1_beta_c <- 1l_beta_c + y_i[jl*log(lamdot_ij)
- exp(log(lamdot_ij)) - log(factorial(y_i[jl))
}
}
K

loglik <- 1l_beta_a + 1l_beta_b + 1l_beta_c
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return(loglik)
}

HAHHHAHHH B HH B H R RS HH R HBAFH B GHH BB R B H AR R

# #
HERHHHHHE R 2.2 Gradient #####HHEHH B
# #

HASHHAFHH AR HHBHFHHAFHH B HRRFH B H B H RS H B HH RS H R AR RS H AR RS

# Gradient function: It should take arguments matching those of
# f and return a vector containing the gradient.
# This function was written by Victoria Gamerman

drv.grad <- function(start.values){
alpha <- start.values[1]
beta <- start.values[2:length(start.values)]

#to be updated by user:
data<-drvisits

formula <- numvisit ~ reform + age + educ + married + badh + loginc
id <- drvisits$id

time <- drvisits$visit

d <- dim(drvisits)

k <- length(all.vars(formula))-1

dt.fm<- data.frame(drvisits)

dataset<- data.proc(data=dt.fm,formula=formula,time=time,id=id,del.n=0)
m<- dataset$m
n<- dataset$n
id<- dataset$id
time<- dataset$time
autotime<- dataset$autotime

1_beta_a <- matrix(0,nrow=k+1, ncol=1)
1_beta_b <- matrix(0,nrow=k+1, ncol=1)
1_beta_c <- matrix(0,nrow=k+1, ncol=1)
1_alpha_a <- matrix(0,nrow=1, ncol=1)
1_alpha_b <- matrix(0,nrow=1, ncol=1)

for (i in 1:m){
data_i <- matrix(NA, nrow=n[i], ncol=dim(dataset$data) [2])
data_i[1:n[i],1:dim(dataset$data) [2]] <- dataset$datal[which(id==1i),]
data.end<- ncol(data_i)
x_i <- matrix(NA, nrow=n[i], ncol=k+1)
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x_i[1:n[i],1:(k+1)] <- data_i[,-data.end]
y_i<- data_i[,data.end]
n_i <- nrow(data_i)

if (n_i>=1){
for (j in 1:n_i){
if (j == 1){

3

lam_ij <- exp(t(beta)¥xhx_il[j,])
lam_ij <- lam_ij[1]
1 _beta_a <- 1l_beta_a + y_il[jl*x_il[j,]l-x_il[j,]*lam_ij

if (j==2){

}

lam_ij <- exp(t(beta)l*%x_ilj,1)

lam_ij <- lam_ij[1]

lam_ij_1 <- exp(t(beta)¥*%x_ilj-1,1)

lam_ij_1 <- lam_ij_1[1]

1_alpha_a <- 1_alpha_a + y_i[jl*(lam_ij
+ (alpha/sqrt(1-alpha~2))*sqrt(lam_ij/lam_ij_1)*(y_i[j-1]

-lam_ij_1))~(-1)=*

(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)*((1-alpha~2)~(-3/2)))
-(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)*((1-alpha~2)"~(-3/2)))

1_beta_b <- 1l_beta_b + y_i[jl*(lam_ij+(alpha/sqrt(1l-alpha”2))
*sqrt(lam_ij/lam_ij_1)*(y_il[j-1]-lam_ij_1))"(-1)*
(x_il[j,]*lam_ij+(alpha/sqrt(1l-alpha~2))*(0.5*sqrt(lam_ij/lam_ij_1)
*(x_ilj,]-x_i[j-1,D*(y_ilj-1]-lam_ij_1)-x_i[j-1,1*lam_ij_1
*sqrt (lam_ij/lam_ij_1)))-
(x_i[j,]*lam_ij+(alpha/sqrt(1-alpha~2))*(0.5*sqrt(lam_ij/lam_ij_1)
*(x_ilj,]-x_i[j-1,D*(y_il[j-11-lam_ij_1)-x_i[j-1,1*lam_ij_1
*sqrt(lam_ij/lam_ij_1)))

i£(3>2)¢

lam_ij <- exp(t(beta)*%x_il[j,])

lam_ij <- lam_ij[1]

lam_ij_1 <- exp(t(beta)¥*¥%x_il[j-1,]1)

lam_ij_1 <- lam_ij_1[1]

1_alpha_b <- 1_alpha_b + y_i[jl*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)
*(y_i[j-11-lam_ij_1)) " (-1)*(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))
-(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))

1 _beta_c <- 1_beta_c + y_i[jl*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)
*(y_i[j-11-lam_ij_1))~(-1)*(x_i[j,]*lam_ij+alpha
*(0.5*%sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,1)*(y_i[j-1]1-lam_ij_1)
-x_i[j-1,1*lam_ij_1*sqrt(lam_ij/lam_ij_1)))-(x_i[j,]*lam_ij+alpha
*(0.5*sqrt(lam_ij/lam_ij_1)*(x_il[j,]-x_i[j-1,1)*(y_i[j-1]-lam_ij_1)
-x_i[j-1,]*1lam_ij_1*sqrt(lam_ij/lam_ij_1)))
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}

}

1_alpha <- 1_alpha_a+l_alpha_b
1_beta <- 1_beta_at+l_beta_b+l_beta_c
out<-t(t(c(l_alpha,l_beta)))

return(out)

