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Semiparametric inferences for association with
semi-competing risks data

Debashis Ghosh

Abstract

In many biomedical studies, it is of interest to assess dependence between bi-
variate failure time data. We focus here on a special type of such data, referred
to as semi-competing risks data. In this article, we develop methods for making
inferences regarding dependence of semi-competing risks data across strata of a
discrete covariate Z. A class of rank statistics for testing constancy of association
across strata are proposed; its asymptotic properties are also derived. We develop
a novel resampling-based technique for calculating the variances of the proposed
test statistics. In addition, we develop methods for combining test statistics for
assessing marginal effects of Z on the dependent censoring variable as well as its
effects on association. The finite-sample properties of the proposed methodology
are assessed using simulation studies, and they are applied to data from a leukemia
transplantation study.
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Summary

In many biomedical studies, it is of interest to assess dependence between bivariate failure
time data. We focus here on a special type of such data, referred to as semi-competing risks
data. In this article, we develop methods for making inferences regarding dependence of
semi-competing risks data across strata of a discrete covariate Z. A class of rank statistics
for testing constancy of association across strata are proposed; its asymptotic properties are
also derived. We develop a novel resampling-based technique for calculating the variances
of the proposed test statistics. In addition, we develop methods for combining test statistics
for assessing marginal effects of Z on the dependent censoring variable as well as its effects
on association. The finite-sample properties of the proposed methodology are assessed using

simulation studies, and they are applied to data from a leukemia transplantation study.

Key words: Copula, Correlated Failure Time, Dependent Censoring, Kendall’s tau, Multi-

variate Survival Analysis.
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1. Introduction

Recently, there has been much attention in the medical and scientific literature devoted to
the analysis of multiple event data. Such data are generally of two forms: recurrent failure
time data, in which subjects experience repeated episodes of the same events during the
course of the study, and ordered failure time data, in which subjects experience a progression
of events of different types that signify a deterioration in health status. Our focus will be on
consideration of the latter data.

We consider a study, reported in [1], of leukemia patients receiving bone marrow trans-
plants. As described in [2], the outcome of such a procedure is quite complex. If the
transplantation is successful and there are no harmful side effects, then the patient will re-
cover. If it is not, then the patient will relapse. However, potential intermediate events
that occur after transplantation, such as development of acute or chronic graft versus host
disease, development of infections, and return of the platelet count to normal levels, can alter
the risk of survival. In [1], one of the associations studied by the authors was between time
to platelet recovery (platelet count > 40 x 10°/L) and survival. This association was studied
in the entire study population as well as in a subgroup of patients with low risk AML. While
hazard ratios were given for these two populations, it is of interest to the investigators in [1]
to see if the association between platelet recovery and survival might differ by disease type
(low risk AML, high risk AML and ALL).

If we let T and D denote the times to platelet recovery and death, then it is obvious that
D can potentially censor 7" but not vice versa. After transplantation, patients can potentially
have platelet recovery and not die, have platelet recovery and then die, or die without normal
platelet recovery. This type of data structure has been termed semi-competing risks data
[3]. This is contrast to classical competing risks data, in which the minimum of 7" and D is
observed [4]. There exist several works on the analysis of semi-competing risks data. Methods
for estimation of treatment effect in such a setup have been proposed [5,6]; they require that
the distribution of (7', D), conditional on covariates, satisfies a bivariate location-shift or

accelerated failure time model [7]. Other authors [3,8,9] develop testing and estimation
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procedures for the dependence between T" and D. As discussed by these authors, because
of the data structure, the bivariate distribution of (7', D) is identifiable on the region where
T < D. By contrast, the bivariate distribution is not identifiable with competing risks data
[4]. It is thus possible to assess dependence with semi-competing risks data.

