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1. Introduction

Recent developments in molecular technology such as gene-expression microarrays and proteomics

have led to a surge in research aimed at discovering markers useful for disease screening or for providing

patient prognosis. We consider a marker to be any measurement that has the potential to signal the

onset or progression of disease. Examples of potential markers include prostate specific antigen (PSA)

as an indicator of prostate cancer, or pulmonary function measures such as forced expiratory volume

(FEV1) as an indicator of functional decline prior to death among cystic fibrosis patients. Longitudinal

marker analysis seeks to evaluate whether changes in a marker process correlate with a key clinical

event time such as disease onset or death. Ideally a marker process would provide definitive and early

information regarding disease onset. However, in practice most biological measurements contain

substantial variability which complicates their use in guiding health care decisions. Characterizing

the accuracy of time-varying markers for disease detection is therefore a critical step in the marker

discovery process.

Retrospective longitudinal studies can be useful in a key phase of marker development (Pepe,

Etzioni, Feng, Potter, Thompson, Thornquist, Winget and Yasui 2001). With this design the ca-

pacity of a marker to detect preclinical disease can be evaluated as a function of time prior to the

clinical occurrence of signs and symptoms. The scientific goal is to identify markers that exhibit

high discriminatory ability at relatively early stages of disease. Traditionally in medical diagnostic

research the receiver operating characteristic (ROC) curve is used to summarize the accuracy or dis-

crimination potential of a marker measurement. (Hanley 1989; Zweig and Campbell 1993). However,

to characterize early disease detection the cross-sectional concepts of sensitivity and specificity that

are typically displayed in an ROC curve need to be extended to incorporate both the time-varying

nature of a marker and the clinical onset time of the disease. In this article we consider new semipara-

metric statistical methods for estimating time-dependent sensitivity, specificity, and ROC curves that

adopt weak distributional assumptions. In addition, we develop the asymptotic distribution theory

that allows inference for either time-dependent sensitivity and specificity, or for time-dependent ROC

curves. Our methods also allow accuracy summaries to depend on covariates, and thus can be used

to evaluate whether the accuracy of a marker varies across patient subgroups.
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In the classic diagnostic testing setting, disease status is represented by a binary variable D i

for subject i. Furthermore, the relationship between Di and a continuous test result Yi for a given

subgroup defined by a covariate vector Zi is displayed through a conditional ROC curve. A conditional

ROC curve displays the full spectrum of values for sensitivity, or the “true positive rate” (TP), P (Y i <

c|Di = 1,Zi), and 1 minus the specificity, or the “false positive rate” (FP), 1 − P (Yi ≥ c|Di = 0,Zi)

by considering all possible test threshold values c. Therefore, an ROC curve is a plot of TP versus FP

for c ∈ (−∞,∞). In our definitions for TP and FP we assume that a low marker value is indicative of

disease, but parallel definitions can be adopted when high marker values are associated with disease.

When tests are measured longitudinally, we can define TP and FP as time-dependent functions

TP (s, c|t,Zi) = P [Yi(s) < c|Di(t) = 1;Ti > s,Zi] (1.1)

FP (s, c|t,Zi) = P [Yi(s) < c|Di(t) = 0;Ti > s,Zi]. (1.2)

Here Yi(s) indicates a marker measured at time s, with s ≥ t0, the baseline time, and Di(t) is a

binary variable indicating the disease status of subject i at time t. We recognize that there can be

two useful time-varying “case” definitions to obtain Di(t) = 1 based on the disease time Ti: if we are

interested in the incidence of the disease at time t, then we can define Di(t) = 1 when Ti = t; if we

are interested in the prevalence of the disease by time t, we can define Di(t) = 1 when Ti ≤ t.

In this manuscript we focus on incident ROC curves defined as a plot of [TP I(s, c|t,Z), FP C(s, c|t?,Z)]

for all possible c, where

TP I(s, c|t,Zi) = P [Yi(s) < c|Ti = t;Zi, Ti > s] (1.3)

FP C(s, c|t?,Zi) = P [Yi(s) < c|Ti > t?;Zi, Ti > s] . (1.4)

Here, we use t? in the definition of FP to denote as controls those subjects that do not experience the

disease prior to a fixed follow-up time. This definition is useful when some subjects are thought to

avoid disease and may reasonably be identified as the “long term survivors” characterized by Ti > t?.

Incident ROC curves are most useful in a retrospective study when the timing of diagnosis for diseased

patients is certain.
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Incorporating the time dimension in ROC analysis has recently been discussed by a number of

authors (Etzioni et al. 1999; Slate and Turnbull 2000; Heagerty, Lumley and Pepe 2000; Cai and

Pepe 2002). Non-parametric methods that characterize accuracy using disease prevalence for the

case definition, Di(t) = 1(Ti ≤ t), is given in Heagerty et al. (2000). Other authors have used

the incident case definition, Di(t) = 1(Ti = t), including Etzioni et al. (1999), Slate and Turnbull

(2000), and Cai and Pepe (2002). There are two general approaches to characterizing accuracy and to

calculating covariate specific ROC curves. First, direct regression approaches for ROC analysis have

been proposed (see Pepe (1998) and Pepe (2003) for reviews). These methods use generalized linear

model concepts to characterize the shape of the ROC curve and to allow covariates to directly impact

accuracy. For longitudinal data Etzioni et al. (1999) illustrate the ROC-GLM approach for evaluating

time-dependent accuracy. Despite recent work that permits flexibility in the direct ROC regression

approach (Cai and Pepe 2002; Li, Tiwari and Wells 1999), the methods have not been extended to

allow covariates to impact the link function, and thus potentially place restrictions on how the shape

of the ROC curve varies with covariates. The semi-parametric methods that we introduce in section

2 permit the shape of the ROC curve to change smoothly with covariates.

A second general approach to estimating covariate specific ROC curves is based on modelling of

the marker distribution conditional on disease status and covariates. Given estimates of the marker

distribution for cases and controls an induced covariate specific ROC can be calculated (Tosteson and

Begg 1988). For longitudinal markers Etzioni et al. (1999) and Slate and Turnbull (2000) discuss a

parametric regression approach that uses linear mixed models to characterize the longitudinal marker

distribution for diseased and non-diseased subjects. In this approach the disease onset time, T i, is

an additional covariate for the cases only. Our proposal is to use smooth semi-parametric regression

quantile methods to model the marker distribution as a function of disease status, covariates, and

disease onset time for the cases. By using flexible regression quantile methods we can relax the

distributional assumptions adopted by previous proposals.

In section 2 we describe the estimation and inference procedures. We outline the asymptotic

distribution theory for the proposed estimators in section 3. We use pulmonary function data from

cystic fibrosis patients to illustrate the method and to compare semi-parametric analysis results to
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parametric results.

