
Harvard University
Harvard University Biostatistics Working Paper Series

Year  Paper 

Predicting Future Responses Based on
Possibly Misspecified Working Models

Tianxi Cai∗ Lu Tian†

Scott D. Solomon‡ L.J. Wei∗∗

∗Harvard University, tcai@hsph.harvard.edu
†Northwestern University, lutian@northwestern.edu
‡Brigham & Women’s Hospital, ssolomon@rics.bwh.harvard.edu
∗∗Harvard University, wei@sdac.harvard.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/harvardbiostat/paper48

Copyright c©2006 by the authors.



PREDICTING FUTURE RESPONSES BASED ON POSSIBLY MISSPECIFIED
WORKING MODELS

Tianxi Cai
Department of Biostatistics, Harvard University

677 Huntington Ave.
Boston, Massachusetts 02115, U.S.A.

tcai@hsph.harvard.edu

Lu Tian
Department of Preventive Medicine, Northwestern University

680 N. Lake Shore Drive
Chicago, Illinois 60611, U.S.A.

lutian@northwestern.edu

Scott D. Solomon,
Cardiovascular Division, Brigham & Women’s Hospital

75 Francis St.
Boston, MA 02115, U.S.A.

ssolomon@rics.bwh.harvard.edu

and L.J. Wei
Department of Biostatistics, Harvard University

677 Huntington Ave.
Boston, Massachusetts 02115, U.S.A.

wei@sdac.harvard.edu

SUMMARY

Under a general regression setting, we propose an optimal unconditional prediction proce-
dure for future responses. The resulting prediction intervals or regions have a desirable average
coverage level over a set of covariate vectors of interest. When the working model is not cor-
rectly specified, the traditional conditional prediction method is generally invalid. On the other
hand, one can empirically calibrate the above unconditional procedure and also obtain its cross-
validated counterpart. Various large and small sample properties of these unconditional methods
are examined analytically and numerically. We find that the K-fold cross validated procedure
performs exceptionally well even for cases with rather small sample sizes. The new proposals are
illustrated with two real examples, one with a continuous response and the other with a binary
outcome.

Keywords: Heterogeneous regression; K-fold cross validation; Misspecified regression model;
Optimal prediction region; Prediction error rate.
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1. INTRODUCTION

One of the main goals of regression analysis is to predict future responses based on vectors

of observable “baseline” covariates (Patel, 1989; Geisser, 1993; Preston, 2000). The conventional

frequentist’s prediction interval or region guarantees a certain coverage level under the setting

that one would repeatedly draw future subjects with the same fixed covariate vector of interest

(Stine, 1985; Carroll & Ruppert, 1991; Schmoyer, 1992; Olive, 2006). However, this conditional

coverage level requirement is rather stringent and may not be practically relevant. In practice, a

prediction interval procedure will be used for predicting future responses repeatedly for various

distinct sets of covariates. Therefore, it is appealing to consider prediction regions which have

the desirable average coverage level with respect to the covariate vector from a population

of interest. Similar arguments for utilizing such an averaging concept to evaluate a general

statistical method, which is expected to be used repeatedly under different settings, have been

made by Neyman (1977), Rubin (1984), Bayarri & Berger (2004) and Uno, Tian & Wei (2005).

In the first part of this article, we assume that the working regression model is correctly

specified and show how to construct an “optimal” prediction interval procedure among all the

aforementioned unconditional prediction methods with a pre-specified coverage level. In the sec-

ond part of the paper, we consider the situation that the working model may be misspecified.

For this case, generally the traditional conditional prediction intervals are not valid. On the

other hand, one can empirically calibrate the above unconditional optimal prediction procedure

and also obtain its K-fold cross-validated counterpart. We demonstrate that the true average

coverage probability of the resulting calibrated prediction regions converges to the nominal level

and that the sampling distribution of the true coverage level can be approximated by a simple

normal distribution. This approximation can be readily used to assess the reliability of a pre-

diction procedure. An extensive numerical study is also conducted to examine the finite sample

properties of the new methods. We find that the empirically calibrated, K-fold cross validated

procedure performs exceptionally well even for cases with rather small sample sizes. All the
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proposals are illustrated with two real examples, one with a continuous response variable and

another with a binary outcome.

Note that when the fitted regression model is misspeficied, robust inference procedures for

regression parameters, especially with respect to hypothesis testing, have been studied, for exam-

ple, by Gail, Wieand & Piantadosi (1984), Lagakos & Schoenfeld (1984), Struthers & Kalbfleisch

(1986) and Lin & Wei (1989).

2. OPTIMAL PREDICTION INTERVALS OR REGIONS WHEN THE

WORKING MODEL IS CORRECTLY SPECIFIED

First we consider the case that the response variable Y is absolutely continuous. Let Z be

its p-dimensional bounded covariate vector whose first component is one. Also, let Θ be a vector

of unknown parameters, whose dimension is either infinite or finite. Assume that there exists

Θ = Θ0 such that for Z = z, the conditional distribution of Y can be generated via a random

variable YΘ0(z). For example, one may let

h{YΘ(z)} = g(β′z) + σ(γ′z)ε, (2.1)

where β and γ are unknown parameter vectors, h(·), g(·), and σ(·) are pre-specified strictly

monotone functions, σ(·) > 0, and ε is a random error term which is free of z with zero mean

and unit variance. This is a typical heterogeneous regression model, which relates a continuous

response to its covariates (Carrol & Ruppert, 1988). If the distribution form of ε is completely

unspecified, Θ consists of β, γ and the distribution or density function of ε.

Suppose that we are interested in predicting the response Y 0 of a future subject with covariate

vector Z0 = z0. Moreover, suppose that the conditional distribution of Y 0 given z0 is the same

as that of YΘ0(z
0). Then a theoretical prediction interval or region Jη(z

0) for Y 0 with coverage

level 0 < η < 1 is a set of possible values for Y 0 such that

pr(Y 0 ∈ Jη(z
0)|Z0 = z0) = pr(YΘ0(z

0) ∈ Jη(z
0)) = η. (2.2)
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Like the standard confidence or credible regions, there are many choices of Jη(z
0). On the other

hand, it is not difficult to obtain a prediction region which has the smallest size among all Jη(z
0).

To this end, let f(y; z0) be the continuous density function of YΘ0(z
0), and

Iη(z
0) = {y : f(y; z0) ≥ cη(z

0)}, (2.3)

where cη(z
0) is chosen such that Iη(z

0) satisfies (2.2). If pr(f(Y 0; Z0) = s | Z0 = z0) = 0 for any

s > 0, then such cη(z
0) uniquely exists. It follows from the argument for the optimality property

of the highest posterior density region in the Bayesian literature (Box & Tiao, 1973, pp.123-124)

that Iη(z
0) is the optimal one in the sense that ‖Iη(z

0)‖ ≤ ‖Jη(z
0)‖, where ‖A‖ denotes the

length or size of the set A.