}

HERHHHHHH R R R R R R

# #
HESHHHHH R 3. Load the data ###########HHHHHHHHHHRHHARHS
# #

HERHHHHHH R R R R R R

Data Dictionary

id = person id

numvisit = number of dr visits in last 3 mo before interview
age = age in years

educ = education in years

married = 1 if married, O else

badh = self-reported health status, 1 if bad, O else

loginc = log of household income

reform = 0 if interview before reform, 1 if after reform

H o HF HOH O H O H®

outcome variable = numvisit

covariates = reform age educ married badh loginc
identification variable = id

timing variable = visit

H H H ®

HH*

Download the data from StataCorp:
# http://www.stata-press.com/data/ri14/drvisits.dta

# Library to read Stata files

# Install Package: readstatal3

library(readstatal3)

drvisits <- read.dtal3("C:/Users/Victoria/Downloads/drvisits.dta",
convert.factors = TRUE, generate.factors = FALSE,
encoding = NULL, fromEncoding = NULL, convert.underscore
missing.type = FALSE, convert.dates = TRUE, replace.strl
add.rownames = FALSE)

FALSE,
FALSE,

34

http://biostats.bepress.com/upennbiostat/art45



names (drvisits)
attach(drvisits)

HHHHHAHHHBHHHBHFHHAFH B HRAFH B H B H B RBEHH B R AR RS R RS

# #
HERHHHHH AR 4. Poisson approach ############H#HHHHHHHRBHERHS
# #

I

drv_poi <- glm(numvisit ~ reform + age + educ + married + badh
+ loginc, data=drvisits, family = poisson)

summary (drv_poi)

# Use AIC to compute the -2logl to be used in BIC calculation

poi.m2logl <- drv_poi$aic - 2*(length(drv_poi$coefficients)+1)

poi.BIC <- log(length(unique(id)))*(length(drv_poi$coefficients)+1)
+poi.m2logl

poi.BIC

HAFHHAFHHBHHH B H R RS H BB HRA SRR H B HRA SRR H B RA SRR RS H R RS R RS

# #
HESHHHHHE R EEE 5. GEE approach ##############HHHHHHHRAHERHS
# #

HERHH R R R R R R R

library(geepack)

drv_gee <- geeglm(numvisit ~ reform + age + educ + married + badh
+ loginc, data=drvisits, id = id,
family = poisson(link = "log"), corstr = "arl")

summary (drv_gee)

HASHHH AR R R

# #
HEHHHHHHE A EE 6. ML approach ###########HHHHHHHRHHARHS
# #

HAHHHBHHAHHEHBHHAH B HBHHAFBEHBHHEHBEHAH B HBHH AR RS H B HEH RS R AF R RS R RS
# Assign starting values from GEE

beta.start <- drv_gee$geese$beta

alpha.start <- drv_gee$geese$alpha

start.values <- t(t(c(alpha.start,beta.start)))

HEHH R
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# Enforce the constraint: -1 < alpha < 1

# vector is defined as (alpha, beta parameters)

ui <- rbind(c(1,0,0,0,0,0,0,0), c(-1,0,0,0,0,0,0,0))
ci <= c(-1,-1)

s s s s s s s R s S S s

# Call the constrOptim function

full.ml <- constrOptim(start.values, drv.logl, grad=drv.grad,
ui = ui, ci = ci, mu = 1e-04, control=list("fnscale"=-1),
outer.iterations = 100, outer.eps = 1le-05, hessian = TRUE)

HERHHHHHH R R R R R

# Organize the output

mle.beta <- full.ml$par[2:8]

mle.alpha <- full.ml$par[1]

mle.full <- full.ml$value #log likelihood

mle.cov <- solve(-full.ml$hessian) #covariance matrix

HAHHHAHHH B H B H R RS H B H RS H B H R R R

# Compute the AIC and BIC
AIC <- 2x(length(mle.beta)+1)-2*(mle.full)
BIC <- log(length(unique(id)))*(length(mle.beta)+1)-2x(mle.full)

HAHHHBHHH B R R R R

# Observed information
#ob = observed information = 1/i(hat(theta))
std.err <- "ob"
if (std.err=="ob"){
mle_cov <- mle.cov

}

B g g e g R R g G
# Hypothesis testing

formula <- numvisit ~ reform + age + educ + married + badh + loginc
pp <- length(all.vars(formula))

Stderr <- matrix(NA, nrow=pp, ncol=1)

Wald <- matrix(NA, nrow=pp, ncol=1)

pval <- matrix(NA, nrow=pp, ncol=1)
for (p in 1:pp){
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Stderr([p,] <- sqrt(mle_cov[(p+1), (p+1)1)
Wald[p,] <- (mle.betalpl/sqrt(mle_cov[(p+1), (p+1)1))"2
pvallp,] <- 1-pchisq(Wald[p,1] , df=1, lower.tail = TRUE,
log.p = FALSE)
}
results <- cbind(mle.beta,Stderr, Wald, pval)
alpha_results <- cbind(mle.alpha,sqrt(mle_cov[1,1]))
fit_stats <- rbind(mle.full,AIC,BIC)