2. Semiparametric Regression Quantile Method

2.1 Notation

In many studies subjects are classified either as disease cases or as controls on the basis of the

observed event time. For example, control subjects may be defined as individuals who after t? time

units remain free of disease, while cases are individuals with an observed event time, Ti < t?. Here we

consider a case-control study setting, where there are nD cases and nD̄ controls among n subjects (i.e.,

n = nD + nD̄). Let Yik be the continuous random variable representing the marker value obtained

from the ith case at the kth visit time sik, with i = 1, . . . , nD, and k = 1, . . . ,Ki. For cases let

ZT
ik = vec(Ti, sik,Xi), or ZD, denote a vector of covariates associated with Yik, where Xi denotes a

vector of covariates that do not change with time. The total number of observations from the case

population is ND =
∑nD

i=1 Ki. Similarly, denote Yjl as the marker value obtained from the jth control

at the lth visit time sjl, with j = nD + 1, . . . , nD + nD̄, and l = 1, . . . , Lj . For controls let Zjl or

ZD̄ denote a vector of covariates associated with Yjl. Since there are no disease diagnosis times for

controls, ZT
jl = vec(sjl,Xj) with Xj as the time-independent covariate vector for the jth control. The

total number of observations for the control group is ND̄ =
∑nD̄

j=1 Lj. We thus have N = ND + ND̄

observations from the two populations.

2.2 Semiparametric Estimation of Regression Quantiles

We propose to use semiparametric regression quantile estimation in order to construct time-dependent

ROC curves. Similar to the methods of Heagerty and Pepe (1999), we characterize the conditional

distribution of [Yik|Zik] as from a location-scale family. Specifically, we represent a case marker value

as

Yik = µD(Zik) + σD(Zik)εD(Zik) (2.1)

where µD and σD are the location and scale functions, and the baseline distribution function for εD

is

F0,zD
(ε) = P [εD(Zik) ≤ ε|Zik]. (2.2)
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We characterize the conditional distribution of the marker measured from the control population

in the same way, with µD̄ and σD̄ representing the location and scale functions, and with the baseline

distribution function denoted

G0,zD̄
(ε) = P [εD̄(Zjl) ≤ ε|Zjl]. (2.3)

As in Heagerty and Pepe (1999), for continuous ZD, we model µD(Zik) and σD(Zik) as smooth

functions of Z parametrically using regression splines:

µD(Zik) =
P∑

p=1

βpRp(Zik) (2.4)

logσD(Zik) =

Q∑

q=1

γqSq(Zik) ; (2.5)

where Rp(Zik) and Sq(Zik) are regression spline basis functions. Heagerty and Pepe (1999) used

a quasi-likelihood method for estimation. For example, to estimate β̂p and γ̂p (for p = 1, . . . , P )

associated with the case population, we can simultaneously solve the following estimating equations:

nD∑

i=1

Ki∑

k=1

R(Zik)
T [Yik − µD(Zik)]/σ

2
D(Zik) = 0 (2.6)

nD∑

i=1

Ki∑

k=1

S(Zik)
T {[Yik − µD(Zik)]

2 − σ2
D(Zik)}/σ2

D(Zik) = 0 (2.7)

Estimation for µD̄ and σD̄ follows in a parallel fashion.

Similar to Heagerty and Pepe (1999), the baseline distribution functions F0 and G0 are left

unspecified, and can be estimated empirically based on the standardized residual εikD = εD(Zik) =

[Yik − µD(Zik)]/σD(Zik) and εjlD̄ = εD̄(Zjl) = [Yjl − µD̄(Zjl)]/σD̄(Zjl). If the distributions of the

standardized residuals are independent of covariates, the natural estimators for F0 and G0 are the

empirical distribution functions of the forms

F̂0(ε) =

nD∑

i=1

Ki∑

k=1

1

ND
1(ε̂ikD ≤ ε) (2.8)

and

Ĝ0(ε) =

nD̄∑

j=1

Lj∑

l=1

1

ND̄

1(ε̂jlD̄ ≤ ε), (2.9)

where ε̂ikD = [Yik − µ̂D(Zik)]/σ̂D(Zik) and ε̂jlD̄ = [Yjl − µ̂D̄(Zjl)]/σ̂D̄(Zjl). However, more general

methods can be adopted when the baseline distribution functions also vary with covariates ZD or ZD̄.
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In this manuscript we consider the symmetrized nearest neighbor (SNN) estimator (Yang 1981) for

the conditional baseline distribution function, which is defined as a weighted sum

F̂0(ε|Z, an) =

nD∑

i

Ki∑

k

1

W (Z)
wan(Z,Zik)1(ε̂ikD ≤ ε) (2.10)

where W (Z) =
∑

wan(Z,Zik) and an is a bandwidth parameter. A general form for wan can be

assumed with

wan(Z,Zik) = K

[
Hn(Z) − Hn(Zik)

an

]
(2.11)

where K(·) is a continuous and bounded probability kernel on [-1,+1], Hn(·) is the empirical distri-

bution function of Z. An SNN estimator for G0(ε|Z, an) can be similarly defined. In the following,

we use the notation F0,zD
, G0,zD̄

and F0(ε|Z = zD, an), G0(ε|Z = zD̄, an) interchangeably.

2.3 Semiparametric Regression-Quantile-Based Estimator of ROC Curves

We now construct an estimator for a time-dependent ROC curve based on the semiparametric regres-

sion quantile estimators. We estimate an ROC curve for a given covariate value Z by first modeling

the marker as functions of covariates ZD for the cases or ZD̄ for controls. By using the semipara-

metric regression quantile methods to model the marker, we can derive a semiparametric estimator

for conditional ROC curves. For convenience, we define a positive test as a marker value less than a

certain threshold, and thus the true positive rate (TP) is defined in terms of the cumulative distri-

bution function F (c) instead of survival function 1 − F (c). For any false positive rate p ∈ [0, 1], our

proposed estimator for the ROC curve is

R̂OCz(p) = F̂0,zD

[
µ̂D̄(zD̄) − µ̂D(zD)

σ̂D(zD)
+ Ĝ−1

0,zD̄
(p)

σ̂D̄(zD̄)

σ̂D(zD)

]

≡ F̂0,zD

[
α̂0 + Ĝ−1

0,zD̄
(p)α̂1

]
(2.12)

where F0,zD
, G0,zD̄

, µD(zD), µD̄(zD̄), σD(zD) and σD̄(zD̄) are defined as in section 2.2. Ĝ−1
0,zD̄

(p) is

the conditional empirical quantile function, with Ĝ−1
0,zD̄

(p) = inf [ε : Ĝ0,zD̄
(ε) ≥ p].

3. Asymptotic Distribution Theory for ROC Curve Estimators

In this section we derive the large sample properties of our semiparametric ROC estimators. We first

consider an ROC curve estimator that assumes the baseline distribution functions do not vary with
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covariates Z. We then consider an ROC curve estimator based on SNN estimation of the baseline

distribution function, assuming dependence on covariates. Proofs for the main theorems are detailed

in the appendix.

Hsieh and Turnbull (1996) studied the asymptotic properties of a nonparametric ROC estimator

of the form F [G−1(p)], and a semiparametric ROC estimator where the distributions of F and G are

normal. In the simplest situation where there are no covariates and each subject contributes a single

observation, our estimators reduce to that of Hsieh and Turnbull (1996).

3.1 Baseline Distribution Functions Are Independent of Covariates

When baseline functions are independent of covariates, we use equation 2.8 and equation 2.9 to

estimate the baseline distribution functions F0 and G0.

For asymptotic results we assume the following regularity conditions:

• F0, G0 are continuous with continuous densities f0, g0, respectively.

• The slope of the ROC curve f0[α0 + G−1
0 (p)α1]/g0[G

−1
0 (p)], is bounded on any interval (a, b),

with 0 < a < b < 1.