Now, to obtain empirical prediction regions for Y 0, assume that the data {(Yi, Zi), i =

1, · · · , n} are n independent copies of (Y, Z) and let Θ̂ be a “consistent” estimator of Θ0. The

mean or mode of YΘ̂(z0) is a reasonable point estimate for Y 0. An η-level empirical region Ĵη(z
0)

corresponding to (2.2) is defined as

pr(YΘ̂(z0) ∈ Ĵη(z
0)| Data) = η, (2.4)

where the probability is with respect to YΘ̂(z0) given the data. Under certain regularity con-

ditions, the true coverage level of Ĵη(z
0) converges to η. That is, as a function of the data,

pr(Y 0 ∈ Ĵη(z
0)| Z0 = z0, Data), converges to η, in probability, as n →∞.

Now, let f̂(·; z0) be the density function of YΘ̂(z0). Then, the empirical counterpart for (2.3)

is

Îη(z
0) = {y : f̂(y; z0) ≥ ĉη(z

0)}, (2.5)

where ĉη(z
0) is chosen such that Îη(z

0) satisfies (2.4). Assume that f̂(y; z0) converges to f(y; z0),

uniformly in y, as n →∞, then it is straightforward to show that ‖Îη(z
0)‖ converges to ‖Iη(z

0)‖
in probability. Therefore, in the limit, Îη(z

0) is expected to the smallest region among all Ĵη(z
0).

When Model (2.1) is the standard linear regression with identically distributed error terms and
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f(·; z0) is unimodal, we expect that in the limit, the set Îη(z
0) corresponds to the optimal

interval studied by Olive (2006) derived via the empirical distribution function of the residuals.

It is important to note that when the fitted model is misspecified, asymptotically the coverage

probability of Îη(z
0) can be quite different from its nominal coverage level η.

Note that Condition (2.4) imposed on the prediction intervals Ĵη(·) is rather stringent and

may not be practically relevant. It guarantees the validity of Ĵη(z
0) under the setting that one

would repeatedly draw future subjects with the same fixed z0. In practice, a prediction interval

procedure will be used for predicting Y 0 with many different values of Z0, say, in a set D.

Therefore, it is appealing to consider prediction region L̂η(·) such that

pr(YΘ̂(Z0) ∈ L̂η(Z
0) | Data) =

∫

D
pr(YΘ̂(z) ∈ L̂η(z) | Data)dH(z) = η, (2.6)

where H(·) is the distribution function of Z0 ∈ D. In Appendix A, we show that the true average

coverage level of L̂η(·), pr(Y 0 ∈ L̂η(Z
0) | Data), converges to η, in probability, as n →∞, where

the probability is with respect to the joint distribution of Y 0 and Z0.

Note that when the fitted model is not correctly specified, the unconditional prediction pro-

cedure L̂η(·) can be calibrated empirically so that the average coverage level of the resulting

regions is about η. On the other hand, it is rather difficult, if not impossible, to do so for its

conditional counterpart Ĵη(·). More details are given in Section 3.

Any conditional prediction set Ĵη(·) in (2.4) automatically satisfies (2.6). On the other hand,

the class of prediction sets L̂η(·) is much larger than that of Ĵη(·). The question is how to identify

an “optimal” procedure, for example, which produces prediction regions with the smallest average

length or size over Z0 ∈ D among all L̂η(·). This seems to be a rather complex optimization

problem. It turns out that such an optimal region can be constructed quite easily. Specifically,

let

K̂η(z) = {y : f̂(y; z) ≥ ĉη}. (2.7)
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Here, ĉη is free of z and is chosen such that (2.6) is satisfied, that is,

∫

D

∫ ∞

−∞
I{f̂(y; z) ≥ ĉη}f̂(y; z)dydH(z) = η,

where I(·) is the indicator function. In Appendix A, we show that under some regularity condi-

tions, if supy,z |f̂(y; z) − f(y; z)| → 0 in probability, as n → ∞, the limit of E(‖K̂η(Z
0)‖) is no

greater than that of E(‖L̂η(Z
0)‖), where the expectation is with respect to Z0 ∈ D.

Now, let us use an example with a relatively small sample size to illustrate the proposed

procedures. The data set of this example consists of 54 patient records (Neter, Wasserman &

Kutner, 1985, p.419). Each record has the patient’s survival time Y after a liver surgery and the

corresponding four pre-operational biomarker values: blood clotting score (BCScore), prognostic

index (PIndex), enzyme function test score (EScore) and liver function test score (LScore). Here,

Z is a 5 × 1 vector. The goal is to establish a prediction model for the patient’s survival after

the surgery via these four pre-operational covariates. We used Model (2.1) to fit these data with

h(x) = log(x) and g(x) = x, σ(x) = exp(x), and an unspecified distribution of the error term ε.

Here, Θ0 consists of the true values β0 and γ0 of β and γ, and the true density function of ε. The

estimator β̂ for β0, is obtained via the following simple estimating function

n∑
i=1

Zi{log(Yi)− g(β′Zi)}. (2.8)

We then estimate γ0 by γ̂ with the estimating function

n∑
i=1

Zi

[
{log(Yi)− g(β̂′Zi)}2 − σ2(γ′Zi)

]
. (2.9)

The resulting estimates β̂ and γ̂ and the corresponding estimated standard errors are given

in Table 1. Note that more efficient estimation procedures for Model (2.1) may be used for

estimating β0 and γ0. On the other hand, when the fitted model is not correctly specified, the

estimators obtained via (2.8) and (2.9) are “well-behaved”. More details are given in the next

section.
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Lastly, for the present example, we estimate the density function of the error term ε via

the following univariate kernel function estimate f̂0(·) with the standardized residuals, {êi, i =

1, · · · , n}, where

f̂0(x) = n−1

n∑
i=1

φτ (êi − x),

êi = {h(Yi) − g(β̂′Zi)}/σ(γ̂′Zi), φτ (x) = τ−1φ(x/τ), φ(·) is the standard normal density func-

tion and τ is the smooth parameter. Like any nonparametric function estimation problem, the

proper choice of the smooth parameter τ is not obvious. In practice, one may use the simple

rule-of-thumb proposed by Scott (1992) for choosing the bandwidth, that is, τ = 1.06n−1/5 ×
min(1, 1.34IQR), where IQR is the interquartile range of {êi, i = 1, · · · , n}. Alternatively, one

may select an optimal bandwidth based on cross-validation methods by minimizing the mean

square error of the resulting density estimator (Rudemo, 1982; Bowman, 1984). For all numerical

studies discussed in the paper, we use the cross-validation method to select the bandwidth τ .