#format output

rownames (fit_stats) <- c("Log-Likelihood:", "AIC:", "BIC:")
colnames(fit_stats) <- c("")

colnames(results) <- c("Estimate", "Std.err", "Wald", "Pr(>IW|)")

rownames (results) <- c("(Intercept)", "reform", "age", "educ",
"married", "badh", "loginc")
colnames(alpha_results) <- c("Estimate", "Std.err")

rownames (alpha_results) <- c("alpha")
HERHHHHHH R R R R R R R

# Print the output in a nice format
print(fit_stats)

cat("\n Coefficients:\n")

print(results)

cat("\n Estimated Correlation Parameters: \n")
print(alpha_results)

HERHHHHHH R R R R R R R
HERHHHHHE A RS THE END  #######HHE R
HERHHHHHHE R R R R R R
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Appendiz B.2. R code for the Epilepsy Seizure data

# Application of methods described in "Maximum Likelihood Based

# Analysis of Equally Spaced Longitudinal Count Data with Specified
# Marginal Means, First-order Antedependence, and Linear Conditional
# Expectations

# Data: Epilepsy seizure data

I
The following appendix contains additional information to
reproduce the analysis in the Application Section for the
epilepsy data. Thall and Vail (1990) present data from a
randomized, placebo-controlled study on 59 epileptic patients
with seizure counts measured every 2 weeks over an 8 week period.
Patients were randomized to drug treatment or placebo alongside
standard chemotherapy treatment and measured the outcome as the
count of the number of seizures. Additional covariates include
information on patient treatment (placebo or drug), baseline
seizure counts, and age in years. 0f the 59 patients, 28 were
randomized to placebo and 31 were randomized to drug treatment.
B s s s s s s s s s s

H OH H HHHEHHEHHEH
H oH H H HHEHHEHHEH

HAHHHA R B R R R R R
# Table of Contents

# 1. Supporting functions (run these FIRST)

# 2. Functions for ML with period (run these SECOND)

# 2.1 Log likelihood

# 2.2 Gradient

# 3. Functions for ML without period (run these THIRD)

# 3.1 Log likelihood

# 3.2 Gradient

# 4. Load the data

# 5. GEE approach

# 5.1 GEE with period

# 5.2 GEE without period

# 6. ML approach

# 6.1 ML with period

# 6.2 ML without period

# 6.3 Likelihood ratio (LR) test

HEHH R

HERHHHHHH R R R R R
# #
HESHHHHHE R Options ######HHHHHHH# R
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# #
HERHH IR R R R R R R

# Clear the workspace
rm(list = 1s())

# Optional code for more decimal places
options(digits=10)

HAHHHAHHH B H R H R RS R BB H RS H BB R R R R R R R

# #
########H 1. Supporting functions for ML Approach ###########H##H##H#
# #

HERHHHHHE R R R R S R

# Getting Info from the Data

# This function will remain all the subjects

# This function will not help order the subjects
# This function was written by Matt Guerra

cluster.size<- function(id){

clid<- unique(id)

m<- length(unique(id))

n<- rep(0,m)

autotime<- rep(0,0)

for(i in 1:m){
n[il<- length(which(id==c1lid[i]))
autotime<- c(autotime,1:n[i])

}

id<- rep(1:m,n)

return(list(m=m,n=n,id=id,autotime=autotime))

Data Process
This function will delete subjects with less or equal to #=del.n
observations.

H H H H

This function was written by Matt Guerra
data.proc<- function(data,formula,time=NULL,id,del.n){

dat<- data.frame(data)
col.name<- names(dat)
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cluster<- cluster.size(id)
m<- cluster$m
n<- cluster$n
id<- cluster$id
if (length(time)==0){
time<- cluster$autotime
}
autotime<- cluster$autotime
index<- order(id,time)
if (ncol(dat)==1){
dat<- dat[index,]
}elsed{
dat<- dat[index,]
}
dat<- data.frame(dat)
names (dat)<- col.name

del<- which(n<=del.n)

if (length(del)>0){
n<- n[-dell
m<- length(n)
mtch<- match(id,del)
del.id<- which(mtch!="NA")
dat<- dat[-del.id,]
dat<- data.frame(dat)
names (dat)<- col.name
row.names (dat)<- 1:nrow(dat)
time<- time[-del.id]
autotime<- autotime[-del.id]
id<- rep(l:m,n)

3

formula<- as.formula(formula)

fml<- as.formula(paste("™",formula[3],"+",formulal[2],sep=""))

dat<- model .matrix(fml,data=dat)

return(list(data=dat,time=time,autotime=autotime,id=id,m=m,n=n))

HAFHHAHHHBHHHBHFHHAFH R HRA SRR H B HBR SRS HH B H RS R R

#

HESHHHHH R 2. Functions for ML #############HHHHHHHRHHHHHS
WITH PERIOD
HERHH IR R R R R R

#
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HERHHHHHHHH R R R R R R R R

# #
#HHH R R R HEE 2.1 Log likelihood ###HHHHHHH##HHHHHHHHHHHHHHHH
# #

HERHHHHHHH R R R R R R R

# Log Likelihood function
# This function was written by Victoria Gamerman

ml.logll <- function(start.values){

alpha <- start.values[1]

beta <- start.values[2:length(start.values)]
formula <- y 7 trt + base + age + period

id <- epil$subject

time <- epil$period

d <- dim(epil)

k <- length(all.vars(formula))-1

dt.fm<- data.frame(epil)

dataset<- data.proc(data=dt.fm,formula=formula,time=time,id=id,del.n=0)
m<- dataset$m
n<- dataset$n
id<- dataset$id
time<- dataset$time