• nD/n → λ > 0 as n → ∞.

• The number of observations per subject is relatively small with respect to n, the total number

of subjects. i.e., we assume ND/nD → cD and ND̄/nD̄ → cD̄.

Theorem 1 (Consistency of ROC curve estimator) Under the conditions above,

sup
0≤p≤1

|R̂OCz(p) − ROCz(p)| → 0 a.s. as n → ∞.

Theorem 2 (Asymptotic normality) Under the conditions above, there exists a probability space

on which one can define sequences of two independent zero-mean Gaussian variables [ U1(p), U2(p), 0 ≤

p ≤ 1 ] respectively such that for 0 < a < b < 1,

√
n[R̂OCz(p) − ROCz(p)] → Ψ(p), a.s. as n → ∞ uniformly on [a,b].

with

Ψ(p) =
1

cD

√
λ

U1(p) +
1

cD̄

√
1 − λ

α1
f0[α0 + G−1

0 (p)α1]

g0[G
−1
0 (p)]

U2(p)

7
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We specify the forms for U1(p) and U2(p) in the appendix.

3.2 Baseline Distribution Functions Are Smooth Functions of Covariates

In this section we provide asymptotic results for the situation in which baseline functions are smooth

functions of covariates. We use equation (2.10) to estimate the baseline distribution functions F0,z

and use a similar procedure for G0,z.

In addition to the assumptions in section 3.1, we also require the following:

• K(x) is twice continuously differentiable probability kernel which vanishes outside some finite

interval.

• (an)n is a sequence of bandwidths converging to zero, and na3
n → ∞ as n → ∞.

• Z has continuous distribution function H(·).

Theorem 3 (Consistency) Under the conditions above,

sup
0≤p≤1

|R̂OCz(p) − ROCz(p)| → 0 a.s. as n → ∞.

Theorem 4 (Asymptotic normality of SSN ROC estimator) Under the conditions above, there

exist a probability space on which one can define sequences of two independent zero-mean Gaussian

random variables [ U ?
1 (p), U?

2 (p), 0 ≤ p ≤ 1 ] such that for 0 < a < b < 1,

√
nan[R̂OCz(p) − ROCz(p)] → Ψ(p), a.s. as n → ∞ uniformly on [a,b].

with

Ψ(p) =
1

cD

√
λ

U?
1 (p) +

1

cD̄

√
1 − λ

α1

f0,z[α0 + G−1
0,z(p)α1]

g0,z[G
−1
0,z(p)]

U?
2 (p)

We specify the forms for U ?
1 (p) and U ?

2 (p) in the appendix.

3.3 Bandwidth Selection

Methods that guide the selection of smoothing parameters facilitate optimal estimation by balancing

bias and variance. In practice one can either employ cross-validation to select a bandwidth that

minimizes a pre-specified loss function, or adopt a data-driven procedure to estimate the asymptot-

ically optimal bandwidth. Ideally if the statistical objective is to estimate conditional ROC curves
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then a criterion focusing directly on key aspects of the ROC curve would be desirable. However,

our methodology is “indirect” in that we first model the marker distribution separately for cases and

controls, and then construct the induced conditional ROC curves. Given our approach, we adopt

an optimal bandwidth selection strategy that is based on the asymptotic distribution of conditional

quantile estimators for the cases and the controls.

For either cases or controls a given percentile p ∈ [0, 1] defines a quantile function εp(x) =

F−1(p|x). A theoretical bandwidth that minimizes the asymptotic integrated mean square error

(IMSE) is of the form an = (b/n)1/5, with

bopt(p) =

(∫
σ2[εp(x)|x]

{f [εp(x)]|x}2
dx

)
/

(
µ2

∫ {
ω[εp(x)|x]

f [εp(x)|x]

}2

dx

)
(3.1)

where σ2[εp(x)|x] is the variance of the estimator of F [εp(x)|x, an], ω[εp(x)|x] denotes the second

derivative of the smoothed conditional empirical process evaluated at εp(x), and f [εp(x)|x, an] is the

conditional density function for εij evaluated at εp(x). Ducharme, Gannoun, Guertin and Jéquier

(1995) give a detailed discussion of estimation for the necessary components in equation (3.1) when

analyzing independent data. For dependent data we simply modify the estimate of σ2[εp(x)|x] using

a robust variance estimator (see the appendix for details). Since bopt involves unknown quantities

such as σ2[εp(x)|x] and ω[εp(x)|x], in applications we simply use a plug-in estimator by first choosing

an arbitrary a∗n of order n1/5, and then estimating the terms in bopt(p) based on the preliminary

estimates using a∗
n.

Note that bopt(p) is a function of p and therefore may vary for different percentile values. In ROC

analysis we seek to estimate the entire distribution function (all quantiles) rather than focus on a single

percentile value, p. However, not all values for the false positive rate are scientifically important, and

in general interest primarily targets the true positive rate (sensitivity) that corresponds to low false

positive rates (1-specificity). Therefore, for controls we consider bopt(p) calculated for a range of values

such as 0.75 < p < 0.95, and for cases we consider a slightly wider range such as 0.60 < p < 0.95. For

cases and controls, we then evaluate the range of optimal bandwidths and for each group we choose a

single value which is nearly optimal over the percentiles of interest. Further work is warranted toward

developing an optimal bandwidth selection algorithm that is specially tailored for ROC analysis.

9
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4. Example: Cystic Fibrosis Data

4.1 Study Description

The cystic fibrosis (CF) data we analyze come from the U.S. Cystic Fibrosis Foundation (CFF)

National Patient Registry, a database of patients with CF seen at CFF-accredited care centers. The

registry has been updated annually since 1966 and contains longitudinal measures of participant

health status. Registry information available from 1990-1998 provides 9 years of follow-up on 21,138

patients for a total of N = 171,306 observations. During the follow-up period, 8.52% of the patients

died and thus most of the longitudinal marker information comes from patients who remain alive

through the end of the observation period.

In the subsequent analysis we focus on a standardized pulmonary function measurement known as

FEV1 percent-predicted. This outcome measures the volume of air that a subject expires in 1 second,

and standardizes by dividing the raw volume by the age and gender specific population reference

value. Thus, an FEV1 of 100 indicates that a subject has 100% of the expected lung function for

a healthy child of his/her age. Currently, children are registered for lung transplantation if their

FEV1 drops below a value of 30 (Davis 1997). One clinical question is whether this is an accurate

decision threshold, and whether an age-specific criterion might be warranted. Specifically, what is

the accuracy of the decision guideline? Does this identify most children who would otherwise die in

the near future, and does it capture few of the children who are likely to survive? To examine the

prognostic value of FEV1 at various ages we characterize age-specific sensitivity and specificity. By

estimating conditional quantiles we can compute the threshold value that correctly identifies a given

percent of children who do progress to death (i.e. the sensitivity), and similarly the threshold value

that incorrectly identifies a given percent of children who do not progress to death (i.e. the false

positive rate, or 1-specificity). Furthermore, by creating age-specific ROC curves we can determine

whether controlling the false positive rate at a low value such as 10% leads to adequate sensitivity,

and whether the threshold required to achieve good specificity suggests using a decision cut-off value

that depends on age.