With the above estimates, conditional on Z = z, the prediction density function f̂(y; z) of

YΘ̂(z) is

f̂(y; z) =
ḣ(y)

σ(γ̂′z)
f̂0

(
h(y)− g(β̂′z)

σ(γ̂′z)

)
=

1

y exp(γ̂′z)
f̂0

(
log(y)− β̂′z

exp(γ̂′z)

)
, (2.10)

where ḣ(y) is the derivative of h(y). In Appendix B, we show under a rather general setting that

Θ̂ is consistent under Model (2.1). To illustrate how to construct prediction intervals Îη(·) and

K̂η(·), in Figure 1, we plot the prediction density functions f̂(·; z0) with two distinct sets of z0.

The density function on the right hand side, labeled by (a), is relatively flat and skewed. The

0.8 conditional prediction interval Î0.8(z
0) is (328 days, 424 days), a quite large interval. Now, if

we let the distribution H(·) of z0 in (2.6) be the empirical distribution of {Zi, i = 1, · · · , n}, the

corresponding 0.8 unconditional region K̂0.8(z
0) = (346, 403), which is a relatively tight interval.

Here, ĉ0.8 = 0.0063 and ĉ0.8(z
0) = 0.0020. The prediction density function labeled by (b) is

narrow and peaky. The corresponding sets Î0.8(z
0) and K̂0.8(z

0) are (110, 136) ∪ (144, 145) and

(110, 137) ∪ (140, 150), respectively. For this case, the unconditional region is slightly larger
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than its conditional counterpart, but it is still tight enough for making practically meaningful

predictions.

For a global comparison between these two interval procedures with this example, in Figure

2, we provide a scatter diagram with 54 dots, the x and y of each dot denote the sizes of Î0.8(z
0)

and K̂0.8(z
0) for a study subject with its observed preoperational covariate vector z0. The average

sizes of Î0.8 and K̂0.8 over these 54 cases are 43 and 38 days, respectively.

Note that one can also fit the data with a standard normal error ε in Model (2.1). The

resulting conditional prediction interval Î0.8(z
0) for Case (a) presented in Figure 1 is (326, 430),

and for the second case, it is (110, 138). Their unconditional counterparts are (359, 391) and (106,

142), respectively. The average lengths over 54 cases are 45 days for the conditional intervals

and 40 days for the unconditional intervals.

Now, let us consider the case that the response Y is discrete. Like the continuous case, we

show in Appendix A that asymptotically the unconditional set K̂η(·) has the smallest average

size with respect to Z among all L̂η(·) provided that η is an attainable prediction level of these

sets. Here the size is determined by the counting measure. Note that when there is at least one

continuous covariate in Z, for any given 0 < η < 1, in general one can obtain K̂η(·), however, its

conditional counterpart Îη(·) may not exist.

Let us use an example with a binary outcome to illustrate how to construct the prediction

set K̂η(·). The data set of the example is from a study called “HEART”, the Healing and Early

Afterload Reducing Therapy Trial (Pfeffer et al., 1997; Manes et al., 2003), which is a randomized

double-blind study of the hemodynamic effects of early versus delayed administration of ramipril

after myocardial infarction. Although there were no significant differences with respect to the

patient’s mortality or morbidity among three treatment groups in the trial, it is interesting to use

the data to establish a prediction model for early identification of high risk patients for proper

medical interventions or for planning future studies. Here, the response is binary, which is one

if the patient died or had a heart failure by or at a year after randomization. The covariates are

8
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the patient’s 14 day ejection fraction (EFrac), average ST-segment evaluation at day 7 (AveST),

and maximum ST-segment elevation at day 7 (MaxST). There are 274 study patients who have

complete information about these variables. Here, we assume that YΘ(z) is a binary variable

with the failure probability pr(Y = 1| Z = z) = g(β′z). The parameter vector Θ = β. For this

present example, we let g(x) = {1+exp(−x)}−1, the standard logistic link function. A consistent

estimator β̂ is obtained via the estimating function (2.8) with identity function h(·). It follows

that given Z = z, the prediction density function f̂(y; z) for the binary variable YΘ̂(z) is

yg(β̂′z) + (1− y)(1− g(β̂′z)). (2.11)

The η-level prediction set K̂η(·) in (2.7) can then be constructed accordingly via (2.11).

It is interesting and important to examine the connection between K̂η(·) and the classical

binary classification rule. For a future patient with covariate vector z0, a conventional classifica-

tion rule predicts Y 0 = 1, if YΘ̂(z0) ≥ ξ, otherwise, Y 0 = 0, where ξ is chosen between 0 and 1

to satisfy certain criteria. For this classification rule, the corresponding prediction set L̂η(z
0) in

(2.6) consists of a single element, either 0 or 1, where η corresponds to the conventional correct

classification probability. Note that this rule may not produce the best prediction set K̂η(·)
defined in (2.7) due to the fact that a general η prediction set has four possibilities, the empty

set, {0}, {1} and {0, 1}.
A commonly used classification rule is the one with ξ = 0.5. For the HEART trial, the

corresponding prediction set attains η = 0.82 and coincides with K̂0.82(·). Thus, when the fitted

model is correctly specified, this specific rule gives the best prediction set among all 0.82-level

prediction sets. On the other hand, if one would like to have a higher prediction level, say,

η = 0.9, then the above rule is no longer valid.

For illustration, suppose that we are interested in predicting future responses for two distinct

sets of covariate vectors. The z0 = (1, EFrac, AveST, MaxST)′ of the first case is (1, 68, 0.52, 1.16)′

and for the second case is (1, 35, 0.5, 1.26)′. For the first case, the estimate of the failure probability

9
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g(β̂′z0) is 0.04, a very small value. The K̂0.82(z
0) = {0}, indicating that very likely the future

patient is free of the event. For the second case, the probability of failure is 0.51, and K̂0.82(z
0) =

{1}. On the other hand, if we choose η = 0.9, a relatively high coverage level, the corresponding

ĉ0.9 = 0.27 instead of 0.5. Now, for the first case, K̂0.9(z
0) is still {0}. However, for the second

case, K̂0.9(z
0) = {0, 1}. This suggests that although we cannot make a good prediction based on

three “baseline” covariates, we will provide extra, maybe quite costly medical interventions to

this type of subjects for preventing them from early heart failure or death. Therefore, a high η

value is associated with high medical cost.

Now, suppose that the resource is limited and we are willing to consider a prediction rule with

a relatively low prediction level, say, η = 0.7. This results in ĉ0.7 = 0.72. Again, for the first case

discussed above, K̂0.7(z
0) is still {0}. However, for the second case, K̂0.7(z

0) becomes an empty

set, that is, we will not do anything for this type of subjects, but allocate resource to subjects

with non-empty prediction sets. There are 53 empty prediction sets with the HEART data set.