An area discussed in [9] that has not been currently addressed in the literature is incor-
poration of covariates into consideration of dependence with semi-competing risks data. For
example, in [3] and [9], the dependence between relapse and survival is assessed in the entire
study population. However, no adjustment for covariates such as sex or treatment group is
made in the analysis. From the transplantation example, we care about the effect of T on D
in the overall study as well as in the subpopulations defined by leukemia type. In this pa-
per, we develop methods for inference regarding dependence between bivariate failure times.
Our focus is primarily on testing. We develop a class of score statistics for testing the null
hypothesis of constant dependence across levels of a discrete-valued covariate. It is based on
the Clayton-Oakes frailty model considered for semi-competing risks data by previous au-
thors [3,8,9]. In Section 2, we define the data structures and models used to derive the test
statistics. The proposed statistics and their asymptotic properties are studied in Section 3
with a review of existing methods in Section 3.1. The use of novel resampling techniques for
variance estimation is described here as well. We also discuss the issue of combining statistics
in order to gain power. The finite-sample behavior of the proposed methods are assessed
by simulation studies and applications to real data in Section 4. Finally, we conclude with

some discussion in Section 5.
2. Data and Models

We start by making the following definitions. Let a A b denote the minimum of two
numbers ¢ and b. Define I(A) to be the indicator function for the event A. Let T be the
failure time of interest, D time to dependent censoring and C' time to independent censoring.
Let Z be a covariate that takes discrete values (1,2,..., K), where K > 1. We assume that
(T, D) is independent of C given Z; however, T and D may be dependent, as specified
below. We observe the data (X;,d6;%,Y;,6)7,7;), 1 =1,...,n, n independent and identically

4
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distributed observations from (X, d%,V,4Y,Z), where X =T ADAC,§* =I(T < DAC),
Y=DAC and §¥ =I(D < ().

In the setup we are considering, 7' cannot be greater than D; this implies that the joint
distribution of (7', D) on the region where 7" > D is not identifiable based on the observed
data. However, it is possible to identify the joint distribution on the wedge (7' < D) [3].

We formulate a constant cross-ratio [10] function model on the upper wedge T' < D. The
cross-ratio function is defined by

Ar(s|D =t)
0(s,t) = —————= 1
0= 3D )
where Ar(t|A) = limasy0d/dt Pr(T < t+ At|T > t,D € A), and A is a subset of the

interval (0, 00). If 6(s,?) in (1) is constant for all s and ¢, i. e.
0(s,t) =0, (2)

this assumption is identical to the cross-ratio function induced by the gamma frailty model of
Clayton and Oakes [11-13]. If O(s,t) = 1, then this implies independence of T and D on the
upper wedge. Note that independence here really refers to quasi-independence [14]. What
this means is that while the joint distribution is defined on T" < D, if we were to consider
any subrectangular portion within the region 7" < D, then T and D are independent on that
subrectangle.

Observe that the cross-ratio function model is being formulated only for the upper wedge
of the joint distribution of (7', D). This is due to the fact that the bivariate distribution of
(T, D) is not identified on the lower wedge. With semi-competing risks data, the cross-ratio
function has been referred to as the predictive hazard ratio [8]. They considered this model
and proposed a test of the independence of T and D. In [3], a closed form estimator of #
using modified weighted concordance estimating functions [12,13] along with an asymptotic
variance estimator was developed.

A more flexible formulation for the constant cross-ratio model occurs through the use
of copulas [15]. The copula corresponding to the Clayton-Oakes model allows for negative

correlation, although the distribution is only absolutely continuous (i.e. has a density) when
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6 > —0.5. The copula approach was adopted in [9], where two estimating procedures, one
based on estimating functions and the other based on a two-stage likelihood approach, were
proposed.

In the presence of the discrete covariate Z, the natural extension of the model described
previously is 6(s, t|Z = z) = 0,, where 0(s,t|Z = 2) = M (s|D =t,Z = 2)/Ar(s|D > t,Z =
z) and

d
M(tlA,Z = 2) = lim ZPr(T <t+AT >t,DeAZ=2) (3)

with A an interval in (0,00). Thus, a Clayton-Oakes frailty model is assumed for each
stratum defined by Z. Our interest is in testing the null hypothesis that the predictive
hazard ratio does not depend on Z, i.e. Hy : 8, = 6. This hypothesis corresponds to no
interaction effect between Z and the association parameter for the joint distribution of (7, D)

on the upper wedge.