To address the scientific questions we conduct a case-control analysis. A case-control study for

this application has several advantages. First, the sample size of the original CF data is considerable
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and therefore a full cohort analysis would be computationally demanding. Second, the dataset is

well suited for a case-control study since the outcome of interest, death, is rare and the exposure

of interest is commonly available. Therefore, we should be able to estimate an effect comparable to

that obtained from a full cohort analysis without much loss of statistical efficiency. Finally, as our

analysis is essentially retrospective and only requires the measurement time (age) and the time of

death we circumvent the issue of defining an appropriate time origin which would be required for

proper prospective analysis.

In the CF sample we have 21,138 patients, of whom 1,496 died within the follow up period.

For each of the observed cases, we assign two matched controls by selecting subjects who had been

followed for more than 5 years and who are still alive at the end of the study. Furthermore, for the

controls we exclude any observations that were obtained during the last five years before their final

study visit so that all measurements included for analysis were taken at least 5 years before death.

Thus the controls are defined here as those subjects who are ‘known’ to be healthy at the time FEV1

is measured; ‘known’ because death did not occur for at least 5 years. Controls are matched to cases

by age at study entry. The resulting analysis data contain 1,496 cases and 2,992 control subjects with

a total of 15,594 pulmonary function measurements.

The top panel of Figure 1 shows the association between FEV1 and subject age at measurement

time. We use smoothed curves to describe FEV1 as function of age. As expected, the trends are for

FEV1 to decrease with age for both cases and controls. This is consistent with the fact that decline

of pulmonary function with increasing age is a recognized consequence of the disease process. The

data suggest that the distribution of FEV1 is clearly different for cases as compared to controls, and

this discrepancy may also vary with age. The association between FEV1 and time relative to death

for the cases is displayed in the bottom panel of Figure 1. We see that FEV1 tends to be lower at

times close to the time of death compared to times further from death.

In order to estimate ROC curves and to determine whether they vary with age and with time before

death for cases, we fit a series of regression models. For comparison, models are fit both parametrically

using the method described by Etzioni et al. (1999), and using a semi-parametric regression quantile

method introduced in section 2.3. Although we focus on the current FEV1 value as the marker, other
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derived outcome measures that are a scalar function of the current and/or past response process could

be candidate markers. For example, the change in FEV1, Y ∗
ik(s) = Yik(s)−Yik(s−1), may represent a

marker that reflects failing pulmonary function. However, recent epidemiologic work suggests that the

current level of FEV1 rather than change in FEV1 is predictive of death (Liou, Adler, FitzSimmons,

Cahill, Hibbs and Marshall 2001). Below we briefly summarize the models for FEV1.

4.2 Parametric estimation of ROC curves

For the parametric approach, we use a linear mixed model for FEV1. For cases, we consider two

covariates for the kth measurement of subject i: age at which FEV1 is recorded (sik = ageik), and

years before death (Ti − sik = yearsBDik). Denote Zik = (sik, Ti − sik)
T = (ageik, yearsBDik)

T ,

the model takes the form

E[FEV 1ik|Zik, bi] = b0,i + b1,i · ageik + βD
0 + βD

1 · ageik + βD
2 · yearsBDik + βD

3 · ageik · yearsBDik,

For the lth measurement of control subject j, denote Zjl = (sjl) = (agejl). We assume

E[FEV 1jl|Zjl, bj ] = b0,j + b1,j · agejl + βD̄
0 + βD̄

1 · agejl .

The models for both cases and controls assume a random intercept and a random slope for age.

Maximum likelihood estimates for the linear mixed models provide estimates for the means (µD,

and µD̄) and standard deviations (σD and σD̄). Assuming normality for both the case and control

populations leads to an induced ROC model:

ROCZ(p) = Φ

[
µD̄(ZD̄) − µD(ZD)

σD(ZD)
+

σD̄(ZD̄)

σD(ZD)
Φ−1(p)

]
,

with Φ denotes the cumulative standard normal distribution. Table 1 summarizes the parameter

estimates for the linear mixed models.

Figure 2 displays the induced ROC curves at various times before death for FEV1 measured at age

10, 15 and 20. At all ages, we see that the discrimination is better when FEV1 is measured at times

closer to death. For example, at age 15, with a threshold of 39.17 for defining “test positive” (90% of

the controls are “test negative”), 60.3% of subjects who subsequently die at age 15 (the same year)

are “test positive”; However, among those who subsequently die at age 20 (thus FEV1 is measured 5
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years prior to death), only 30.6% are “test positive”. Using this approach, there does not appear to

be a trend in accuracy with age (Table 2). For example, if the false positive rate is controlled at 10%

them when FEV1 is measured at the year of death (the time at which FEV1 is the most accurate),

57% of the children at age 10 are identified as “test positive”, whereas for FEV1 measured at age 20,

59% of those patients who died at age 20 were identified as “test positive”.

4.3 Semiparametric Regression Quantile Estimation of ROC curves

Separate models are now considered using the semiparametric regression quantile method to char-

acterize the marker distributions for cases and controls. For controls, we model the mean function

as

µD̄(ZD̄) = βD̄
0 + (βββD̄)TB(age)

and the logarithm of the standard deviation as

logσD̄(ZD̄) = γD̄
0 + (γD̄)TB(age)

where B(age) is a natural spline basis with knots at 10 and 20 years. For the baseline distribution G0

we chose either to use Ĝ0(εD̄), the empirical distribution function of the standardized residuals, or

use the locally weighted empirical distribution function Ĝ0(εD̄|age, an), where we consider distance

based on age.

For cases, we model the mean function as

µD(ZD) = βD
0 + (βββD)T [B(age) · B(yearBD)]

and the logarithm of the standard deviation as

logσD(Z) = γD
0 + (γD)T [B(age) + B(yearBD)]

where B(age) is a natural spline basis with knots at 10 and 20, and B(yearBD) is a natural spline

basis with knots at 2 and 4 years. For baseline distribution F0 we chose either to use F̂0(εD), the

empirical distribution function of the standardized residuals, or use the locally weighted empirical

distribution function, where we consider distance based on either age only, F̂0(εD|age, an), or years

before death only, F̂0(εD|yearBD, an). In our application, we use the Epanechnikov kernel K(x) =

13
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3
4(1− x2)I{|x| ≤ 1} and we select a bandwidth such that about 20% of the observations are included

for estimation at each unique value of Z. This bandwidth is selected based on a data-driven optimal

bandwidth selection algorithm described in section 3.3, and the estimated optimal bandwidths do

not appear to vary much when 0.75 ≤ p ≤ 0.95. For example, the bandwidth estimates for the cases

given by (3.1) are b̂opt(0.75) = 0.134 and b̂opt(0.95) = 0.143.

For controls, we observe a trend for the estimated mean FEV1 function µ̂D̄ to decrease with

increasing age. The standard deviation function, however, does not appear to vary much between 10 to

30 years of age. We also examine plots (not shown here) of the baseline distribution function Ĝ0(ε|age),

and the estimated percentiles of FEV1 as function of age based on the semiparametric quasi-likelihood

method: µ̂D̄(age)+σ̂D̄(age)Ĝ0(εD̄|age). Both the baseline distribution and equivalently the estimated

percentiles appear to depend on age.