For those patients with non-empty prediction sets, the correct classification rate is 0.87, which

is higher than the correct classification rate for the standard binary decision rule with the cutoff

value of 0.5.

3. PREDICTION INTERVALS OR REGIONS WHEN THE WORKING MODEL

MAY NOT BE CORRECTLY SPECIFIED

In practice, the conditional distribution of YΘ0(z) is simply an approximation to the true con-

ditional distribution of Y given Z = z. Therefore, even asymptotically, the coverage probability

of a prediction set L̂η(·) defined by (2.6) can be markedly different from its nominal level η. On

the other hand, if the distribution H(·) of Z0 in (2.6) is from the same population of the observed

Z’s in the data, one may consider an empirically calibrated prediction set L̃η(·) such that

n−1

n∑
i=1

I(Yi ∈ L̃η(Zi)) = η. (3.1)
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Correspondingly, let K̃η(·) be defined by (2.7), but with a cutoff point c̃η chosen to satisfy

n−1

n∑
i=1

I{f̂(Yi, Zi) ≥ c̃η} = η. (3.2)

Note that when at least one of the covariates is continuous, it is difficult, if not impossible, to

calibrate empirically the conditional interval Îη(z
0) so that its coverage level is approximately η

for given z0.

To illustrate how to construct K̃η(·), consider the working model (2.1) for a continuous re-

sponse variable Y with a completely unspecified density function of ε. Now, even when the model

is misspecified, it follows from the argument in Appendix A of Tian et al. (2006) that as n →∞,

β̂ and γ̂ obtained via the estimation functions (2.6) and (2.7) still converge, in probability, to fi-

nite constants, say, β0 and γ0, respectively. Furthermore, the working prediction density function

f̂(·; z) is still (2.10).

In Appendix C, we show that, under the possibly misspecified model (2.1), the true coverage

level, η̃ = pr(Y 0 ∈ K̃η(Z
0)| Data), converges to η in probability, as n → ∞, without assuming

that the distribution of YΘ0(z
0) is the true distribution of Y 0 given Z0 = z0. Moreover, for large

n, the distribution of n1/2(η̃−η) can be approximated well by a normal with mean 0 and variance

η(1−η). This rather simple approximation can be used for identifying possible values of the true

coverage level of K̃η(·). Note that all the above large sample properties can be justified for the

case when Y is discrete.

When the sample size n is not large with respect to the dimension of Z, the expected value

of η̃ for the prediction set K̃η(·) in (3.2) can be markedly different from its nominal level η.

This is analogous to the bias issue regarding the “apparent error” estimator for the prediction

error (Efron, 1986). One common remedy to reduce such bias is to use the cross-validation

procedure. Here, we propose to use the K−fold cross-validation approach to obtain prediction

sets. Specifically, we randomly split the data into K disjoint subsets of about equal size and let

ξi ∈ {1, ...,K} denote the group label for the ith subject, that is, ξi = k represents that the ith
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subject falls into the group k. For each k ∈ {1, ...,K}, we use all observations not in group k to

obtain the estimator f̂(−k)(y, z) in (2.10), and use the observations in group k to calibrate the

coverage level. Specifically, we obtain an η-level prediction set K̃cv
η (·) defined by (2.7), but its

cutoff point ĉη = c̃cv
η satisfies

n−1

K∑

k=1

∑

ξi=k

I
{

f̂(−k)(Yi, Zi) ≥ c̃cv
η

}
= η.

Let η̃cv denote the corresponding true coverage level of K̃cv
η (·). We show in Appendix D that as

n → ∞, n1/2(η̃cv − η) converges in distribution to N(0, η(1 − η)), the limiting distribution of

n1/2(η̃ − η).

Now, with the liver surgery data, for the future patients with z0 for Case (a) in Figure 1,

the 0.8 prediction interval K̃0.8(z
0) is (349, 400), which is similar to K̂0.8(z

0) obtained under the

assumption that the fitted model is true. With the 5-fold cross-validated procedure, K̃cv
0.8(z

0) =

(343, 406). For patients with z0 For Case (b), the interval K̃0.8(z
0) is (110, 136) ∪ (144, 146) and

K̃cv
0.8(z

0) is (109, 151). Here, c̃0.8 = 0.0076 and c̃cv
0.8 = 0.0056. Moreover, the distributions of η̃cv

and η̃ are approximately normal with mean 0 and standard error 0.054. For the present small

study, with 95% probability with respect to the sampling variation, the true coverage levels of

K̃0.8(·) and K̃cv
0.8(·) are between 0.69 and 0.91. Note that one may increase the nominal level η

to obtain an “acceptable” lower bound for η̃ and η̃cv. The average length of K̃cv
0.8 over these 54

cases is 42 days which is slightly shorter than that of Î0.8.

One can also obtain empirically calibrated K̃η(·) and K̃cv
η (·) by fitting the data via Model (2.1)

with the standard normal error. For the first case in Figure 1, the resulting K̃0.8(z
0) = (369, 379)

and K̃cv
0.8(z

0) = (345, 405). For Case (b), the corresponding intervals are (107, 142) and (105, 144),

respectively.

Now, for the case with a binary response Y, we use the logistic regression working model with

failure probability pr(Y = 1 | Z = z) = g(β′z) and the estimating function (2.8) with h(·) being

the identity function. With the data from the HEART study discussed in Section 2, c̃0.7 = 0.72
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and with the 10-fold cross validation, c̃cv
0.7 = 0.72. Note that ĉ0.7 = 0.72 for K̂0.7(·) presented in

Section 2. The distribution of η̃ is approximately normal with mean 0 and standard error 0.024.

Thus, with 95% chance, the true coverage levels of K̃0.7 and K̃cv
0.7 are between 0.65 and 0.74.

4. A NUMERICAL STUDY FOR EXAMINING FINITE SAMPLE

PROPERTIES OF K̃η(·) and K̃cv
η (·)

We conducted an extensive simulation study to examine the performance of the empirically

calibrated K̃η(·), the K-fold cross-validated counterpart K̃cv
η (·) and the corresponding conditional

set Îη(·) under various scenarios with small, moderate and large sample sizes.

First, we mimicked the liver surgery study to establish a true model for generating the

data {(Yi, Zi), i = 1, · · · , n}. Specifically, we fitted the observed liver surgery data (n=54) via a

location-scale model (2.1) with h(·) being the natural logarithm, g(·) being the identity function

and σ(·) being the exponential function, but with only two covariates, the standardized prognostic

index (PIndex) and the enzyme function test score (EScore). The regression coefficients of this

true model are the estimates for β and γ obtained from (2.8) and (2.9), respectively. The true

model for our simulation study is

log Y = (5.08, 0.38, 0.43)(1, PIndex, EScore)′ +

exp((−1.32, 0.09, 0.01)(1, PIndex, EScore)′) V, (4.1)

where V is normal with mean 0 and variance 1/9.