3. Testing and Estimation Procedures
3.1. Association between T and D for K =1

To motivate the proposed testing procedures, let us first study the case where K = 1. For
t=1,...,nand j = 1,...,n, define Xz-j = X; N Xj, ffij =Y, NY}, C’ij = C; A Cj and
Di; = I(Xy; < Yy < Cy;). We start with model (2). In [3], the following class of estimating
functions were used to estimate 6:
UL(6) = ) W (Xy, Vi) Dis{ Ay — 0/(1 4 6)}, (4)
i<j
where W (u,v) is a weight function that converges uniformly to w(u,v), a bounded deter-
ministic function, and A;; = I{(X; — X;)(Y; = Y;) > 0}, 4,5 = 1,...,n. Note that the
estimating function being constructed is based on the indicator that the ith and jth pairs of
observations are concordant; in the absence of censoring, this is the same as the estimating
function used to estimate Kendall’s 7. If one sets U; () in (4) equal to zero, then one obtains

the following closed-form estimator for 6:
pall > i W(Xij, Vi) Dig Ay
Doici W(Xi5, Yij) Dij (1 — Ayy)

6
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In [3], it is shown that the asymptotic distribution of n=/2U/(#) is normal with mean 0 and

variance

I(0) = lim 2n° Y~ QuQkm + QuQim + QemQim,

n—00
k<l<m

where Qi; = W(Xij, Vi) Dij{Aij —0/(14+6)}, 0,5 =1,...,n. A simple estimator of I = I(f),
I, can be found by plugging in f into Qi; and taking empirical averages. A test of no
association between T and D on the upper wedge can be constructed using n=3/2U(1)/ 12,
By standard Taylor series arguments, n'/ 2(@ — 0) converges in distribution to a normal

random variable with mean zero and variance I/J(0)?, where

T =2 %
ﬂwﬂyzZm LY D (1+6)72
1<J
A consistent estimator for J(f) can be found by plugging in empirical quantities and 9 for
6.

Note that the estimation procedure for # proposed here is semiparametric in that the

marginal distributions of 7" and D are not needed for specification.

3.2.  Association between T and D for K > 1

We now consider the case where K > 1. Using the gamma frailty model, we wish to
test the null hypothesis that Hy : 0(s,t|Z) = 6. We propose using the following class of test

statistics:

ZZW (X5, Vij) (Dijz — D) Ay, (5)

k=1 i<j
where D;j;, = I(Xij < ﬁj = C‘i]-,Zi = Z; = z), and W}, is a weight function similar to
that described in §3.1. In the Appendix, we prove that under the null hypothesis (i.e., the
association between T and D is constant for all values of Z), n=3/2T} has a limiting limiting
normal distribution with mean zero. The formula for its variance can also be found there.
The class of statistics 77 represents differences between stratified and unstratified analyses;
under the null hypothesis of no interaction between Z and the association parameter, they
should yield consistent results. A similar idea is exploited in the construction of k-sample

log-rank statistics for univariate survival data [16].
7
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As can be seen in the Appendix, the variance for the limiting distributions of these random
variables is fairly complicated. In other multivariate survival contexts, various authors [9,17]
have advocated using the bootstrap and jackknife for variance estimation. Here, we will use
a variation of a resampling method proposed in [18] for estimating the variance of the test
statistic. Note that (5) has the following form:

K
T, = Z Z Tijk, (6)
k=1 i<j
where T, = Wy (Xij, ffij)(Dijz — D;;)A;;. The statistic can be approximated by a U-process
of order two [19]. To apply the method of [18], we generate n N(0,1) random variables

(Gy,...,G,) and calculate perturbations of (6):

K
Ty =Y ) TiuGiG;. (7)

k=1 i<j
Notice that in (7), the only stochastic components are (Gy,...,G,). We choose normal
random variables for resampling in (7), but we can use any random sample (Gy,...,Gy)

such that E(G;) = 0 and Var(G,) = 1. By arguments similar to those given in [18], under
the null hypothesis, n=3/2T7 and n~3/2T} have the same limiting distribution. This leads to

the following algorithm for calculating the variance of the test statistics 77:

1. Generate n iid N(0,1) random variables (G1,...,G,) and calculate 77"

2. Repeat step 1 M times.

This resampling procedure is quite fast. In practice, we usually take M = 1000. We can
then estimate a 95% confidence interval of 73 in one of two ways. The first is to calculate a
standard error based on the empirical distribution of 77. A second way is to take the 2.5th
and 97.5th percentiles of the empirical distribution of T7.