1l_beta_a <- 0
1_beta_b <- 0
1_beta_c <- 0
for (i in 1:m){
data_i <- matrix(NA, nrow=n[i], ncol=dim(dataset$data) [2])
data_i[1:n[i],1:dim(dataset$data) [2]] <- dataset$datal[which(id==1i),]
data.end<- ncol(data_i)
x_i <- matrix(NA, nrow=n[i], ncol=k+1)
x_i[1:n[i],1:(k+1)] <- data_i[,-data.end]
y_i<- data_i[,data.end]
n_i <- nrow(data_i)

for (j in 1:n_i){
if (5 == DA
lam_ij <- exp(t(beta)%*%x_il[j,])
lam_ij <- lam_ij[1]
1l _beta_a <- 1l_beta_a + y_i[jl*log(lam_ij) - exp(log(lam_ij))
- log(factorial(y_i[j1))
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}
if

if

(G == 2){

lam_ij <- exp(t(beta)*hx_il[j,1)

lam_ij <- lam_ij[1]

lam_ij_1 <- exp(t(beta)*%x_i[j-1,]1)

lam_ij_1 <- lam_ij_1[1]

lamdot_i2 <- lam_ij + (alpha / sqrt(l-alpha”2))
*sqrt(lam_ij / lam_ij_1)*(y_il[j-1] - lam_ij_1)

#constraint
constr <- sqrt(lam_ij / (lam_ij_1 + lam_ij))
#print (constr)
if(is.finite(constr) == FALSE){ comnstr <- 0.2}
if(is.finite(lamdot_i2) == FALSE){ lamdot_i2 <- 0.5%constr}
if (lamdot_i2 < 0){lamdot_i2 <- 0.5*constr}

1_beta_b <- 1l_beta_b + y_i[jl*log(lamdot_i2) - exp(log(lamdot_i2))
- log(factorial(y_i[j1))

G > 21

lam_ij <- exp(t(beta)x*hx_il[j,])

lam_ij <- lam_ij[1]

lam_ij_1 <- exp(t(beta)*¥%x_i[j-1,]1)

lam_ij_1 <- lam_ij_1[1]

lamdot_ij <- lam_ij + alpha *sqrt(lam_ij / lam_ij_1)*(y_i[j-1]
- lam_ij_1)

#constraint
constr <- sqrt(lam_ij / lam_ij_1)
#print (constr)
if(is.finite(constr) == FALSE){ comnstr <- 0.2}
if(is.finite(lamdot_ij) == FALSE){ lamdot_ij <- 0.5%*constr}
if (lamdot_ij < 0){lamdot_ij <- 0.5*constr}

1l _beta_c <- 1l_beta_c + y_i[jl*log(lamdot_ij) - exp(log(lamdot_ij))
- log(factorial(y_i[j1))

loglik <- 1_beta_a + 1_beta_b + 1_beta_c
return(loglik)

HAFHHAHHHBHHH B FHHAFHH B HRAFH B H B H R RBEHH RS HR AR R R

#

HESHHHHHE R 2.2 Gradient #####HHEHH B

#

HERHHHHHH R R R R R
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# Gradient function: It should take arguments matching those of
# f and return a vector containing the gradient.
# This function was written by Victoria Gamerman

ml.gradl <- function(start.values){

alpha <- start.values[1]

beta <- start.values[2:length(start.values)]
formula <- y 7 trt + base + age + period
id <- epil$subject
time <- epil$period
d <- dim(epil)
k <- length(all.vars(formula))-1
dt.fm<- data.frame(epil)

dataset<- data.proc(data=dt.fm,formula=formula,time=time,id=id,del.n=0)
m<- dataset$m
n<- dataset$n
id<- dataset$id
time<- dataset$time
autotime<- dataset$autotime

1_beta_a <- matrix(0,nrow=k+1, ncol=1)
1_beta_b <- matrix(0,nrow=k+1, ncol=1)
1_beta_c <- matrix(0,nrow=k+1, ncol=1)
1_alpha_a <- matrix(0,nrow=1, ncol=1)
1_alpha_b <- matrix(0,nrow=1, ncol=1)

for (i in 1:m){
data_i <- matrix(NA, nrow=n[i], ncol=dim(dataset$data) [2])
data_i[1:n[i],1:dim(dataset$data) [2]] <- dataset$datal[which(id==1i),]
data.end<- ncol(data_i)
x_i <- matrix(NA, nrow=n[i], ncol=k+1)
x_i[1:n[i],1:(k+1)] <- data_i[,-data.end]
y_i<- data_i[,data.end]
n_i <- nrow(data_i)

if (n_i>=1){
for (j in 1:n_i){
if (§ == DA

lam_ij <- exp(t(beta)%*%x_il[j,])
lam_ij <- lam_ij[1]
1 beta_a <- 1l beta_a + y_il[jl*x_il[j,]-x_il[j,]*lam_ij
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if (G==2){

}

lam_ij <- exp(t(beta)l*%x_ilj,])

lam_ij <- lam_ij[1]

lam_ij_1 <- exp(t(beta)®*lx_i[j-1,1)

lam_ij_1 <- lam_ij_1[1]