For cases, we examine the estimated mean µ̂D and the estimated standard deviation σ̂D as a

function of year before death for various ages (Figure 3). We see that the mean function at age 10 is

generally higher than that at age 20, similar to the trend observed for controls. For each age, FEV1

level appears to increase as the time relative to death increases from 0 to four years, then gradually

levels off. The standard deviation function follows a similar pattern, but to a lesser extent. We also

check plots (Figure 4) that show the baseline distribution function as a function of age, F̂0{ε|age}, and

as a function of years before death, F̂0{ε|yearBD}. For both situations, higher percentiles appear to

vary with covariates more than lower percentiles. This suggests that a variable baseline distribution

estimator may be more appropriate than a constant baseline assumption for these data.

We compare the empirical distribution of the standardized residuals with a standard normal

distribution, for cases, the empirical percentile is generally higher than the Gaussian percentile in

the left part of the distribution (below 30%), but it tends to be lower than the Gaussian percentile

between 30% and 90%. QQ-plot (not shown) also reveals right skewness. This implies that the normal

assumption may not be plausible for these data. In contrast, for controls the empirical percentile is

in good agreement with the Gaussian percentile, and the QQ-plot reveals little skewness.

ROC curves at various times before death for 15 year olds are displayed in Figure 5. We compare

the ROC curves that assume F0 does not depend on covariate (panel (a)), those that assume F0
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depends on age (panel (b)), and those that assume F0 depends on the year before death (panel (c)).

Similar to the findings with the parametric method, we observe better discrimination between cases

and controls when FEV1 is measured at times closer to death across all ages and regardless of the

specific assumptions on F0. However, the ROC curves at 0, 1, 3, 5 years before death are considerably

different depending on the assumption about F0: the ROC curves at various times before death are

relatively closer to each other if we use the empirical distribution of the standardized residual to

estimate F0, in contrast to the ROC curves obtained by letting F0 vary with the time relative to

death. This can also be seen from Table 3, which lists the estimated sensitivities when specificity

equals 0.9. For example, at age 15, with an FEV1 value of 41 as the threshold for defining “test

positive”, 90% of the controls (those who lived at least beyond 20 years and are known to be alive

by the end of the study) are “test negative”. When F0 is assumed to be constant, the fraction of

subjects who are test positive are 74%, 66%, 49%, and 36% among those CF patients who die at age

15, 16, 18, and 20, respectively. However, if F0 depends on the time relative to death, then with the

same threshold, the corresponding true positive fractions become 80%, 69%, 50%, and 35%, which

for 0 and 1 year prior to death are meaningfully different from the estimates obtained based on the

other assumptions. Furthermore, comparing Table 3 with Table 2, we see there are also discrepancies

between the estimates from the parametric method and those from the semi-parametric method. In

order to estimate an ROC curve, we need to carefully characterize all components of the distribution,

including the mean, the standard deviation, and the baseline distribution function. Misspecification

of any of the three components may result in biased estimates of sensitivity and specificity.

The next logical step is to chose a model that best describes the baseline distribution. Developing

a formal model selection procedure in the semi-parametric setting appears to be difficult. Instead, we

suggest employing graphical summaries to assess whether the baseline distribution appears to vary

with covariates. For example, we can utilize QQ-plots to compare the distribution of the standardized

residuals across different values of a covariate. In Figure 6, we plot the quantiles of residuals at k

years prior to death against the quantiles of residuals at k + 1, . . . , 8 years prior to death for cases.

Many QQ-plots in the figure appear to be curved, indicating that the baseline distribution may not

be constant over years prior to death. In contrast, when we examine the baseline distribution across
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different ranges of age most of the QQ-plots are close to diagonal lines, and this is especially true for

controls. Thus, the assumption that G0 does not depend on age may be plausible for the data from

controls.

We also fit the same models using a Gaussian kernel function instead of the Epanechnikov’s

kernel function to estimate the baseline distributions. The estimated sensitivities are similar to those

in Table 3, indicating that the choice of the kernel function does not have substantial impact on the

estimation.

5. Summary

In this article, we introduce an approach for constructing time-dependent ROC curves that is based

on the semi-parametric regression quantile method for longitudinal data studied by Heagerty and

Pepe (1999). We characterize the reference distribution of a key clinical measurement for healthy and

diseased populations using a location-scale family. Quasi-likelihood methods are used to estimate

conditional mean and standard deviation functions. The empirical distribution, or a weighted empir-

ical distribution is used to characterize the shape of the marker distribion. We detail the asymptotic

theory for ROC estimators under two situations: where the baseline distribution is constant; and

where the baseline distribution is allowed to depend on covariates. For the second case we modify

the theoretical results from the conditional empirical process literature for the independent situation

(Stute 1984; Stute 1986) to account for the repeated measurements. Finally we use CF data to as-

semble a case-control study and build ROC curves that assess how well the distribution of FEV1

for cases at various times prior to death is separated from that of the controls. We compare the

results from our new methodology with that of a parametric method (Etzioni et al. 1999). Our

results indicate that specification of all three features of a distribution: mean; standard deviation;

and baseline function; makes a significant impact on the resulting ROC estimates. Compared with

the parametric approach, our method offers greater flexibility by having separate model choices for

each of the key distributional aspects. For independent data a parametric approach can be made

more flexible by adopting Box-Cox transformation methods for quantile estimation proposed by Cole

and Green (1992). Heagerty and Pepe (1999) discuss use of these methods for longitudinal measure-

ments. However, one of the main limitations of the Box-Cox approach is the necessary correct model
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specification (i.e. normality) for consistency of estimates, while our semiparametric method provides

generally consistent quantile estimates.

In our application, we have used kernel weight functions that require specification of a bandwidth.

Further work is warranted exploring appropriate data-driven optimal bandwidth selection procedures

tailored for ultimate ROC analysis. In addition, although we have detailed the large sample theory

for semiparametric ROC estimators the performance of our theoretical results should be evaluated

in small samples, and perhaps compared with alternative bootstrap inference methods. Finally, a

methodological issue illustrated in the cystic fibrosis analysis is the potential sensitivity of ROC

results to the selection of the baseline distribution model. Although we propose graphical methods

to assess the appropriateness of model assumptions, more formal model comparison methods would

be useful.
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Appendix A. Large Sample Properties for Proposed Estimators

A.1 Proof of Theorem 1

Lemma 1 Let F̂0(ε) =
∑nD

i=1

∑Ki

k=1
1

ND
1(ε̂ik ≤ ε) as in section 2.2, then

P [sup
x

|F̂0(x) − F0(x)| → 0] = 1.

The lemma is a straightforward extension of the Glivenko-Cantelli Theorem to weakly dependent,

identically distributed random variables. We omit the proof here.

Lemma 2 Let Ĝ0(ε) =
∑nD̄

j=1

∑Lj

l=1
1

ND̄
1(ε̂jl ≤ ε) and Ĝ−1

0 (p) = inf [ε : Ĝ0(ε) ≥ p] as in section 2.2.

P [|Ĝ−1
0 (p) − G−1

0 (p)| → 0] = 1.

The lemma can be established the same way as for showing the convergence of quantile for the

independent data (Shorack and Wellner 1986). For additional details regarding lemmas 1 and 2

please see Zheng (2002).