The choice of weight function Wy (u, v) for 77 will depend on the class of local alternatives
that are under consideration. In Section 4, we study the finite-sample properties of several
weight functions for the class of statistics defined by 7.

It should also be noted that we are performing the testing within the gamma frailty model.

The alternative hypothesis is that the cross-ratios are not equal across strata defined by Z.
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In the simulation studies in Section 4.1, we study the robustness of the testing procedure

when the gamma frailty model is not correct.

3.3. Combining test statistics

A unique feature of semi-competing risks data relative to classical competing risks data
is that the marginal distribution of D is identifiable. Assessing the effects of leukemia type
on the transplantation process can be reformulated in one manner as a multiple endpoints
problem in which the effect of Z can affect various aspects of the transplantation process. One
could imagine that there might be covariate effects of Z on D as well as that on dependence
between T and D. Denote the hypotheses being tested as HP and Hg', respectively. One
could imagine combining inference about D between strata (e.g., using a k-sample log-rank
test) with the methods proposed in this paper. A simple method for doing this is a sequential
method of Holm [20]. Let p; and p, denote the p-values from the k-sample log-rank statistic
and one of the tests proposed in the previous section. Let the ordered p-values be denoted

as p(1) < p(z) and overall type I error level be . The procedure is as follows:
1. If py < /2, then continue to step 2. Otherwise, fail to reject HP and H{.

2. If pig) < a, then reject HP and H{. Otherwise, reject the hypothesis corresponding

to pq) but fail to reject the hypothesis corresponding to p().

It can be shown that the overall type I error rate for this multiple testing procedure is «.
An advantage of this testing procedure is that it allows the investigator to determine what
the separate effects of Z on D and the association between 7" and D and their statistical
significances are while at the same time allowing for a single probability statement regarding
the effects of Z on D and on the association between 7" and D.

Because the marginal distribution of 7" is not identifiable based on the observable data,
how to combine information on 7" with the procedures here is not as clear. In the work of
[21], they focus on the estimation of the distribution of T in this setup. It may be possible

to combine ideas from that work with those proposed here.
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4. Numerical Examples
4.1. Simulation studies

To assess the finite-sample properties of the proposed methods, a series of simulation studies
was conducted. In the first set of simulation studies, we wanted to determine the accuracy
of variances using the resampling-based method relative to the model-based variance. We
studied the behavior of (5) with W, = 1. We considered K = 2 and generated data from a
bivariate Clayton model under two scenarios. In the first, #; = f; = 2, while in the second,
01 = 2 and Ay = 4. The marginal distributions for 7" and D were exponential with means
2 and 6. An independent U(0, 3) random variable was generated for censoring; this yielded
10% censoring for T in the first scenario and 25% censoring in the second. We used the
model-based variance estimator derived in the Appendix and that for the variance based
on the empirical distribution of 7*. We consider sample sizes n = 50,100 and 150 and
assumed equal sample size in each stratum. For each simulation setting, 2000 samples were
generated, and 1000 resamplings were performed within each simulation sample. The results
are presented in Table 1. Based on the estimated variances, it seems as if the resampling-
based variance estimator tends to overestimate the true variance in smaller samples. This
bias diminishes in larger samples. The estimators also appear to be fairly concordant.
Having determined from the previous set of studies that the resampling-based method is
accurate, we next compared the testing procedures in §3.2 in terms of size and power. We

consider three weight functions, which are extensions of those considered in [9]:
Wlk(s, t) = 1,

Woi(s,t) =Y I(X; > 8,Y; > t,Zi=k)/ Y I(X;>s,Y; > 1),
=1 i=1

and

Wik (s, ) :ZI(Xi > s,Y; >t)/ZI(X,- >s5Y, >t 72 =k).
ol i=1

The resampling-based method for variance estimation was utilized in the simulation studies.