1l_alpha_a <- l_alpha_a + y_i[jl*(lam_ij + (alpha/sqrt(1l-alpha”2))
*sqrt(lam_ij/lam_ij_1)*(y_il[j-1]-lam_ij_1))"(-1)*
(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)*((1-alpha~2)~(-3/2)))
-(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)*((1-alpha”2)~(-3/2)))

1_beta_b <- 1l_beta_b + y_i[jl*(lam_ij+(alpha/sqrt(1-alpha~2))
*sqrt(lam_ij/lam_ij_1)*(y_il[j-1]1-lam_ij_1))"(-1)*
(x_il[j,]*lam_ij+(alpha/sqrt(1-alpha~2))*(0.5*sqrt(lam_ij/lam_ij_1)
*(x_ilj,]-x_i[j-1,D*(y_il[j-11-lam_ij_1)-x_i[j-1,1*lam_ij_1
*sqrt(lam_ij/lam_ij_1)))-(x_i[j,]*lam_ij+(alpha/sqrt(1-alpha~2))
*(0.5*sqrt(lam_ij/lam_ij_1)*(x_il[j,]-x_i[j-1,1)*(y_i[j-1]-lam_ij_1)
-x_i[j-1,1*lam_ij_1*sqrt(lam_ij/lam_ij_1)))

if (5>2)1

lam_ij <- exp(t(beta)l*%x_ilj,])

lam_ij <- lam_ij[1]

lam_ij_1 <- exp(t(beta)*%x_il[j-1,1)

lam_ij_1 <- lam_ij_1[1]

1_alpha_b <- 1_alpha_b + y_i[jl*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)
*(y_il[j-1]-lam_ij_1))" (-1 *(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))
-(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))

1_beta_c <- 1l_beta_c + y_i[jl*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)
*(y_il[j-11-lam_ij_1)) "~ (-1)*(x_i[j,]*lam_ij+alphax(0.5
*sqrt(lam_ij/lam_ij_1)*(x_ilj,]1-x_i[j-1,1)*(y_i[j-11-lam_ij_1)
-x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))-(x_i[j,]*lam_ij+alpha
*(0.5*%sqrt(lam_ij/lam_ij_1)*(x_i[j,]1-x_il[j-1,1)*(y_i[j-1]-lam_ij_1)
-x_i[j-1,1*lam_ij_1*sqrt(lam_ij/lam_ij_1)))

1_alpha <- 1_alpha_a+l_alpha_b
1_beta <- 1_beta_atl_beta_b+l_beta_c
out<-t(t(c(l_alpha,l_beta)))

return(out)

HAHHHAHHH BB R R R R R

#

HERHHHHHE AR 3. Functions for ML ############HHHHHHHRRAHHH
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# #
HERHH IR R R R R R R

HAHHHAHHHBHHHBHFHHAFH BB HBR SRR H B H B R H RS H R AR R H AR

# #
##HHH R R Rt 3.1 Log likelihood #HHHHHHHH#HRHHHIHHHHHIHHH
# #

HERHHHHHHHH R R R R R R

# Log Likelihood function
# This function was written by Victoria Gamerman

ml.logl2 <- function(start.values){

alpha <- start.values[1]

beta <- start.values[2:length(start.values)]
formula <- y 7 trt + base + age

id <- epil$subject

time <- epil$period

d <- dim(epil)

k <- length(all.vars(formula))-1

dt.fm<- data.frame(epil)

dataset<- data.proc(data=dt.fm,formula=formula,time=time,id=id,del.n=0)
m<- dataset$m
n<- dataset$n
id<- dataset$id
time<- dataset$time

1_beta_a <- 0
1_beta_b <- 0
1l_beta_c <- 0
for (i in 1:m){
data_i <- matrix(NA, nrow=n[i], ncol=dim(dataset$data) [2])
data_i[1:n[i],1:dim(dataset$data) [2]] <- dataset$datalwhich(id==1i),]
data.end<- ncol(data_i)
x_i <- matrix(NA, nrow=n[i], ncol=k+1)
x_i[1:n[i],1:(k+1)] <- data_i[,-data.end]
y_i<- data_i[,data.end]
n_i <- nrow(data_i)

for (j in 1:n_i){
T #C=){

lam_ij <- exp(t(beta)*hx_il[j,])
lam_ij <- lam_ij[1]
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if

if

1l _beta_a <- 1l_beta_a + y_i[jl*log(lam_ij) - exp(log(lam_ij))
- log(factorial(y_i[j1))

(G == 2){

lam_ij <- exp(t(beta)%*%x_il[j,])

lam_ij <- lam_ij[1]

lam_ij_1 <- exp(t(beta)¥*¥%x_i[j-1,1)

lam_ij_1 <- lam_ij_1[1]

lamdot_i2 <- lam_ij + (alpha / sqrt(l-alpha”2))
*sqrt(lam_ij / lam_ij_1)*(y_i[j-1] - lam_ij_1)

#constraint
constr <- sqrt(lam_ij / (lam_ij_1 + lam_ij))
#print (constr)
if(is.finite(constr) == FALSE){ constr <- 0.2}
if(is.finite(lamdot_i2) == FALSE){ lamdot_i2 <- 0.5%constr}
if (lamdot_i2 < 0){lamdot_i2 <- 0.5*constr}