Proof. For α̂0 and α̂1 as defined in equation (2.12),

sup
0≤p≤1

|R̂OCz(p) − ROCz(p)|

= sup
0≤p≤1

∣∣∣F̂0

[
α̂0 + Ĝ−1

0 (p)α̂1

]
− F0

[
α̂0 + Ĝ−1

0 (p)α̂1

]
+ F0

[
α̂0 + Ĝ−1

0 (p)α̂1

]
− F0

[
α0 + G−1

0 (p)α1

]∣∣∣

≤ sup
0≤p≤1

∣∣∣F̂0

[
α̂0 + Ĝ−1

0 (p)α̂1

]
− F0

[
α̂0 + Ĝ−1

0 (p)α̂1

]∣∣∣+ sup
0≤p≤1

∣∣∣F0

[
α̂0 + Ĝ−1

0 (p)α̂1

]
− F0

[
α0 + G−1

0 (p)α1

]∣∣∣

= I1 + I2

for I1, since Ĝ−1
0 (p) → G−1(p) by Lemma 2, α̂1 → α1, and α̂0 → α0, then by the Slutsky theorem

α̂0 + Ĝ−1
0 (p)α̂1 → α0 + G−1(p)α1 in probability. Following Lemma 1, we have I1 → 0 in probability.

In addition, I2 → 0 in probability by the continuity of F0. This proves the Theorem. 2
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A.2 Proof of Theorem 2

Proof.

√
n[R̂OCZ(p) − ROCZ(p)]

=
√

n
{

F̂0

[
α̂0 + Ĝ−1

0 (p)α̂1

]
− F0

[
α̂0 + Ĝ−1

0 (p)α̂1

]}
+

√
n
{

F0

[
α̂0 + Ĝ−1

0 (p)α̂1

]
− F0

[
α0 + G−1

0 (p)α1

]}

= W1 + W2,

we first approximate W1 with a sum of i.i.d. terms: W̃1 = 1√
λcD

√
nD

1
nD

∑nD

i ξiD, with

ξiD =

Ki∑

k=1

{
1[εik < α0 + G−1

0 (p)α1] − F0[α0 + G−1
0 (p)α1]

}

By applying the Central limit theorem, we have for any 0 < p < 1, W̃1 →D
1√
λcD

U1(p),where U1(p)

is a zero-mean normal distribution whose variance σ2
D can be estimated by σ̂2

D = 1
nD

∑nD

i ξ̂2
iD. ξ̂2

iD

are obtained from ξiD by replacing εik, F0, G−1
0 (p), α0 and α1 with ε̂ik, F̂0, Ĝ−1

0 (p), α̂0 and α̂1.

For W2, we first take first order Taylor series expansion:

W2 =
√

nD + nD̄f0

[
α0 + G−1

0 (p)α1

] {
α̂1

[
Ĝ−1

0 (p) − G−1
0 (p)

]
+
[
α̂0 + α̂1G

−1
0 (p) − α0 − α1G

−1
0 (p)

]}
+ op(1)

Now,
√

nD̄{Ĝ0[G
−1
0 (p)] − G0[G

−1
0 (p)]} =

√
nD̄

nD̄

ND̄

1
nD̄

∑nD̄

j ξjD̄ is a sum of i.i.d terms, with ξjD̄ =

∑Lj

l=1

{
1
[
εjl < G−1

0 (p)
]
− p
}
, again by applying the Central limit theorem, we have for any 0 < p < 1,

√
nD̄{Ĝ0[G

−1
0 (p)] − G0[G

−1
0 (p)]} converge to a zero-mean normal distribution U2a(p) whose variance

can be estimated by σ̂2
D̄

=
∑nD̄

j ξ̂2
jD̄

. Let h be a mapping such that h(y) = G−1
0 (y), and ḣ−1 =

g0[G
−1
0 (p)] is continuous. Following Cramér’s theorem, we have

√
nD̄

[
Ĝ−1

0 (p) − G−1
0 (p)

]
→d

1

g0[G
−1
0 (p)]

U2a(p)

In addition, denote VD as the variance-covariance matrix for βββD (the parameters for µD) and

γγγD (the parameters for σD). Similarly, denote VD̄ as the variance-covariance matrix for βββD̄ (the

parameters for µD̄) and γγγD̄ (the parameters for σD̄), θθθ = (βββD, γγγD, βββD̄, γγγD̄), we have

√
n




β̂ββD − βββD

γ̂γγD − γγγD

β̂ββD̄ − βββD̄

γ̂γγD̄ − γγγD̄


→d N (0,

[
1
λVD 0
0 1

1−λVD̄

]
) ≡ N (0,Σ),
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Let g(θθθ) = α0 + G−1
0 (p)α1, and let g′(θθθ) denote its derivative, by Cramér’s device, we have

√
nD + nD̄

[
α̂0 + α̂1G

−1
0 (p) − α0 − α1G

−1
0 (p)

]
→D N (0, g′(θθθ)Σg′(θθθ)T ) ≡ U2b(p)

Thus for any 0 < p < 1, we have

W2 →d
1

cD̄

√
1 − λ

α1
f0[α0 + G−1

0 (p)α1]

g0[G−1(p)]
U2a(p) + f0[α0 + G−1

0 (p)α1]U2b(p)

≡ α1

cD̄

√
1 − λ

f0[α0 + G−1
0 (p)α1]

g0[G−1(p)]
U2(p)

Since W1 and W2 are independent,

W1 + W2 →d Ψ(p) =
1

cD

√
λ

U1(p) +
α1

cD̄

√
1 − λ

f0[α0 + G−1
0 (p)α1]

g0[G−1(p)]
U2(p)

2.

A.3 Proof of Theorem 3

Without loss of generality, we now assume the covariate vector Z is a scalar in the proof. The following

lemmas, whose proofs are omitted, follow from the results for conditional empirical processes and

conditional quantile processes (Stute 1986).

Lemma 3 Let F̂0(ε|Z = z, an) =
∑nD

i

∑Ki

k
1

W (z)wan(z, Zik)1(ε̂ik ≤ ε),where W (z) =
∑

wan(z, Zik)

with a general form of wan :

wan(z, Zik) = K

[
Hn(z) − Hn(Zik)

an

]

we have

P

[
sup

ε
|F̂0(ε|z, an) − F0(ε|z, an)| → 0

]
= 1.

Lemma 4 Let Ĝ0(ε|Z = z, an) =
∑nD̄

j

∑Lj

l
1

W (z)wan(z, Zjl)1(ε̂jl ≤ ε) and Ĝ−1
0,z(p) = inf [ε : Ĝ0(ε|Z =

z, an) ≥ p], then

P

[
sup

z
|Ĝ−1

0,z(p) − G−1
0,z(p)| → 0

]
= 1.

Proof of Theorem 3.