Again, sample sizes n = 50, 100 and 150 were used. The same numbers of simulation samples

10
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and resamplings were used as in the previous set of simulations. We set K = 2 and generated
data from two models. The first is the bivariate Clayton model. For calculations of size, we
took #; = 6y = 2, while for power, we set # = 2 and 0y = 4. The second model is a bivariate

normal distribution for (log D,logT), given Z = z with mean zero vector and covariance

L p.
p. 1)°

For calculations of size, we set p; = po = 0.1, while for power, we take p; = 0.1 and p, = 0.5.

matrix

Even though the bivariate normal model does not have a constant cross-ratio function, we
wanted to determine if there was any robustness of the proposed testing procedure. The
simulation results are summarized in Tables 2 and 3. We find that the tests tend to be very
slightly anti-conservative in smaller samples, although this behavior diminishes in larger
samples. The percentile and empirical standard errors tend to perform quite similarly here.
In terms of the weight function, weight W) tends to yield higher power. The robustness of
the procedure seems to be adequate based on the bivariate normal distribution results for
size. For power, it is more difficult to interpret results because there is a violation of the

gamma frailty model.
4.2. Transplantation data

We now return to the transplantation study discussed in Section 1. In this multicenter
clinical trial, patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia
(ALL) underwent bone marrow transplantation and were followed prospectively. As noted
in Klein and Moeschberger [2], the recovery from transplantation is quite complex. These
data have been analyzed previously in terms of joint estimation of the two failure time
endpoints [3] as well as the dependence between disease-free survival and survival for the
entire population using the gamma frailty approach [9]. Here, we choose to focus on the
latter goal of assesing dependence between time to platelet recovery and time to death. We

wish to determine if the dependence between platelet recovery and survival varies by disease

type (ALL, AML low risk, AML high risk).

11
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We first start by considering the gamma frailty model for semi-competing risks data
with respect to time to platelet recovery and death. The estimate of #, ignoring disease
type, is 1.23. We computed the estimator of # in the three subgroups using an unweighted
estimator; these are 0.60, 2.37 and 1.15 for the ALL, AML low risk and AML high risk
groups, respectively. Calculating (5) with the three choices of weight functions described
in the previous section, we find strong evidence for an interaction between the dependence
parameter and risk group. The p-value was less than 0.0001 for all three weight functions.

Next, we wanted to determine the effect and associated significance of leukemia type on
two aspects of the post-transplantation process; that on survival and that on the dependence
between platelet recovery and survival. To adjust for the multiple testing issue, the sequen-
tial method from §3.3 is used. The survival curves are plotted in Figure 1. The survival
distribution is significantly different between the three groups (p-value from log-rank test
= 0.0004). Application of the sequential testing procedure yields a significant difference
in both survival and association between platelet recovery and survival between the three

groups.
5. Discussion

The gamma frailty model has been proposed recently in the literature for the analysis of
semi-competing risks data [3,8,9]. There have been two goals in the use of this model. One is
the estimation of the joint distribution of the time to event and time to dependent censoring;
this was studied primarily in [3,9]. If the dependent censoring is death, as is the case in the
transplantation study, then the interpretation of the joint distribution is quite controversial.
The second use of the model, addressed in [8], is to provide a dependence measure between
the two failure times. It is this use of the model that we seek to extend in this paper.
While the question of dependence can also be addressed using time-dependent covariates
in a proportional hazards model, it can be problematic to interpret for practitioners. The
cross-ratio interpretation of the gamma frailty model potentially has more appeal.

While there has been recent work in the area of studying dependence with semi-competing

risks data, regression generalizations have not appeared yet. It seems quite plausible that the
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dependence between two failure times might depend on covariates or might have an interac-
tion with a covariate. In this paper, we have proposed a testing procedure for association in
semi-competing risks. It represents a generalization of the work of previous authors [3,8,9].
The procedures proposed in the paper test for an interaction effect between the dependence
parameter with a discrete covariate.

It should be noted that the proposed sequential procedure in §3.3 cannot detect the
situation when HP is accepted, but H{' is rejected. This may happen when Z shortens T
but prolongs T' A D given that T < D. Also, more aggressive treatment may be applied to
the subjects under study once their events of T" occur which would make the comparison
based on D implausible. Alternatively, one may test the null hypothesis using 7" A D first
and then test H{! next. Note that the failure time T A D is also an identifiable quantity.