For a given sample size n, we generated 1000 data sets {(Yi, Zi), i = 1, · · · , n} from (4.1).

Specifically, for each data set, each of n independent realizations of the covariate vector Z =

(1, BCScore, PIndex, EScore, LScore)′ was generated from the joint empirical distribution based

on the observed 54 covariate vectors, and the corresponding Y was generated from (4.1). The

prediction sets, Î0.8(·), K̃0.8(·), and K̃cv
0.8(·) were then constructed as described in Sections 2 and

3 under the following six different working models. Note that the error term ε in each model has

mean 0 and variance one, but its distribution function is unspecified.
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(M1) A location-scale model (4.1):

log Y = β′(1, PIndex, EScore)′ + exp {γ′(1, PIndex, EScore)′} ε,

(M2) A misspecified location model for log Y :

log Y = β′(1, PIndex, EScore)′ + exp(γ)ε.

(M3) A misspecified location-scale model for Y :

Y = β′(1, PIndex, EScore)′ + exp {γ′(1, PIndex, EScore)′} ε.

(M4) An under-fitted location-scale model for log Y with a single covariate PIndex:

log Y = β′(1, PIndex)′ + exp {γ′(1, PIndex)′} ε.

(M5) An over-fitted location-scale model for log Y with all four covariates:

log Y = β′Z + exp(γ′Z) ε.

(M6) A misspecified location-scale model for Y 3:

Y 3 = β′(1, PIndex, EScore)′ + exp {γ′(1, PIndex, EScore)′} ε.

For each working model, we estimate β and γ via (2.8) and (2.9), and then use (2.10) to

obtain the working prediction density function with the smooth parameter selected through

cross-validation methods as in the analysis of the liver surgery data in Section 2. For the K-

fold cross validation procedure in the simulation study, we let K = 5 for 50 < n < 100 and

let K = 10, for n ≥ 100. For each realized prediction procedure, the prediction coverage level,

PCL, was obtained from (4.1). For each working model and each prediction procedure, there

are 1000 estimated realizations of PCL. For each case, we examine closely whether the normal

distribution N(η, η(1−η)/n) is a good approximation to the sampling distribution of PCL based

on those 1000 realizations. In Table 2, we report the results with η = 0.8, n = 54, 200, 600.

In the table, each entry under the heading “EPCLY ”, the empirical prediction coverage level

for the response Y , is the average of the above 1000 realized PCL’s. Note that for cases with

n = 54, K̃0.8(·) has noticeable downward bias with respect to the prediction coverage level. On
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the other hand, its cross validated counterpart behaves quite well. For each prediction procedure,

the entry under the heading ”ESCLη, the empirical sampling coverage level for η̃ or η̃cv, is the

proportion of the 1000 realized true coverage levels that belong to the 0.95 two-sided interval

(η−1.96
√

η(1− η)/n, η+1.96
√

η(1− η)/n). Although the distribution of the true coverage level

for Î may not be approximated well by a normal, for comparison, we also report the coverage levels

for Î in the table. All ESCLη’s are quite close to 0.95 with K̃cv
0.8(·), but not so with K̃0.8(·). Under

the heading “EAS”, each entry is the empirical average size based on 1000 realized E‖K̃0.8(Z
0)‖

or E‖K̃cv
0.8(Z

0)‖ or E‖Î0.8(Z
0)‖. Although among three prediction procedures, on average K̃0.8(·)

is the smallest for all cases considered here, unfortunately it may not have the desirable prediction

coverage level. The empirically calibrated, cross validated procedure K̃cv
0.8(·) has correct coverage

level and also produces uniformly smaller regions than Î0.8(·) across all models studied here.

We also examined the situation that the working prediction density function is based on

a parametric model. For example, we let the error term ε in each of the working models be

the standard normal or equivalently let f̂0 in (2.10) be the density function of the standard

normal. In Table 3, we report the results obtained under the same setting as Table 2, but with

this specific parametric modeling. The Î0.80(·) does not perform well at all with respect to the

prediction coverage level and average length. On the other hand, the cross validated K̃cv
0.8(·)

continues performing exceptionally well for every case.

5. REMARKS

Based on the results from the extensive numerical study in Section 4, we find that the empiri-

cally calibrated prediction procedure K̃η(·) tends to be too liberal, that is, its prediction coverage

probability can be markedly smaller than the nominal level even with moderate sample sizes. On

the other hand, the K-fold cross validation procedure performs quite well. Moreover, the extra

computation burden for constructing its prediction regions is minimal. We recommend its usage

in practice.
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If the fitted model is correctly specified, one may construct optimal prediction intervals based

on either K̂η or K̃cv
η . However, unlike the case for K̃cv

η , the limiting distribution of the true

coverage level for K̂η may depend on the underlying error distribution.

It is important to note that when the fitted model is not correctly specified, K̃cv
η (·) may not

be the optimal prediction set among all the empirically calibrated, cross validated, unconditional

prediction procedures. It would be interesting to explore whether one can identify a prediction

procedure which produces the smallest size on average over a population of covariate vectors of

interest without assuming that the fitted model is correctly specified.

In survival analysis, the response variable is the time to a certain event, which is possibly

right-censored. Therefore, the right tail of the prediction density function f(·; z) may not be

estimated well semi-parametrically. Moreover, it is not clear how to do the empirical calibration

due to the fact that Y may be incompletely observed. It is interesting to explore how to predict

future responses when the survival model may be misspecified.

APPENDIX A. PROOF OF OPTIMALITY FOR K̂η(·)

First, consider the case that Y is continuous. Assume that ε̂1 = supy,z |f̂(y; z)− f(y; z)| → 0

in probability, as n →∞. Then,

|pr{Y 0 ∈ L̂η(Z
0)} − η| ≤

∫

D

∫
|f(y; z)− f̂(y; z)|dydH(z) → 0,

in probability and the true average coverage level of L̂η(·) converges to η in probability, as n →∞.

This is trivially true when Y assumes a finite number of possible values.