1_beta_b <- 1l_beta_b + y_i[jl*log(lamdot_i2) - exp(log(lamdot_i2))
- log(factorial(y_i[j1))

(G > 2)4

lam_ij <- exp(t(beta)%*%x_il[j,])

lam_ij <- lam_ij[1]

lam_ij_1 <- exp(t(beta)*¥%x_i[j-1,1)

lam_ij_1 <- lam_ij_1[1]

lamdot_ij <- lam_ij + alpha *sqrt(lam_ij / lam_ij_1)*(y_i[j-1]
- lam_ij_1)

#constraint
constr <- sqrt(lam_ij / lam_ij_1)
#print (constr)
if(is.finite(constr) == FALSE){ constr <- 0.2}
if(is.finite(lamdot_ij) == FALSE){ lamdot_ij <- 0.5%constr}
if (lamdot_ij < 0){lamdot_ij <- 0.5*constr}

1l_beta_c <- 1l_beta_c + y_i[jl*log(lamdot_ij) - exp(log(lamdot_ij))
- log(factorial(y_i[j1))

loglik <- 1_beta_a + 1l_beta_b + 1l_beta_c
return(loglik)

HAFHHAFHH B H R H R RS R BB H RS H BB BB AR R R

#

HESHHHHHE R 3.2 Gradient #####HHHEHH BRI

#
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HESHHH A R R

# Gradient function: It should take arguments matching those of
# f and return a vector containing the gradient.
# This function was written by Victoria Gamerman

ml.grad2 <- function(start.values){

alpha <- start.values[1]

beta <- start.values[2:length(start.values)]
formula <- y ~
id <- epil$subject
time <- epil$period
d <- dim(epil)
k <- length(all.vars(formula))-1
dt.fm<- data.frame(epil)

trt + base + age

dataset<- data.proc(data=dt.fm,formula=formula,time=time,id=id,del.n=0)
m<- dataset$m
n<- dataset$n
id<- dataset$id
time<- dataset$time
autotime<- dataset$autotime

1_beta_a <- matrix(0,nrow=k+1, ncol=1)
1_beta_b <- matrix(0,nrow=k+1, ncol=1)
1_beta_c <- matrix(0,nrow=k+1, ncol=1)
1_alpha_a <- matrix(0,nrow=1, ncol=1)
1_alpha_b <- matrix(0,nrow=1, ncol=1)

for (i in 1:m){
data_i <- matrix(NA, nrow=n[i], ncol=dim(dataset$data) [2])
data_i[1:n[i],1:dim(dataset$data) [2]] <- dataset$datal[which(id==1i),]
data.end<- ncol(data_i)
x_i <- matrix(NA, nrow=n[i], ncol=k+1)
x_i[1:n[i],1:(k+1)] <- data_i[,-data.end]
y_i<- data_i[,data.end]
n_i <- nrow(data_i)

if (n_i>=1){
for (j in 1:n_i){
if (5 == 1{

lam_ij <- exp(t(beta)%*%x_il[j,])
lam_ij <- lam_ij[1]
1 _beta_a <- 1l _beta_a + y_il[jl*x_il[j,]-x_il[j,]*lam_ij
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}
if (j==2)1
lam_ij <- exp(t(beta)l*%x_ilj,])
lam_ij <- lam_ij[1]
lam_ij_1 <- exp(t(beta)*hx_ilj-1,1)
lam_ij_1 <- lam_ij_1[1]
1_alpha_a <- 1_alpha_a + y_i[jl*(lam_ij + (alpha/sqrt(1-alpha~2))
*sqrt(lam_ij/lam_ij_1)*(y_il[j-1]-lam_ij_1))"(-1)*
(sqrt(lam_ij/lam_ij_1)*(y_il[j-1]-lam_ij_1)*((1-alpha~2)~(-3/2)))
-(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)*((1-alpha~2)~(-3/2)))
1l_beta_b <- 1l_beta_b + y_i[jl*(lam_ij+(alpha/sqrt(1-alpha”2))
*sqrt(lam_ij/lam_ij_1)*(y_il[j-1]-lam_ij_1))"(-1)*
(x_i[j,)*lam_ij+(alpha/sqrt(1-alpha~2))*(0.5*sqrt(lam_ij/lam_ij_1)
*(x_ilj,]-x_i[j-1,D*(y_ilj-1]-lam_ij_1)-x_i[j-1,1*lam_ij_1
*sqrt (lam_ij/lam_ij_1)))-(x_i[j,]*lam_ij+(alpha/sqrt(1-alpha~2))
*(0.5%sqrt (lam_ij/lam_ij_1)*(x_i[j,]1-x_i[j-1,1)*(y_i[j-1]
-lam_ij_1)-x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))
}
if (5>2)1
lam_ij <- exp(t(beta)%*¥x_il[j,])
lam_ij <- lam_ij[1]
lam_ij_1 <- exp(t(beta)y*%x_i[j-1,1)
lam_ij_1 <- lam_ij_1[1]
1_alpha_b <- 1l_alpha_b + y_i[jl*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)
*(y_ilj-11-lam_ij_1)) " (-1)*(sqrt (lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))
-(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))
1l_beta_c <- 1l_beta_c + y_i[jl*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)
*(y_il[j-11-lam_ij_1)) " (-1)*(x_i[j,]*lam_ij+alphax(0.5
*sqrt (lam_ij/lam_ij_1)*(x_ilj,]-x_i[j-1,D)*(y_i[j-1]1-lam_ij_1)
-x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))-(x_i[j,]*lam_ij+alpha
*(0.5*sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,1)*(y_i[j-1]-lam_ij_1)
-x_i[j-1,1*lam_ij_1*sqrt(lam_ij/lam_ij_1)))