The theorem is easily shown in view of lemma 3 and lemma 4.
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A.4 Proof of Theorem 4

Lemma 5 Under the assumptions

A. an → 0 such that na3
n → ∞ and na5

n → 0,

B. there exists a distribution function of (Z, ε), say, M, with uniform marginals, and

C. sup‖t−s‖<δ |F (t|z) − F (s|z)| = o[(lnδ−1)−1] as δ → 0, uniformly in a neighborhood of z,

we have for F̄0(ε|Z = z, an) = a−1
n

∫
1(u ≤ ε)K

[
H(z)−H(v)

an

]
M(dv, du),

√
nDan[F̂0(ε|Z = z, an) − F̄0(ε|Z = z, an)] →d N (0, σ2

D)

for µ-almost all ε ∈ R, where M is a distributional function of (Z, ε) and σ2
D can be consistently

estimated by

σ̂2
D =

1

nD

nD∑

i=1

Ki∑

k=1

Ki∑

l=1

1

anc2
D

{
I(εik ≤ ε)K

[
Hn(Z) − Hn(Zik)

an

]

I(εil ≤ ε)K

[
Hn(Z) − Hn(Zil)

an

]}

Remarks: The assumptions are the same as for the independent case given by Stute (1986). For

assumption B, Let H denote the distribution function of Z, and L be the distribution function of ε,

we have

M(Z, ε) = C[H(Z), L(ε)]

i.e., M , a distribution function on [0, 1]2 with uniform marginals, can be obtained by finding a

transformation function C on [H(Z), L(ε)]. Thus we reduce our investigation to some uniform random

function.

Assumption C is satisfied whenever F0 is continuous of some order. It entails the equicontinuity

of F0 in a neighborhood of z.

Proof.

The proof for independent observations is given by Stute (1986). We now extend his results to the

correlated data situation to show that βn =
√

nDan[F̂0(ε|Z = z, an) − F̄0(ε|Z = z, an)] →d N (0, σ2
D).
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Let

F̂ ∗
0 (ε|Z = z, an) = a−1

n

nD∑

i

Ki∑

k

wan(z, Zik)1(ε̂ik ≤ ε).

now, F̂ ∗
0 (ε|Z = z, an) = F̂0(ε|Z = z, an)(NDan)−1W (Z) ≡ F̂0(ε|Z = z, an)fn(z), and Stute (1986)

shows that (nDan)1/2[fn(z) − 1] →p 0, and thus under the smoothness assumptions

βn =
√

nDan[F̂ ∗
0 (ε|Z = z, an) − F̄0(ε|Z = z, an)] + op(1) uniformly in ε.

In what follows we only work with F̂ ∗
0 (ε|Z = z, an), of which the asymptotic properties are the same

as those of F̂0(ε|Z = z, an).

Let Mn denote the bivariate empirical d.f. of the sample (Z1, ε1), · · · , (ZND
, εND

), we can write

F̂ ∗
0 (ε|Z = z, an) in the form of F̂ ∗

0 (ε|Z = z, an) = a−1
n

∫
1(u ≤ ε)K

[
Hn(z)−Hn(v)

an

]
Mn(dv, du). Because

of the heavy dependence of the weights for summands, we can not apply a central limit theorem to

nD dependent r.v.s directly. So the first goal of the proof is to approximate the SNN estimator with

a quantity that is the sum of nD independent random variables. The asymptotic approximation is

essentially the same as the method used when the ε′is are independent, details of which were given

by Stute (1984) and Stute (1986). In the following, we only outline the approximation procedure,

omitting further details that can be found in Stute (1984).

Assuming K is twice differentiable, we start by applying Taylor expansion to F̂ ∗
0 (ε|Z = z, an):

F̂ ∗
0 (ε|Z = z, an) = a−1

n

∫
1(u ≤ ε)K

[
H(z) − H(v)

an

]
Mn(dv, du)

+ a−2
n [Hn(z) − Hn(v) − H(z) + H(v)]

∫
1(u ≤ ε)K ′

[
Hn(z) − Hn(v)

an

]
Mn(dv, du)

+ a−3
n

∫
1(u ≤ ε)[Hn(z) − Hn(v) − H(z) + H(v)]2K ′′(∆)Mn(dv, du)/2

≡ I1 + I2 + I3,

where ∆ is on the line segment between a−1
n [Hn(z) − Hn(v)] and a−1

n [H(z) − H(v)]. Follows from

Lemma 1 in Stute (1984), we have (nDan)1/2I3 →p 0 as nD → ∞. Furthermore, Stute (1984) yields

that (nan)1/2I2 is asymptotically equivalent to

−n
1/2
D a−1/2

n F0(ε|Z = z)

∫
K

[
H(z) − H(v)

an

]
n

1/2
D [Hn(dv) − H(dv)].
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thus,

βn =
√

nDana−1
n

∫
1(u ≤ ε)K

[
H(z) − H(v)

an

]
Mn(dv, du)

− n
1/2
D a−1/2

n F0(ε|Z = z)

∫
K

[
H(z) − H(v)

an

]
n

1/2
D [Hn(dv) − H(dv)]

− √
nDana−1

n

∫
1(u ≤ ε)K

[
H(z) − H(v)

an

]
M(dv, du)

= (
nD

an
)1/2

∫
[1(u ≤ ε) − F0(ε|Z = z)] K

[
H(z) − H(v)

an

]
[Mn(dv, du) − M(dv, du)]

Furthermore, (nD

an
)1/2

∫
[1(u ≤ ε) − F0(ε|Z = z)] K

[
H(z)−H(v)

an

]
M(dv, du) is asymptotically negligi-

ble. Thus, asymptotically, βn = n
1/2
D

∑nD

i=1 ξi with

ξi =

Ki∑

k=1

ξik =

Ki∑

k=1

∫
1√
an

[1(u ≤ ε) − F0(ε|Z = z)] K

[
H(z) − H(v)

an

]
Mik(dv, du)

which is a standardized sum of nD i.i.d random variables. To apply the Central Limit Theorem, we

need to check that E(ξ2
i ) < ∞. Now, E(ξ2

i ) = E
(∑Ki

k=1

∑Ki

l=1 ξikξil

)
≤ ∑Ki

k=1

∑Ki

l=1

(
Eξ2

ikEξ2
il

)1/2
,

with

Eξ2
ik = a−1

n

∫
[1(u ≤ ε) − F0(ε|Z = z)]2 K2

[
H(z) − H(v)

an

]
M(dv, du)

= a−1
n

∫
E
{

[1(u ≤ ε) − F0(ε|Z = z)]2 |Z = v
}

K2

[
H(z) − H(v)

an

]
H(dv)

→ h(z)

∫
K2(s)ds < ∞.

Hence E(ξ2
i ) < ∞ since Ki is small relative to n. It then follows from the Central Limit Theorem

that βn →d N (0, σ2
D). A consistent estimator for σ2

D is σ̂2
D = 1

nD

∑nD

i=1

∑Ki

k=1

∑Ki

l=1 ξ̂ik ξ̂il.

ξ̂ik can be obtained by substituting the theoretical terms with their empirical counterparts.

Follows Corollary 2 of Stute (1986), we have for µ-almost all 0 < z < 1, when na5
n → 0, and under

the additional assumption that for each ε F0(ε|·) is twice continuously differentiable in a neighborhood

of z,

(nDan)1/2[F̂0(ε|Z = z, an) − F0(ε|Z = z, an)] →d N(0, σ2
D)
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Remark when we select optimal bandwidth with aopt
n , na5

n → c, c > 0, the limit process of the

conditional empirical is a noncentered Gaussian process, with some ‘bias’ term of the form

√
c

2
F

′′

(ε|z)

∫
u2K(u)du

Lemma 6 (Asymptotic normality of the conditional quantile process) Define a conditional

quantile function as

Ĝ−1
0 (p|z) = inf{ε ∈ R : Ĝ0(ε|z) ≥ p},

which is an estimator for the p quantile of G0(·|z) for 0 < p < 1. for such p, write εp = G−1
0 (p|z).