To demonstrate K̂η(·) is optimal, again, assume that Y is continuous first. Let Kη(z) = {y :

f(y; z) ≥ cη}, where cη is the solution to η0(c) ≡ pr(f(Y 0; Z0) ≥ c) = η. Assuming that ε̂1 → 0

in probability and η0(·) has a nonzero derivative at cη , in the first step we show that

sup
z

∥∥∥K̂η(z)−Kη(z)
∥∥∥ ≡ sup

z

∫ ∞

−∞

∣∣∣I{f̂(y; z) ≥ ĉη} − I {f(y; z) ≥ cη}
∣∣∣ dy → 0
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in probability, where I(·) is the indicator function. To this end, we let η̂(c) =
∫ I{f̂(y; z) ≥

c}f̂(y, z)dydH(z). Then

|η̂(c)− η0(c)| ≤ pr
{|f(Y 0; Z0)− c| ≤ ε̂1

}
+

∫

D

∫
|f̂(y; z)− f(y; z)|dydH(z) → 0,

in probability. Since η̂(c) is monotone decreasing, it follows that supc |η̂(c) − η0(c)| → 0 in

probability and thus ĉη is consistent for cη. This, together with the uniform consistency of

f̂(y; z), implies that

sup
z
‖K̂η(z)−Kη(z)‖

≤ sup
z

∫ ∞

−∞

[
I{cη > f(y; z) ≥ ĉη − ε̂1}+ I{ĉη + ε̂1 ≥ f(y; z) ≥ cη}

]
dy

≤ sup
z

∫ ∞

−∞
I(|f(y; z)− cη| ≤ ε̂1 + |ĉη − cη|)dy. (A.1)

Furthermore, if there exists a positive integer m such that f(y, z) has continuous partial deriva-

tives in y up to order m and inf{(y,z):f(y;z)=cη} max{|∂f(y, z)/∂y|, · · · , |∂mf(y, z)/∂ym|} > 0, then

(A.1) → 0 in probability. By the triangle inequality, it implies that E‖K̂η(Z
0)‖ converges to

E‖Kη(Z
0)‖ in probability, where the expectation is with respect to Z0.

Lastly, we show that the expected length of Kη(·) is the shortest among all Lη(·). Without loss

of any generality, we only consider Lη(Z
0) = {y : f(y; Z0) ≥ c(Z0)} with c(·) possibly covariate

dependent and pr{f(Y 0; Z0) ≥ c(Z0)} = η. It is equivalent to show that for any given Lη(Z
0),

if there exists a constant c∗ such that the prediction sets Kη(Z
0) = {y : f(y; Z0) ≥ c∗} have

the same expected length as that of Lη(Z
0), then pr{f(Y 0; Z0) ≥ c(Z0)} ≤ pr{f(Y 0; Z0) ≥ c∗}.

This follows from the fact that

pr{f(Y 0, Z0) ≥ c(Z0)} − pr{f(Y 0; Z0) ≥ c∗}

= E

[∫

c∗>f(y;Z0)≥c(Z0)

f(y; Z0)dy −
∫

c(Z0)>f(y;Z0)≥c∗
f(y; Z0)dy

]

≤ c∗E
[∫

c∗>f(y;Z0)≥c(Z0)

dy −
∫

c(Z0)>f(y;Z0)≥c∗
dy

]

= c∗E
[∫

f(y;Z0)≥c(Z0)

dy −
∫

f(y;Z0)≥c∗
dy

]
= 0.
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The proof for the case that Y has a finite number of possible values is straightforward.

APPENDIX B. PROOF OF CONSISTENCY FOR Θ̂

Here we show that Θ̂ = {θ̂, f̂0(·)} is consistent for Θ0 = {θ0 = (β′0, γ
′
0)
′, f0(·)}, where β0 is the

solution to the equation E[Z{h(Y )−g(β′Z)}] = 0, γ0 is the solution to the equation E(Z[{h(Y )−
g(β′0Z)}2 − σ(γ′Z)2]), and f0(·) is the true density function of {h(Y ) − g(β′0Z)}/σ(γ′0Z). Note

that when Model (2.1) holds, β0 and γ0 are the true regression parameters and f0 is the true

density function of ε.

First, it follows from the same argument as given in Tian et al (2006) that θ0 exists and is

unique. The consistency of β̂ for β0 follows directly from Tian et al (2006). This, together with

the consistency of β̂ and the standard M-estimation theory (van der Vaart, 1998, Chapter 5) that

γ̂ is consistent for γ0. Furthermore, it is straightforward to show that θ̂− θ0 = Op(n
−1/2), where

θ̂ = (β̂′, γ̂′)′. The consistency of f̂(y; z) for the binary case follows directly from the consistency

of θ̂. Now, for the location-scale working model (2.1), let

f(y; z) =
ḣ(y)

σ(γ′0z)
f0

{
h(y)− g(β′0z)

σ(γ′0z)

}
.

Here we assume that f0(·), σ(·) and g(·) are continuously differentiable and infz∈D{σ(γ′0z)} > 0.

Since θ̂ is consistent for θ0, the uniform consistency of f̂(y; z) for f(y; z) holds if f̂0(x) is uniformly

consistent for f0(x). Note that supx |f̂0(x)− f0(x)| is bounded by

sup
x

∣∣∣∣
∫

φτ (u− x)d{Ĥ(u; θ̂)−H0(u)}
∣∣∣∣ + sup

x

∣∣∣∣
∫ ∞

−∞
φτ (u− x)dH0(u)− f0(x)

∣∣∣∣

≤ sup
x

∣∣∣∣τ−2

∫ ∞

−∞
φ̇{(u− x)/τ}{Ĥ(u; θ̂)−H0(u)}du

∣∣∣∣ + O(τ 2)

≤ sup
u

∣∣∣Ĥ(u; θ̂)−H0(u)
∣∣∣ τ−1

∫
|φ̇(u)|du + O(τ 2)

where Ĥ(u; θ̂) = n−1
∑n

i=1 I(êi ≤ u) and H0(u) = pr(ei ≤ u). It is not difficult to show that the

set of functions indexed by (β, γ, u): {I[{h(y)− g(β′z)}/σ(γ′z) ≤ u] : |β − β0|+ |γ − γ0| ≤ δ, u ∈ R}
is VC class for a small positive δ. This, coupled with the fact that n1/2(θ̂−θ0) converges weakly to
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a mean zero multivariate normal, implies that n1/2{Ĥ(u; θ̂)−H0(u)} converges weakly to a tight,

mean zero Gaussian process in u. Therefore, supx |f̂0(x) − f0(x)| = Op(τ
−1n−1/2 + τ 2) = op(1),

when τ = op(1) and n1/2τ →∞.

APPENDIX C. PROOF OF LARGE SAMPLE PROPERTIES FOR K̃η(·)

First we establish the uniform consistency of η̂(c) = n−1
∑n

i=1 I{f̂(Yi; Zi) ≥ c} to η0(c). The

consistency of c̃η to cη follows from the same arguments in Appendix A. To this end,

|η̂(c)− η0(c)| ≤ n−1

n∑
i=1

I {|f(Yi; Zi)− c| ≤ ε̂1}+ ε̂2

≤ 3ε̂2 + η0(c− ε̂1)− η0(c + ε̂1) → 0, (C.1)

in probability, where ε̂2 = supc |n−1
∑n

i=1 I{f(Yi; Zi) ≥ c} − η0(c)| = op(1). The consistency of

η̃ follows directly from the continuous mapping theorem, the uniform consistency of f̂(y; z) and

the consistency of c̃η.