The test statistics that have been constructed are based on the gamma frailty model
and thus strictly speaking can only be used for testing the null hypothesis of constant cross-
ratio across strata versus the alternative hypothesis of non-constant cross-ratio across strata.
More formally, we could consider procedures in which we first assess goodness of fit for the
Clayton-Oakes model and then perform the test proposed here. One sequential testing

procedure would be the following:

1. If the goodness of fit method of [3] fails to reject the null hypothesis that the Clayton-

Oakes model holds, proceed to step 2. Otherwise, stop.

2. Perform the test proposed in the paper.

How to combine these testing procedures optimally remains an open question.
The issue of interaction between dependence and disease type has been considered here.
However, it might also be the case that disease type is confounding the dependence between

the failure times. Thus, regression modelling procedures would be required.
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Appendix
Asymptotic normality of n=3/>Ty
Define the following estimating functions:

= 3 WXy, ) Diy{Ay — 6/ (1 +6)},

1<J

and

1<J
k=1,..., K. Let us consider the vector n=3/2{Uy1(6;), ..., Uik (0x),U(#)}. By multivariate

extensions of usual results from the theory of U-statistics [22, Chapter 12], this vector con-
verges in distribution to a normal random vector with mean zero vector and (K+1) x (K+1)

variance-covariance matrix X with element

05 = lim 2n°° Z OntiOhmj QuGhm + OniiOimjQnQum + OtmiOhmj QimQhm,

n— 00
h<l<m

where 6;;;, is defined by

TN, i=K4lorj=K+1.

either ¢ or j equals K.

Under Hy: 60, =--- = 91{ = 6, we have by addition and subtraction that

-~ 0

k= 1Z<J

S S WS F)D {Aij_ 1-0%9}

k=1 i<j

= D> Y (8)

k=1 2<j

where
Yijk = Wi(Xsg, Vi) 1(Zi = Z; = k)Dyj {Ay; — 0/ (1 + 04)}=Wi(Xij, Yij) Dij {Aij — 0/(1 +0)},

i,j = 1, e, Ny e 1, Alirse K. Note that T = A{U11(01), ceey UlK(HK), U(H)}, where A is the
1 x (K +1) vector (1,...,1,—K). Under Hy, vector n=3/?T converges in distribution to a

normal random vector with mean zero and variance AX AT,
14
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Table 1. Comparison of resampling-based and model-based variance estimators.

01 = 92 = 2
n MOD RES Bias
50 0.25 0.23 0.02
100 0.19 0.18 0.01
150 0.16 0.16 0.01

01 = 2, 02 = 4
MOD RES Bias
032 029 0.04
0.25 0.23 0.03
0.20 0.20 0.01

Note: MOD represents the estimator of the variance of (5) using model-based estimator from

the Appendix, averaged over 1000 simulations ; RES represents the estimator of variance

using empirical distribution of 77, averaged over 1000 simulations. Bias is the mean absolute

deviation between the two estimators, averaged over 1000 simulations.

Table 2. Empirical sizes of test statistics

01:92:2 p1:p2:01
n Method W1 WQ W3 W1 W2 W3
50 SE 0.052 0.054 0.053 0.055 0.054 0.052
Percentile 0.053 0.051 0.052 0.052 0.053 0.051
100 SE 0.049 0.048 0.050 0.049 0.048 0.049
Percentile 0.048 0.048 0.048 0.049 0.049 0.048
150 SE 0.048 0.049 0.048 0.048 0.049 0.048
Percentile 0.048 0.048 0.049 0.049 0.047 0.049
Table 3. Empirical powers of test statistics
01:2,92:4 ,01:01,,02:05
n W1 W2 W3 W1 WQ W3
50 SE 0.42 0.38 0.33 0.41 0.36 0.32
Percentile 0.45 0.40 0.35 0.42 0.37 0.32
100 SE 0.73 0.65 0.60 0.69 0.66 0.63
Percentile 0.70 0.62 0.59 0.67 0.64 0.60
300 SE 096 0.93 0.91 0.92 0.89 0.85
Percentile 0.96 0.93 0.91 0.92 0.88 0.85
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Figure 1: Overall survival by leukemia group: solid line = ALL, dashed line = AML low
risk, dotted line = AML high risk.
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