X

X

1_alpha <- 1_alpha_a+l_alpha_b
1_beta <- 1_beta_a+l_beta_b+l_beta_c
out<-t(t(c(l_alpha,l_beta)))

return(out)

}

HHHHHHHHH R HHHH SRR HHH GG SRR R B S H R R R R G RH RS R HH RS R 7T #

# #
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HERHHHHH R 4. Load the data #####H#####HHHHHHHHHHHARAHHH
# #
HERHHHHHHHH R R R R R R R

Data Dictionary

subject = subject id

y = count of the number of seizures
trt = treatment placebo or drug
base = baseline seizure counts

age = subject age in years

period = time variable

H OH H H H O H

outcome variable =y

covariates = trt base age (period, where applicable)
identification variable = subject

timing variable = period

H H H H

# Load the long data frame

library (MASS)
data(epil)
attach(epil)
names (epil)
summary (epil)

HAHHHAFHH B HHBRFH R RS R BB H RS H BB H B R H R R

# #
HERHHHHHE R 5. GEE approach ##############HHHHHHR AR
# #

HERHHHHHHE R R R R R R

# Load the library
library(geepack)

HERHHHHHHH R R R R R R R

# #
####H AR 5.1 GEE with Period #############H#HHHH#H TR BHERH?
# #

HERHHHHH R R R R R R

# Estimated parameters from the GEE approach for analysis of the
# epilepsy data when period is included in the models

epil_geel <- geeglm(y ~ trt + base + age + period, data=epil,
id = epil$subject, family = poisson(link = "log"),
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corstr = "ari")
summary (epil_geel)

HAHHHAHHH B HH B H R RS HH R HBAFH B GHH BB R B H AR R

# #
HERHHHHHE AR 5.2 GEE without Period ############HHHHHHHRAH#HH#
# #

HASHHAFHH AR HHBHFHHAFHH B HRRFH B H B H RS H B HH RS H R AR RS H AR RS

# Estimated parameters from the GEE approach for analysis of the
# epilepsy data when period is not included in the models

epil_gee2 <- geeglm(y ~ trt + base + age, data=epil,
id = epil$subject, family = poisson(link = "log"),
corstr = "ari")

summary (epil_gee2)

HERHHHHHH R R R R R R

# #
HIFHH R R 6. ML approach ##HHHHHH#R#H#HIHHH
# #

B R e R S R S R S

HAHHHAFHH B HHBRFH R RS R BB H RS H B H RS H B R B H R R

# #
HERHHHHHE R EE 6.1 ML with Period ############HHHHHHHRAHARH#
# #

HERHHHHHH R R R R R R

# Estimated parameters from the ML approach for analysis of the
# epilepsy data when period is included in the models

# Assign starting values from GEE

beta.startl <- epil_geel$geese$beta

alpha.startl <- epil_geel$geese$alpha
start.valuesl <- t(t(c(alpha.startl,beta.startl)))

HERHHHHHHH R HRR AR R R R R
# Enforce the constraint: -1 < alpha < 1
# vector is defined as (alpha, beta parameters)

uil <- rbind(c(1,0,0,0,0,0), c(-1,0,0,0,0,0))
ci <= c(-1,-1)
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HERHH R R R R R R

# Call the constrOptim function

full.mll <- constrOptim(start.valuesl, ml.logll, grad=ml.gradi,
ui = uil, ci = ci, mu = 1e-04, control=list("fnscale"=-1),
outer.iterations = 100, outer.eps = 1le-05, hessian = TRUE)

HASHHAHHHBHHHBHFHHAFH R HRAFH B H B H RS H B HH RS HR AR H AR RS

# Organize the output

mle.betal <- full.mli$par[2:6]

mle.alphal <- full.mli$par[1]

mle.fulll <- full.mli$value #log likelihood

mle.covl <- solve(-full.mli$hessian) #covariance matrix

HESHHH AR R R

# Compute the AIC and BIC
AIC1 <- 2%(length(mle.betal)+1)-2*(mle.fulll)
BIC1 <- log(length(unique(subject)))*(length(mle.betal)+1)-2*(mle.fulll)

HERHHHHHH R R R R R R

# Observed information
#ob = observed information = 1/i(hat(theta))
std.err <- "ob"
if (std.err=="ob"){
mle_covla <- mle.covl

}
HASHHAHHH B H R RS R R R R H E R R H E R R R R

# Hypothesis testing
formulal <- y 7 trt + base + age + period
pp <- length(all.vars(formulal))

Stderr <- matrix(NA, nrow=pp, ncol=1)
Wald <- matrix(NA, nrow=pp, ncol=1)
pval <- matrix(NA, nrow=pp, ncol=1)
for (p in 1:pp){
Stderr[p,] <- sqrt(mle_covial[(p+1),(p+1)]1)
Wald[p,] <- (mle.betall[p]/sqrt(mle_covial[(p+1), (p+1)]1))~2
pvallp,] <- 1-pchisq(Wald[p,1] , df=1, lower.tail = TRUE, log.p = FALSE)
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results <- cbind(mle.betal,Stderr, Wald, pval)
alpha_results <- cbind(mle.alphal,sqrt(mle_covia[1l,1]))
fit_stats <- rbind(mle.fulll,AIC1,BIC1)