To derive the large sample distribution for n1/2(η̃−η), we need the convergence rate for f̂(y; z)

and c̃η. By a functional central limit theorem (Pollard, 1990), n−1/2[
∑n

i=1 I{f(Yi; Zi) ≥ c}−η0(c)]

converges weakly to a mean zero Gaussian process. This, coupled with θ̂ − θ0 = Op(n
−1/2) and

supx |f̂0(x)− f0(x)| = Op(τ
−1n−1/2 + τ 2), implies that

ε̂ ≡ sup
y;z

∣∣∣f̂(y; z)− f(y; z)
∣∣∣ + sup

c

∣∣∣∣∣n
−1

n∑
i=1

I {f(Yi; Zi) ≥ c} − η0(c)

∣∣∣∣∣ = Op(τ
−1n−1/2 + τ 2). (4·1)

It then follows from (C.1) that c̃η − cη = Op(τ
−1n−1/2 + τ 2). Now, let

M̂(c, f) = n−1/2

n∑
i=1

{I(f(Yi; Zi) ≥ c)− η0(c, f)} , where η0(c, f) = pr(f(Y, Z) ≥ c).

If we can show that

R̂0 = M̂(c̃η, f̂)− M̂(cη, f) → 0, in probability, (C.2)

19

Hosted by The Berkeley Electronic Press



then

n1/2(η̃ − η) = n−1/2

n∑
i=1

{
η0(c̃η, f̂)− I(f̂(Yi; Zi) ≥ c̃η)

}

= −n−1/2

n∑
i=1

{I(f(Yi; Zi) ≥ cη)− η}+ op(1).

Therefore, by the central limit theorem, we have n1/2(η̃ − η)
D→ N(0, η(1 − η)). We now prove

(C.2) for the location-scale working model. The binary case can shown easily using similar

arguments. To this end, we let θ = (β′, γ′)′

eθ(Yi; Zi) =
h(Yi)− g(β′Zi)

σ(γ′Zi)
, Ĝθ(e, s) = n−1

n∑
i=1

I
{

eθ(Yi; Zi) ≤ e,
σ(γ′Zi)

ḣ(Yi)
≤ s

}
,

Gθ(e, s) = pr

{
eθ(Yi; Zi) ≤ e,

σ(γ′Zi)

ḣ(Yi)
≤ s

}
, and g(e, s) =

∂2Gθ0(e, s)

∂e∂s
,

where the density function g(e, s) is assumed to have bounded continuous derivatives up to the

second order. Then

η0(c, f) = pr

{
f0(eθ(Y, Z)) ≥ c

σγ(Z)

ḣ(Y )

}
=

∫
I(f0(e) ≥ cs)dGθ(e, s)

and

R̂0 = n1/2

∫ ∫ ∞

−∞
I

{
f̂0(e) ≥ c̃ηs

}
d

{
Ĝθ̂(e, s)−Gθ̂(e, s)

}

− n1/2

∫ ∫ ∞

−∞
I {f0(e) ≥ cηs} d

{
Ĝθ0(e, s)−Gθ0(e, s)

}
.

By the standard empirical processes theory (Pollard, 1990), n1/2{Ĝθ(e, s) − Gθ(e, s)} converges

weakly to a mean-zero Gaussian process in (θ, e, s), and thus is equi-continuous. Now, let

R̂ = n1/2

∫ ∞

−∞

∫ ∞

−∞

[
I

{
f̂0(e) ≥ c̃ηs

}
− I {f0(e) ≥ cηs}

]
d

{
Ĝθ0(e, s)−Gθ0(e, s)

}
.

Given the consistency of θ̂, it follows that R̂0 − R̂ = op(1) and thus to show (C.2), it suffices to

show that R̂ = op(1). To this end, let R̂ = R̂1 + R̂2, where

R̂1 =

∫ ∫ ∞

−∞

[
I

{
f̂0(e) ≥ c̃ηs

}
− I {f0(e) ≥ cηs}

]
d

[
n1/2

{
Ĝθ0(e, s)− Ĝ(e, s)

}]
,

R̂2 = n1/2

∫ ∫ ∞

−∞

[
I

{
f̂0(e) ≥ c̃ηs

}
− I {f0(e) ≥ cηs}

]
{ĝ(e, s)− g(e, s)} dsde,
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ĝ(e, s) = n−1
∑n

i=1 φn−v{eθ0(Yi; Zi) − e}φn−v{σ(γ′0Zi)/ḣ(Yi) − s}, 1/4 < v < 1/2, and Ĝ(e, s) =
∫ e

−∞
∫ s

−∞ ĝ(a, b)dadb. It follows from the asymptotic properties of the bivariate kernel den-

sity estimator (Rosenblatt, 1976; Silverman, 1986) and that |c̃η − cη| + supx |f̂0(x) − f0(x)| =

Op(τ
−1n−1/2 + τ 2), we have

sup
e,s
|ĝ(e, s)− g(e, s)| = op(n

ε+v−1/2), forallε > 0, and

ε̂3 = c̃−1
η

∫ ∞

−∞

∣∣∣f̂0(e)− f0(e)
∣∣∣ de + |c̃−1

η − c−1
η | = Op(τ

−1n−1/2 + τ 2).

Lastly, it follows from van der Vaart (1994), the “smoothed” empirical process Ĝ(e, s) is asymp-

totically equivalent to Ĝθ0(e, s), i.e., supe,s

∣∣∣Ĝθ0(e, s)− Ĝ(e, s)
∣∣∣ = op(n

−1/2). These, together with

Lemma 1 of Bilias et al (1997), imply that R̂1 = op(1) and

R̂2 ≤ n1/2 sup
e,s
|ĝ(e, s)− g(e, s)|

∫ ∫ ∞

−∞

∣∣∣I
{

f̂0(e) ≥ c̃ηs
}
− I {f0(e) ≥ cηs}

∣∣∣ dsde

≤ n1/2 sup
e,s
|ĝ(e, s)− g(e, s)| ε̂3 = Op(τ

−1nε+v−1/2 + τ 2nε+v).

Therefore, if τ = Op(n
−δ) and v → 1/4, for 1/8 < δ < 1/4, R̂ → 0 in probability and consequently

n1/2(η̃ − η) converges in distribution to a normal with mean 0 and variance η(1− η).