Under the above assumptions, if g0(εp|z) = (∂/∂ε)G0(ε|z) > 0 at ε = εp and F is continuous we have

for almost all z

(nD̄an)1/2[Ĝ−1
0 (p|Z = z, an) − G−1

0 (p|Z = z, an)] →d
1

g0(εp|z)
N (0, σ2

D̄)

where

σ2
D̄ =

1

nD̄

nD̄∑

j=1

Lj∑

l=1

Lj∑

m

ξjlξjm

with

ξjl =
1√

ancD̄

[1(εjl ≤ εp) − G0(εp|Z = z)] K

[
H(z) − H(zjl)

an

]

We omit the proof here.

Proof of Theorem 4

√
nan[R̂OCz(p) − ROCz(p)]

=
√

nan

{
F̂0,z

[
α̂0 + Ĝ−1

0,z(p)α̂1

]
− F0,z

[
α̂0 + Ĝ−1

0,z(p)α̂1

]}

+
√

nan

{
F0,z

[
α̂0 + Ĝ−1

0,z(p)α̂1

]
− F0,z

[
α0 + G−1

0,z(p)α1

]}

= W1 + W2

Now, by lemma 5, it can be shown that W1 →d
1

cD

√
λ
U?

1 (p). Here U ?
1 (p) is a zero-mean normal

distribution with variance σ2
D for any 0 < p < 1. A consistent estimator of σ2

D is

σ̂2
D =

1

nD

nD∑

i=1

Ki∑

k=1

Ki∑

l=1

ξ̂ikξ̂il
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ξ̂ik can be obtained by substituting the theoretical terms with their empirical counterparts, i.e.,

ξ̂ik =
1√
an

{
1[ε̂ik ≤ α̂0 + Ĝ−1

0 (p)α̂1] − F̂0[α̂0 + Ĝ−1
0 (p)α̂1|Z = z]

}
K

[
Hn(z) − Hn(zik)

an

]

By the fact that an → 0 and lemma 6, it is easy to show that for any 0 < p < 1, we have

W2 →d
1

cD̄

√
1−λ

α1
f0[α0+G−1

0
(p)α1 ]

g0,z(εp) U?
2 (p), where U ?

2 (p) is a zero-mean normal distribution with variance

σ2
D̄

for any 0 < p < 1. A consistent estimator of σ2
D̄

is

σ̂2
D̄ =

1

nD̄

nD̄∑

j=1

Lj∑

l=1

Lj∑

m=1

ξ̂jlξ̂jm

ξ̂jl can be obtained by substituting the theoretical terms with their empirical counterparts.

Since W1 and W2 are independent,

W1 + W2 →d Ψ(p) ≡ 1

cD

√
λ

U?
1 (p) +

1

cD̄

√
1 − λ

α1

f0,z[α0 + G−1
0,z(p)α1]

g0,z(εp)
U?

2 (p)

2.
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Figure 1: (a) FEV1 versus age at measurement for CF patients. Separate lines are fitted for controls,
cases and all patients with smoothing splines. (b)FEV1 versus time relative to death for CF patients.
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(a) (age=10)
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(b) (age=15)
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Figure 2: ROC curves for FEV1 measured at age 10, 15, and 20 at 0, 1, 3 and 5 years prior to death
using parametric RQ method. Panel(a)-(c) show the ROC curves at different ages. The diagonal line
in each plot is included for reference.
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Figure 3: Mean (top panels) and standard deviation (bottom panels) of FEV1 as a function of years before death for cases at various
ages: the functions are estimated with natural regression splines with knots placed at locations denoted by the vertical tick marks.
Dotted lines are the pointwise 95% confidence intervals.
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Figure 4: (a) Estimated quantiles of F0 based on the kernel estimation method. F0 is allowed to
depend on age.(b) Estimated quantiles of F0 based on the kernel estimation method. F0 is allowed
to depend on years before death.
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(a) Age=15, F0
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(b) Age = 15, F0(Age)
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(c) Age = 15, F0(AgeBD)
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Figure 5: ROC curves for FEV1 measured at age 15 at 0, 1, 3 and 5 years prior to death using
semiparametric RQ method. Panel (a) shows the ROC curves assuming F0 does not depend on
covariate. Panel (b) shows the ROC curves assuming F0 depends on age. Panel (c) shows the ROC
curves assuming F0 depends on years before death. The diagonal line in each plot is included for
reference.
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Figure 6: QQ-plots of standardized residuals εD(Zik) = [Yik − µD(Zik)]/σD(Zik) at different times prior to death for cases.
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Table 1: Estimation based on linear mixed models for CF data.
Fixed effect Random effect

β̂0 (SE) β̂1 (SE) β̂2(SE) β̂3(SE) σ̂int σ̂age σ̂ †
Control 92.41 (1.46) -1.34(0.06) 38.17 1.34 8.68
Case 43.55 (1.44) -0.62 (0.06) 4.20(0.25) -0.09 (0.01) 25.19 0.93 12.48

†: σ̂ is the estimated standard deviation for the residuals.

Table 2: Estimated sensitivities at specificity = 0.9 based on linear mixed models
years relative to death

age threshold 0 1 3 5

age = 10 41.29 0.573 0.511 0.389 0.276
age = 15 39.17 0.603 0.542 0.421 0.306
age = 20 35.25 0.594 0.538 0.424 0.317

Table 3: Estimated sensitivities with 95% confidence interval at specificity = 0.9 based on the semi-
parametric regression quantile method with Epanechnikov’s kernel.

years relative to death
threshold 0 1 3 5

age =10
F0 † 53.33 0.83 (0.81-0.85) 0.77(0.75-0.79) 0.65(0.62-0.68) 0.56(0.53-0.58)
F0(age) ‡ 55.04 0.86(0.80-0.92) 0.81(0.75-0.87) 0.70(0.63-0.77) 0.62(0.52-0.72)
F0(ageBD) † ‡ 53.33 0.87(0.84-0.90) 0.79(0.77-0.81) 0.64(0.61-0.67) 0.50(0.46-0.54)

age =15
F0 40.71 0.74(0.71-0.76) 0.66(0.63-0.68) 0.49(0.46-0.52) 0.36(0.33-0.38)
F0(age) 39.65 0.68(0.60-0.76) 0.60(0.53-0.67) 0.43(0.35-0.51) 0.33(0.25-0.41)
F0(ageBD) 40.71 0.80(0.76-0.84) 0.69(0.66-0.72) 0.50(0.46-0.54) 0.35(0.30-0.40)

age =20
F0 30.69 0.64(0.62-0.67) 0.55(0.52-0.58) 0.38(0.35-0.41) 0.27(0.24-0.30)
F0(age) 27.17 0.55(0.46-0.64) 0.42(0.34-0.50) 0.24(0.16-0.32) 0.15(0.10-0.20)
F0(ageBD) 30.69 0.72(0.68-0.76) 0.57(0.52-0.62) 0.39(0.33-0.45) 0.29(0.24-0.34)

†: F0 does not depend on covariates.
‡: F0 depends on age. Estimated with Epanechnikov’s kernel.
† ‡ : F0 depends on years before death. Estimated with Epanechnikov’s kernel.
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