#format output

rownames (fit_stats) <- c("Log-Likelihood:", "AIC:", "BIC:")
colnames(fit_stats) <- c("")

colnames(results) <- c("Estimate", "Std.err", "Wald", "Pr(>IW|)")

rownames (results) <- c("(Intercept)", "trtprogabide", "base", "age", "period")
colnames(alpha_results) <- c("Estimate", "Std.err")

rownames (alpha_results) <- c("alpha")
HERHHHHHH R R R R R

# Print the output in a nice format
print(fit_stats)

cat("\n Coefficients:\n")

print (results)

cat("\n Estimated Correlation Parameters: \n")
print(alpha_results)

HESHHH AR R R R R

# #
HERHHHHHE A 6.2 ML without Period ###########HHHH#HHRHA#HH#
# #

HAHHHAFHHHHHHBRFH R RS R BB HBA SRR F B H B R H R R

# Estimated parameters from the ML approach for analysis of the
# epilepsy data when period is not included in the models

# Assign starting values from GEE

beta.start2 <- epil_gee2$geese$beta

alpha.start2 <- epil_gee2$geese$alpha

start.values2 <- t(t(c(alpha.start2,beta.start2)))
HAHFHHAFHHAHHHBRFHHAFH BB HRAFH R H R HRA SRR H RS H R AR R R HH RS
# Enforce the constraint: -1 < alpha < 1

# vector is defined as (alpha, beta parameters)

ui2 <- rbind(c(1,0,0,0,0), c(-1,0,0,0,0))

ci <= c(-1,-1)

HAHHHAHHH B HE R R R R

# Call the constrOptim function
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full.ml2 <- constrOptim(start.values2, ml.logl2, grad=ml.grad2, ui = ui2,
ci = ci, mu = 1e-04, control=list("fnscale"=-1),
outer.iterations = 100, outer.eps = 1le-05, hessian = TRUE)

B g g
# Organize the output

mle.beta2 <- full.ml2$par[2:5]

mle.alpha2 <- full.ml2$par[1]

mle.full2 <- full.ml2$value #log likelihood

mle.cov2 <- solve(-full.ml2$hessian) #covariance matrix

HERHHHHHHE R R R R R R R

# Compute the AIC and BIC
AIC2 <- 2*(length(mle.beta2)+1)-2*(mle.full2)
BIC2 <- log(length(unique(subject)))*(length(mle.beta2)+1)-2*(mle.full2)

HAFHHAFHHBHHHBHFHHAFH BB HHA SRR H B HRA SRS H RS HRA SRR RS H R RS RIS

# Observed information
#ob = observed information = 1/i(hat(theta))
std.err <- "ob"
if (std.err=="ob"){
mle_cov2a <- mle.cov2

}
HERHHHHHH R R R R R R

# Hypothesis testing
formula2 <- y ~ trt + base + age
pp <- length(all.vars(formula2))

Stderr <- matrix(NA, nrow=pp, ncol=1)
Wald <- matrix(NA, nrow=pp, ncol=1)
pval <- matrix(NA, nrow=pp, ncol=1)
for (p in 1:pp){
Stderr[p,] <- sqrt(mle_cov2al(p+1), (p+1)]1)
Wald[p,] <- (mle.beta2[p]/sqrt(mle_cov2al[(p+1), (p+1)]1))"2
pvallp,] <- 1-pchisq(Wald[p,1] , df=1, lower.tail = TRUE, log.p = FALSE)
}
results <- cbind(mle.beta2,Stderr, Wald, pval)
alpha_results <- cbind(mle.alpha2,sqrt(mle_cov2al[1,1]))
fit_stats <- rbind(mle.full2,AIC2,BIC2)
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#format output

rownames (fit_stats) <- c("Log-Likelihood:", "AIC:", "BIC:")
colnames(fit_stats) <- c("")

colnames(results) <- c("Estimate", "Std.err", "Wald", "Pr(G|WI[)")
rownames (results) <- c("(Intercept)", "trtprogabide", "base", "age")
colnames(alpha_results) <- c("Estimate", "Std.err")

rownames (alpha_results) <- c("alpha")

HAHHHAHHH AR H R H R AR B H AR B H BB R R R

# Print the output in a nice format
print(fit_stats)

cat("\n Coefficients:\n")

print(results)

cat("\n Estimated Correlation Parameters: \n")
print(alpha_results)

HERHHHHHHE R R R R R R

# #
R 6.3 Likelihood ratio (LR) test ###t##t#t####i####
# #

HERHHHHHH R R R R R R

# Test statistic: G = 2%(logL(reduced) - logL(full))
# Assuming reduced model (null) is correct, the sampling
# distribution of G is approximately Chi-Squared with df=1

G.period <- -2x( mle.full2 - mle.fulll)

pval.period <- 1-pchisq(G.period, df=1, lower.tail = TRUE,
log.p = FALSE)

G.period

pval.period

HERHHHHHH R R R R R R R
HA#HHA R AR Y THE END ######## 3 # AR AR
HAHHHAFHH B HH B H R RS H R H SRR F R R
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