APPENDIX D. PROOF OF LARGE SAMPLE PROPERTIES FOR K̃cv
η (·)

We first show that c̃cv
η is consistent for cη for any given η. Note that c̃cv

η is the solution to

η̃cv(c) = η, where

η̃cv(c) ≡ n−1

K∑

k=1

∑

{i:ξi=k}
I

{
f̂(−k)(Yi; Zi) ≥ c

}
.

Using the arguments in Appendix C, we can show that

ε̂cv ≡
K∑

k=1

sup
y;z

∣∣∣f̂(−k)(y; z)− f(y; z)
∣∣∣ + sup

c

∣∣∣∣∣n
−1

n∑
i=1

I {f(Yi; Zi) ≥ c} − η0(c)

∣∣∣∣∣ = Op(n
−1/2τ−1 + τ 2).

It follows that |η̃cv(c)− η0(c)| is bounded by

n−1

K∑

k=1

∑

ξi=k

[
I

{
f̂(−k)(Yi; Zi) ≥ c, f(Yi; Zi) < c

}
+ I

{
f̂(−k)(Yi; Zi) < c, f(Yi; Zi) ≥ c

}]
+ ε̂2

≤ n−1

n∑
i=1

I {c + ε̂cv ≥ f(Yi; Zi) ≥ c− ε̂cv}+ ε̂2 ≤ 3ε̂2 + η0(c− ε̂cv)− η0(c + ε̂cv).
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Thus, supc |η̃cv(c)− η0(c)| = Op(n
−1/2τ−1 + τ 2). Given the assumption that η0(c) has a nonzero

derivative at c = cη, we have |c̃cv
η − cη| = Op(τ

−1n−1/2 + τ 2) and therefore, c̃cv
η is consistent for cη.

It then follows from the same argument as given in Appendix C that supz ‖K̃cv
η (z)−Kη(z)‖ → 0,

in probability. The weak convergence of n1/2(η̃cv − η) to N(0, η(1− η)) follows directly from the

convergence rate of c̃cv
η and the same arguments as given in Appendix C.
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Table 1. Estimates of the regression parameter (standard errors) of models for liver surgery
survival data and HEART Trial data

(a) Liver Surgery Study

Intercept BCScore PIndex EScore LScore
β̂ 1.125(0.113) 0.158(0.012) 0.021(0.001) 0.022(0.001) 0.004(0.018)
γ̂ -1.272(1.039) -0.190(0.114) 0.003(0.006) 0.000(0.006) -0.088(0.141)

(b) HEART Trial

Intercept EFrac AveST MaxST
β̂ 2.564(1.079) -0.087(0.019) -1.516(0.725) 0.993(0.392)
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Table 2. Summary of finite sample properties for K̃0.8(·), K̃cv
0.8(·) and Î0.8(·) for various working

models with unspecified error distribution functions

EPCLY
1 ESCLη

2 EAS3

n Model K̃0.8 K̃cv
0.8 Î0.8 K̃0.8 K̃cv

0.8 Î0.8 K̃0.8 K̃cv
0.8 Î0.8

54 M1 .74 .80 .79 .78 .93 .94 35 41 47
M2 .75 .79 .80 .82 .94 .95 36 41 46
M3 .74 .80 .80 .79 .93 .96 69 84 95
M4 .74 .80 .78 .76 .92 .92 147 174 189
M5 .72 .80 .77 .68 .92 .87 34 43 46
M5 .74 .80 .63 .80 .95 .23 348 399 239

200 M1 .78 .80 .81 .89 .95 .94 38 39 46
M2 .79 .80 .81 .90 .94 .94 38 39 44
M3 .78 .80 .81 .86 .92 .97 76 77 89
M4 .78 .80 .79 .84 .93 .94 166 169 194
M5 .78 .80 .81 .86 .94 .96 39 39 46
M6 .79 .80 .70 .91 .92 .19 445 463 312

600 M1 .79 .80 .81 .91 .94 .90 38 39 46
M2 .79 .80 .81 .91 .94 .89 38 39 45
M3 .79 .80 .80 .91 .94 .96 76 77 88
M4 .79 .80 .80 .88 .94 .94 164 169 192
M5 .79 .80 .81 .90 .94 .92 38 39 46
M5 .79 .80 .71 .94 .94 .01 482 491 313

1: the empirical prediction coverage level for Y
2: the empirical sampling coverage level of the true prediction coverage probability
3: the empirical average size
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Table 3. Summary of finite sample properties for K̃0.8(·), K̃cv
0.8(·) and Î0.8(·) for various working

models with normal error distribution functions

EPCLY
1 ESCLη

2 EAS3

n Model K̃0.8 K̃cv
0.8 Î0.8 K̃0.8 K̃cv

0.8 Î0.8 K̃0.8 K̃cv
0.8 Î0.8

54 M1 .76 .80 .76 .88 .95 .89 37 41 43
M2 .77 .79 .77 .90 .94 .93 37 40 42
M3 .77 .80 .83 .91 .95 .95 85 93 108
M4 .76 .80 .74 .89 .94 .81 159 173 168
M5 .74 .80 .73 .78 .93 .76 35 43 42
M6 .77 .80 .51 .90 .95 .13 330 365 236

200 M1 .79 .80 .79 .93 .95 .97 38 39 44
M2 .79 .80 .79 .93 .95 .98 38 39 43
M3 .79 .80 .86 .92 .94 .37 85 86 114
M4 .79 .80 .75 .93 .93 .67 168 171 175
M5 .78 .80 .78 .91 .96 .93 38 39 44
M6 .79 .80 .47 .93 .95 .01 322 333 227

600 M1 .80 .80 .80 .94 .94 .98 38 39 45
M2 .80 .80 .80 .94 .94 .98 39 39 43
M3 .80 .80 .87 .94 .94 .01 84 85 115
M4 .80 .80 .78 .93 .94 .30 170 172 177
M5 .79 .80 .79 .94 .95 .97 38 39 45
M6 .80 .80 .46 .94 .94 .00 295 298 226

1: the empirical prediction coverage level for Y
2: the empirical sampling coverage level of the true prediction coverage probability
3: the empirical average size
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Figure 1. Prediction density function estimates for the survival time with (a) z0 =
(14.8, 86, 101, 4.1)′ and (b) z0 = (1, 6.6, 77, 46, 1.95)′.
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Figure 2. Comparisons between K̂0.8(·) and Î0.8(·) with respect to the length of the prediction
region for the liver surgery survival time data (the solid line is the 45◦ reference line).
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|| Î0.8(Zi)||

30

http://biostats.bepress.com/harvardbiostat/paper48


	text.pdf.1155149833.titlepage.pdf.X36uk
	tmp.1155149833.pdf.oZ5aO

